JPH06192916A - Heat-resistant elastomeric hot-melt fiber - Google Patents

Heat-resistant elastomeric hot-melt fiber

Info

Publication number
JPH06192916A
JPH06192916A JP4344521A JP34452192A JPH06192916A JP H06192916 A JPH06192916 A JP H06192916A JP 4344521 A JP4344521 A JP 4344521A JP 34452192 A JP34452192 A JP 34452192A JP H06192916 A JPH06192916 A JP H06192916A
Authority
JP
Japan
Prior art keywords
heat
fiber
weight
elastomer
thermoplastic elastomer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4344521A
Other languages
Japanese (ja)
Inventor
Hideo Isoda
英夫 磯田
Yasushi Yamada
靖司 山田
Kunio Kimura
邦生 木村
Mitsuhiro Sakuta
光浩 作田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyobo Co Ltd
Original Assignee
Toyobo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyobo Co Ltd filed Critical Toyobo Co Ltd
Priority to JP4344521A priority Critical patent/JPH06192916A/en
Publication of JPH06192916A publication Critical patent/JPH06192916A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To provide a heat-resistant elastomeric hot-melt fiber capable of easily producing a cushioning material having excellent cushioning property and heat-resistant durability in high production efficiency without polluting the working environment. CONSTITUTION:The heat-resistant elastomeric hot-melt fiber is a conjugate fiber containing a hot-melt component consisting of a thermoplastic elastomer containing 1-10wt.% of a hindered antioxidant based on the soft segment, wherein the amount of the thermoplastic elastomer in the fiber is 10-70wt.% and the elastomer accounts for >=50% of the outer circumference of a cross-section of the fiber.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は耐熱性エラストマ−系熱
接着複合繊維に関するものであり、特に繊維よりなるク
ッション材を熱成形する時の耐熱加工性が優れ、得られ
たクッション材は優れたクッション性、常温および加熱
下での耐久性とが得られる耐熱性エラストマ−系熱接着
複合繊維に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a heat-resistant elastomer-based heat-bonded composite fiber, which has excellent heat-processability when a cushion material made of the fiber is thermoformed, and the obtained cushion material is excellent. The present invention relates to a heat-resistant elastomer-based heat-bonded composite fiber that provides cushioning properties and durability under normal temperature and heating.

【0002】[0002]

【従来の技術】現在、家具およびベッドなどのクッショ
ン材の分野で、発砲ウレタン、ポリエステル繊維詰綿、
及びポリエステル繊維を接着した樹脂綿やポリエステル
硬綿が知られている。
2. Description of the Related Art Currently, in the field of cushion materials such as furniture and beds, foamed urethane, polyester fiber stuffed cotton,
Also known are resin cotton and polyester hard cotton to which polyester fibers are adhered.

【0003】しかしながら、発泡ウレタンはクッション
としての耐久性は良好だが、床つき感が大きく、透湿性
に劣り蓄熱性があるため蒸れやすく、かつ、燃焼時の発
生熱量が大きいため難燃性付与にはハロゲン化物添加が
必要なため、火災時に有毒ガスの発生による中毒の問題
やリサイクルが困難なため焼却されるが、焼却炉の損傷
が大きく、かつ、有毒ガスの除去に経費が掛かる等の問
題がある。また、加工性は優れるが製造中に使用される
薬品の公害問題などもある。また、ポリエステル繊維詰
綿では繊維間が固定されていないため、使用時形態が崩
れたり、繊維が移動して、かつ、捲縮のへたりで嵩高性
の低下や弾力性の低下が問題になる。
However, although urethane foam has good durability as a cushion, it has a great feeling of flooring, is poor in moisture permeability and has a heat storage property, and is easily steamed, and since it generates a large amount of heat during combustion, it imparts flame retardancy. Since it requires the addition of halides, it is incinerated due to the problem of poisoning due to the generation of toxic gas during a fire and the difficulty of recycling, but the incinerator is seriously damaged, and the cost of removing toxic gas is high. There is. Further, although it has excellent processability, it also has a problem of pollution of chemicals used during manufacturing. In addition, since the fibers are not fixed to each other in the polyester fiber wadding, the form may collapse during use, the fibers may move, and the crimp may cause the deterioration of bulkiness and elasticity. .

【0004】ポリエステル繊維を接着剤で接着した樹脂
綿、例えば接着剤にゴム系を用いたものとして特開昭6
0−11352号公報、特開昭61−141388号公
報、特開昭61−141391号公報等がある。又、ウ
レタンを用いたものとして特開昭61−137732号
公報等がある。これらのクッション材は耐久性に劣り、
且つリサイクルも出来ない等の問題、及び加工性の煩雑
さや製造中に使用される薬品の公害問題などもある。
As a resin cotton in which polyester fibers are adhered with an adhesive, for example, a rubber-based adhesive is used, Japanese Patent Application Laid-Open No.
0-11352, JP-A 61-141388, JP-A 61-141391 and the like. Further, as a method using urethane, there is JP-A-61-137732. These cushion materials have poor durability,
In addition, there are problems such as not being able to recycle, complexity of processability and pollution of chemicals used during manufacturing.

【0005】ポリエステル硬綿、例えば特開昭58−3
1150号公報、特開平2−154050号公報、特開
平3−220354号公報等があるが、用いている熱接
着繊維の接着成分が脆い非晶性のポリマ−を用いるため
(例えば特開昭58−136828号公報、特開平3−
249213号公報等)接着部分が脆く、使用中に接着
部分が簡単に破壊されて形態や弾力性が低下するなどの
耐久性に劣る問題がある。改良法として、交絡処理する
方法が特開平4−245965号公報等で提案されてい
るが、接着部分の脆さは解決されず弾力性の低下が大き
い問題がある。また、加工時の煩雑さもある。更には接
着部分が変形しにくくソフトなクッション性を付与しに
くい問題もある。このため、接着部分を柔らかい、且つ
変形しても回復するポリエステルエラストマ−を用いた
熱接着繊維を改良方法として特開平4−240219号
公報で提案されている。この繊維に使われるポリエステ
ルエラストマ−はハ−ドセグメントの酸成分にテレフタ
ル酸を50〜80モル%含有し、ソフトセグメントとし
てのポリアルキレングリコ−ルの含有量が30〜50重
量%に限定し、他の酸成分組成として、例えば、特公昭
60−1404号公報に記載された繊維と同様にイソフ
タル酸等を含有させ非晶性を増すことにより融点を18
0℃以下として、熱接着成形温度を低く押さえ、低分子
量化により低溶融粘度として流動性を良くし、熱接着部
点の形成を良くすることが提案されているが、このよう
な組成では、元々加熱下では塑性変形しやすい組成が、
熱成形時の劣化でより低分子量化するため耐熱抗圧縮性
が低下する問題点がある。しかして、熱劣化防止に必要
な対策が、特公昭60−1404号公報及び、特開平4
−240219号公報では酸化防止剤および紫外線吸収
剤を含有していても良いとのみ記載している。他の熱接
着繊維に使用可能と記載される特開平3−220316
号公報にも同様に具体的な方策が記載されていない。そ
のことは、実施例中に全く記載されていないことからも
明らかである。具体的な記載はポリウレタン系弾性繊維
として特開平4−153316号公報に、抗酸化剤と紫
外線吸収剤を合計で0.1〜3重量%含有する熱可塑性
エラストマ−繊維として記載されている。好ましい範囲
として、紫外線吸収剤/抗酸化剤を4/1〜1/1と紫
外線吸収剤を多く含むことが奨励されている。しかし
て、熱接着繊維として繊維形成する際、260〜290
℃の高温で紡糸されるため有毒な紫外線吸収剤は相当な
量が昇華し、発煙ガスとして作業環境を著しく汚染する
問題がある。溶融紡糸時昇華発煙した後でも紫外線吸収
剤を多く含む繊維を熱接着繊維として用いる場合は、通
常の熱成形温度は180℃以上220℃以下の常用温度
で紡糸時より長時間保持されるので、このような溶融熱
成形の際に、有毒な紫外線吸収剤は殆ど昇華し、発煙ガ
スとして作業環境を著しく汚染する深刻な問題となる。
Polyester hard cotton, for example, JP-A-58-3
1150, JP-A-2-154050, JP-A-3-220354, etc., but since an amorphous polymer having a brittle adhesive component of the heat-bonding fiber used is used (for example, JP-A-58). -136828, Japanese Patent Application Laid-Open No. 3-
However, there is a problem in that durability is poor such that the bonded portion is brittle and the bonded portion is easily broken during use and the form and elasticity are reduced. As an improved method, a method of entanglement treatment has been proposed in Japanese Patent Laid-Open No. 4-245965, but there is a problem that the brittleness of the bonded portion is not solved and the elasticity is largely reduced. In addition, there is complexity during processing. Further, there is a problem that the bonded portion is hard to be deformed and soft cushioning is hard to be imparted. For this reason, Japanese Patent Laid-Open No. 4-240219 proposes an improved method for a heat-bonded fiber using a polyester elastomer that is soft even at the bonded portion and recovers even when deformed. The polyester elastomer used for this fiber contains 50 to 80 mol% of terephthalic acid in the acid component of the hard segment, and the content of polyalkylene glycol as the soft segment is limited to 30 to 50% by weight. As other acid component composition, for example, isophthalic acid or the like is added to increase the amorphousness to increase the melting point to 18 as in the fiber described in JP-B-60-1404.
It is proposed that the temperature is 0 ° C. or lower, the heat-bonding molding temperature is kept low, the melt viscosity is improved by lowering the molecular weight to improve the fluidity, and the formation of the heat-bonding joint points is improved. Originally, the composition that easily plastically deforms under heating,
There is a problem that the heat resistance and compression resistance are lowered because the molecular weight becomes lower due to deterioration during thermoforming. Therefore, measures necessary for preventing thermal deterioration are disclosed in Japanese Patent Publication No. 60-1404 and Japanese Patent Laid-Open No.
-240219 discloses only that an antioxidant and an ultraviolet absorber may be contained. JP-A-3-220316 described as usable for other heat-bonded fibers
Similarly, no specific measures are described in the publication. This is clear from the fact that nothing is mentioned in the examples. A concrete description is described in JP-A-4-153316 as a polyurethane elastic fiber, as a thermoplastic elastomer fiber containing 0.1 to 3% by weight in total of an antioxidant and an ultraviolet absorber. As a preferable range, it is recommended that the UV absorber / antioxidant is 4/1 to 1/1 and the UV absorber is contained in a large amount. Then, when forming a fiber as a heat-bonding fiber, 260 to 290
Since it is spun at a high temperature of ℃, a considerable amount of toxic UV absorber sublimes, and there is a problem that it pollutes the working environment as fuming gas. When a fiber containing a large amount of an ultraviolet absorber is used as a heat-bonding fiber even after sublimation and smoke generation during melt spinning, the normal thermoforming temperature is maintained at a normal temperature of 180 ° C. or higher and 220 ° C. or lower for a longer time than during spinning, During such melt thermoforming, the toxic ultraviolet absorber sublimes, and becomes a serious problem as a fuming gas that contaminates the working environment significantly.

【0006】[0006]

【発明が解決しようとする課題】本発明は、上記従来技
術の問題点を改良し、優れたクッション性、優れた耐熱
耐久性を有するクッション材を、作業環境を汚染せず、
生産効率良く容易に製造するに適した耐熱性エラストマ
−系熱接着繊維を提供することを目的とする。
DISCLOSURE OF THE INVENTION The present invention has improved the above-mentioned problems of the prior art by providing a cushioning material having excellent cushioning properties and excellent heat resistance and durability without polluting the working environment.
An object of the present invention is to provide a heat-resistant elastomer-based heat-bonded fiber suitable for easy production with high production efficiency.

【0007】[0007]

【課題を解決するための手段】本発明者らは、上記目的
を達成するために鋭意検討を行った結果、紫外線吸収剤
を添加せず、エラストマ−のゴム弾性を支配するソフト
セグメントの酸化分解を抑制することで目的を達成でき
ることを知見し本発明に到達した。すなわち本発明は、
熱可塑性エラストマーと非エラストマーよりなる熱接着
複合繊維であり、該熱接着複合繊維の断面から見て、熱
可塑性エラストマー成分が断面外周の50%以上を占め
ており、繊維中の熱可塑性エラストマー含有量が10〜
70重量%であり、該熱可塑性エラストマーは、20〜
80重量%のソフトセグメントと80〜20重量%のハ
ードセグメントからなり、全ソフトセグメントに対して
1〜10重量%のヒンダード系抗酸化剤が含有されてい
ることを特徴とする耐熱性エラストマー系熱接着繊維で
ある。
Means for Solving the Problems As a result of intensive studies for achieving the above object, the present inventors have found that oxidative decomposition of a soft segment that governs rubber elasticity of elastomer without adding an ultraviolet absorber. The present invention has been achieved by finding that the object can be achieved by suppressing the above. That is, the present invention is
A thermoadhesive composite fiber composed of a thermoplastic elastomer and a non-elastomer, and the thermoplastic elastomer component occupies 50% or more of the outer periphery of the cross section when viewed from the cross section of the thermoadhesive composite fiber, and the thermoplastic elastomer content in the fiber Is 10
70% by weight, and the thermoplastic elastomer is 20 to
A heat-resistant elastomeric heat comprising 80% by weight of a soft segment and 80 to 20% by weight of a hard segment, and containing 1 to 10% by weight of a hindered antioxidant with respect to all the soft segments. It is an adhesive fiber.

【0008】本発明の熱接着繊維を構成する熱接着成分
は、熱溶融して熱接着する必要から共有結合架橋点を有
しない熱可塑性エラストマ−とする必要がある。熱可塑
性エラストマ−としては、ソフトセグメントとして分子
量300〜5000のポリエ−テル系グリコ−ル、ポリ
エステル系グリコ−ル、ポリカ−ボネ−ト系グリコ−ル
等をブロック共重合したポリエステル系エラストマ−、
ポリアミド系エラストマ−、ポリウレタン系エラストマ
−などが挙げられる。が、本発明の最も好ましい利用形
態から、クッション材のマトリックスにポリエステル繊
維を用いる場合が多いので、熱可塑性エラストマ−を接
着性の良いポリエステル系エラストマ−とするのが好ま
しい。ポリエステル系エラストマ−としては、熱可塑性
ポリエステルをハ−ドセグメントとし、ポリアルキレン
ジオ−ルをソフトセグメントとするポリエステルエ−テ
ルブロック共重合体、または、脂肪族ポリエステルをソ
フトセグメントとするポリエステルエーテルブロック共
重合体が例示できる。ポリエステルエ−テルブロック共
重合体のより具体的な事例としては、テレフタル酸、イ
ソフタル酸、ナフタレン2・6ジカルボン酸、ナフタレ
ン2・7ジカルボン酸、ジフェニル4・4’ジカルボン
酸等の芳香族ジカルボン酸、1・4シクロヘキサンジカ
ルボン酸等の脂環族ジカルボン酸、琥珀酸、アジピン
酸、セバチン酸ダイマ−酸等の脂肪族ジカルボン酸また
は、これらのエステル形成性誘導体などから選ばれたジ
カルボン酸の少なくとも1種と、1・4ブタンジオ−
ル、エチレングリコ−ル、トリメチレングリコ−ル、テ
トレメチレングリコ−ル、ペンタメチレングリコ−ル、
ヘキサメチレングリコ−ル等の脂肪族ジオ−ル、1・1
シクロヘキサンジメタノ−ル、1・4シクロヘキサンジ
メタノ−ル等の脂環族ジオ−ル、またはこれらのエステ
ル形成性誘導体などから選ばれたジオ−ル成分の少なく
とも1種、および平均分子量が約300〜5000のポ
リエチレングリコ−ル、ポリプロピレングリコ−ル、ポ
リテトラメチレングリコ−ル、エチレンオキシド−プロ
ピレンオキシド共重合体等のポリアルキレンジオ−ルの
うち少なくとも1種から構成される三元ブロック共重合
体である。ポリエステルエステルブロック共重合体とし
ては、上記ジカルボン酸とジオ−ル及び平均分子量が約
300〜3000のポリラクトン等のポリエステルジオ
−ルのうち少なくとも各1種から構成される三元ブロッ
ク共重合体である。熱接着性、耐加水分解性、伸縮性、
耐熱性等を考慮すると、ジカルボン酸としてはテレフタ
ル酸、または、及びナフタレン2・6ジカルボン酸、ジ
オ−ル成分としては1・4ブタンジオ−ル、ポリアルキ
レンジオ−ルとしてはポリテトラメチレングリコ−ルの
3元ブロック共重合体または、ポリエステルジオ−ルと
してポリラクトンの3元ブロック共重合体が特に好まし
い。
The heat-adhesive component constituting the heat-adhesive fiber of the present invention is required to be a thermoplastic elastomer having no covalent bond cross-linking point because it needs to be heat-melted and heat-bonded. As the thermoplastic elastomer, a polyester elastomer obtained by block-copolymerizing a polyether segment glycol having a molecular weight of 300 to 5,000 as a soft segment, a polyester glycol, a polycarbonate glycol, or the like,
Examples thereof include polyamide elastomers and polyurethane elastomers. However, from the most preferable use form of the present invention, since polyester fibers are often used for the matrix of the cushion material, it is preferable to use the polyester elastomer having good adhesiveness as the thermoplastic elastomer. As the polyester elastomer, a polyester ether block copolymer having a thermoplastic polyester as a hard segment and a polyalkylenediol as a soft segment, or a polyester ether block copolymer having an aliphatic polyester as a soft segment is used. A polymer can be illustrated. More specific examples of the polyester ether block copolymer include aromatic dicarboxylic acids such as terephthalic acid, isophthalic acid, naphthalene 2.6 dicarboxylic acid, naphthalene 2.7 dicarboxylic acid, and diphenyl 4.4'dicarboxylic acid. At least one of alicyclic dicarboxylic acids such as 1,4-cyclohexanedicarboxylic acid, aliphatic dicarboxylic acids such as succinic acid, adipic acid, sebacic acid dimer acid, and dicarboxylic acids selected from ester-forming derivatives thereof Seeds and 1.4 butanedio
, Ethylene glycol, trimethylene glycol, tetremethylene glycol, pentamethylene glycol,
Aliphatic diol such as hexamethylene glycol, 1.1
Cyclohexane dimethanol, at least one diol component selected from alicyclic diols such as 1,4-cyclohexane dimethanol, and ester-forming derivatives thereof, and an average molecular weight of about 300 A ternary block copolymer composed of at least one polyalkylenediol such as polyethylene glycol, polypropylene glycol, polytetramethylene glycol, ethylene oxide-propylene oxide copolymer, etc. is there. The polyester ester block copolymer is a ternary block copolymer composed of at least one of the above dicarboxylic acids, diol, and polyester diol such as polylactone having an average molecular weight of about 300 to 3,000. . Thermal adhesion, hydrolysis resistance, stretchability,
Considering heat resistance and the like, terephthalic acid is used as the dicarboxylic acid, or naphthalene 2.6 dicarboxylic acid, 1.4 butanediol is used as the diole component, and polytetramethylene glycol is used as the polyalkylenediol. The terpolymer block copolymer or the terpolymer block copolymer of polylactone as the polyester diol is particularly preferable.

【0009】本発明の熱接着繊維を構成する熱接着成分
を成す熱可塑性エラストマ−は、弾性回復限界歪みがお
おきく、大きい力による大変形を受けても塑性変形を起
こしにくく、ゴム弾性の発現による回復性が良好で、結
晶構造形成による疑似架橋点の耐熱性がよい必要からソ
フトセグメント含有量は20〜80重量%である。ソフ
トセグメント含有量が20重量%未満では、エラストマ
−特有のゴム弾性が充分発現しないため、クッション材
に成形した場合のクッション性が劣るので好ましくな
い。また、弾性回復限界歪みが少ないため、大きい力に
よる大変形を受けると塑性変形を起こしやすいので、ク
ッション材に成形したあとの抗へたり性が劣り好ましく
ない。他方、ソフトセグメント含有量が80重量%を越
えると、融点の低下が大きくなり、低温での回復性は向
上するが、ハ−ドセグメント含有量が少なくなり、結晶
構造形成による疑似架橋点の耐熱性が低下するため、比
較的低い温度、例えば40℃を越える温度で塑性変形を
起こし、クッション材とした場合の耐熱抗へたり性が低
下するので好ましくない。本発明における好ましいソフ
トセグメント含有量は30〜70重量%、より好ましく
は40〜65重量%である。なお、ソフトセグメントの
平均分子量は300〜5000が使用できるが特にハ−
ドセグメントの耐熱性を向上させるため、繰り返し単位
を大きくする場合、好ましくは500〜4000、より
好ましくは1000〜3000である。なお、本発明に
好ましいポリエステルエラストマ−は例えば、特開昭5
5−120626号公報等の従来技術で得ることができ
る。
The thermoplastic elastomer constituting the heat-adhesive component of the heat-adhesive fiber of the present invention has a large elastic recovery limit strain, does not easily undergo plastic deformation even when subjected to large deformation by a large force, and exhibits rubber elasticity. The content of the soft segment is 20 to 80% by weight because the recoverability is good and the heat resistance of the pseudo-crosslinking point due to the formation of the crystal structure is good. When the soft segment content is less than 20% by weight, the rubber elasticity peculiar to the elastomer is not sufficiently expressed, so that the cushioning property when formed into a cushioning material is inferior, which is not preferable. In addition, since the elastic recovery limit strain is small, plastic deformation is likely to occur when subjected to large deformation due to a large force, which is not preferable because the anti-sagging property after being formed into a cushion material is poor. On the other hand, when the content of the soft segment exceeds 80% by weight, the melting point is largely lowered and the recoverability at low temperature is improved, but the content of the hard segment is decreased, and the heat resistance of the pseudo-crosslinking point due to the formation of the crystal structure is reduced. As the cushioning material is deteriorated, the plastic deformation occurs at a relatively low temperature, for example, a temperature exceeding 40 ° C., and the heat resistance and sag resistance of the cushioning material is deteriorated. The preferred soft segment content in the present invention is 30 to 70% by weight, more preferably 40 to 65% by weight. The average molecular weight of the soft segment may be 300 to 5,000, but especially
When the repeating unit is increased in order to improve the heat resistance of the segment, it is preferably 500 to 4000, more preferably 1000 to 3000. A polyester elastomer preferable for the present invention is disclosed in, for example, Japanese Patent Application Laid-Open No.
It can be obtained by a conventional technique such as the publication of 5-120626.

【0010】本発明の熱接着成分を構成する熱可塑性エ
ラストマ−に含有する抗酸化剤は、ソフトセグメントの
熱劣化を抑制するため、発生ラジカルをトラップできる
立体障害性メチル基を多数含有するヒンダ−ド系抗酸化
剤を含有する必要がある。該ヒンダ−ド系抗酸化剤とし
ては、ヒンダ−ドフェノ−ル系とヒンダ−ドアミン系が
あり、好ましい平均分子量は300〜5000、より好
ましくは600〜4000である。平均分子量が300
未満のものは、加熱時昇華して消失し易いので好ましく
ない。また、8000以上の高分子量化した重縮合物は
エラストマ−中でのランダムマイグレ−ションが不充分
になりやすく練込み方法に工夫が必要となる。具体例と
しては、ヒンダ−ドフェノ−ル系では、1・3・5・ト
リメチル・2・4・6・トリス(3・5・ジ・t・ブチ
ル・4・ヒドロキシベンジル)ベンゼン、メチルスチレ
ン/フェノ−ル系重縮合体等が特に好ましい。ヒンダ−
ドアミン系では、分子量1000以上の琥珀酸ジメチル
・1・(2・ヒドロキシエチル)4・ヒドロキシ・2・
2・6・6・テトラメチルピペリジン系重縮合体等が特
に好ましい。本発明では、該抗酸化剤をソフトセグメン
ト含有量当たり1〜10重量%含有させる。1重量%未
満では熱劣化抑制効果が少なくなり、クッション材に熱
成形加工する際、通常、空気中、200℃以上の温度で
10分以上の条件で加工すると、エラストマ−が熱劣化
により爆発的に分解し、クッション構造体そのものが劣
化物になるため、または、爆発的熱分解を生じる前の段
階においても、ゴム弾性を生むソフトセグメントの分子
鎖は熱分解で短くなり、または、ネットワ−ク構造が切
断され伸縮性が低下していき、爆発的熱分解直前では、
低分子量化した全く伸縮性を持たないワックス状物とな
るので、エラストマ−組成や加工条件が極めて制限され
る。特にソフトセグメント含有量が多くなるほどより低
温で、より短時間で爆発的熱分解を生じるので、クッシ
ョン材としてのクッション性、常温および加熱下での耐
久性を向上させるエラストマ−組成や加工条件の最適化
が極めて困難となるので好ましくない。他方、10重量
%を越えると繊維表面に該抗酸化剤がブリ−ドアウトし
易くなり、クッション材とするために混合開繊してウエ
ッブに加工する際、析出した抗酸化剤が熱接着繊維の糸
糸の摩擦係数を著しく高くして開繊不良となり熱接着繊
維をマトリックスの繊維と均一に混繊することが困難と
なり、クッション材としての特性が不均一になり、か
つ、平均特性も低下する。極端な場合には、糸間のきし
みが大きくなり予備開繊も出来なくなる等の問題があ
り、好ましくない。また、高分子量のものはブリ−ドア
ウトし難くなるが、コストが著しく高くなるため一般的
ではない。本発明の好ましいソフトセグメント含有量当
たりの抗酸化剤の含有量は2〜6重量%、より好ましく
は3〜5重量%である。本発明の特に好ましい抗酸化剤
付与条件においては、ソフトセグメント含有量が60重
量%以上のエラストマ−においても、空気中210℃の
温度で15分未満の時間では爆発的熱分解を生じないた
め、極めて加工条件の選択幅が広く取れ、かつ、ソフト
セグメントの分子鎖切断が少ないため良好な伸縮性を保
持できるので、優れた性能のクッション材を作成でき
る。さらに熱分解が抑制される効果はエラストマ−のハ
−ドセグメントの繰り返し単位を多くして疑似架橋点の
耐熱性を向上させ、融点が高くなる割合に応じ、より高
い加工温度で熱接着できるため、作成したクッション材
の接着点の耐熱性を向上させ、そのうえ、高度の伸縮性
をも保持したものとできるので、極めて優れた性能のク
ッション材を作成できる。このようなエラストマ−の耐
熱性を評価するための手段として、示差走査型熱量計
(DSC)による昇温させつつ、あるいは一定温度にホ
−ルドして発熱開始温度、または発熱開始時間を測定す
ることでエラストマ−の耐熱性を知ることができる。な
お、本発明に於ける好ましい抗酸化剤の添加方法として
は、重合時多量に添加すると昇華して重合缶の詰まりな
どのトラブルとなり、かつ、添加効果が激減するので、
好ましくは、重合後加圧下で練り込むか、単軸または2
軸でダルメ−ジ等の高い混合機能をもつスクリュウで練
り込むのが良い。しかして、本発明の熱接着繊維を構成
する熱可塑性エラストマ−には紫外線吸収剤を含有させ
ない。このため、本発明の熱接着繊維を180〜220
℃で長時間保持する熱融着処理時にも、紫外線吸収剤か
らなる有毒な発煙ガスは発生しないので作業環境を著し
く汚染することはない。このような耐熱性を有する熱可
塑性エラストマ−を用いることで、本発明の好ましい熱
接着繊維の形態としてシ−スコア型構造をとる場合、コ
ア成分の非エラストマ−成分としては、ポリブチレンテ
レフタレ−ト(PBT)以外にポリエチレンテレフタレ
−ト(PET)、ポリエチレンナフタレ−ト(PE
N)、ポリシクロヘキシレンジメチルテレフタレ−ト
(PCHDT)などの高融点高結晶性ポリエステルと複
合化できるため塑性変形しにくいので、加工性および、
クッション材としたときの耐熱耐久性もいちだんと向上
できる。
The antioxidant contained in the thermoplastic elastomer constituting the heat-adhesive component of the present invention is a hinder containing a large number of sterically hindered methyl groups capable of trapping generated radicals in order to suppress thermal deterioration of the soft segment. It is necessary to contain an antioxidant. The hindered antioxidant includes hindered phenol type and hindered amine type, and the average molecular weight is preferably 300 to 5,000, more preferably 600 to 4,000. Average molecular weight is 300
Those less than 1 are not preferable because they are easily sublimated and disappear during heating. Further, a polycondensate having a high molecular weight of 8,000 or more tends to cause insufficient random migration in the elastomer, and a devising method is required. As a specific example, in a hindered phenol system, 1,3,5, trimethyl, 2,4,6, tris (3,5, di, t, butyl, 4, hydroxybenzyl) benzene, methylstyrene / pheno In particular, a polycondensation system and the like are preferable. Hinder
In the doamine type, dimethyl succinate with a molecular weight of 1000 or more.1. (2.hydroxyethyl) 4.hydroxy.2.
A 2,6,6-tetramethylpiperidine-based polycondensate and the like are particularly preferable. In the present invention, the antioxidant is contained in an amount of 1 to 10% by weight based on the soft segment content. If the amount is less than 1% by weight, the effect of suppressing thermal deterioration is reduced, and when thermoforming a cushion material, if it is processed in air at a temperature of 200 ° C. or higher for 10 minutes or longer, the elastomer may explode due to thermal deterioration. As the cushion structure itself becomes a deteriorated product, or even before the explosive thermal decomposition occurs, the molecular chain of the soft segment that produces rubber elasticity shortens due to thermal decomposition, or the network The structure is cut and the elasticity decreases, just before explosive thermal decomposition,
Since it becomes a wax-like substance having a low molecular weight and not having elasticity at all, the elastomer composition and processing conditions are extremely limited. In particular, as the soft segment content increases, explosive thermal decomposition occurs at a lower temperature in a shorter time, so the cushioning property as a cushioning material and the elastomer composition and processing conditions that improve durability at room temperature and under heating are optimized. It is not preferable because it becomes extremely difficult to make it. On the other hand, when the content exceeds 10% by weight, the antioxidant easily bleeds out on the fiber surface, and when the mixed fiber is opened for processing into a web to form a cushioning material, the antioxidant that has precipitated out of the heat-bonded fiber. The friction coefficient of the yarn becomes extremely high, resulting in poor spreading, making it difficult to uniformly mix the heat-bonded fibers with the fibers of the matrix, making the properties as a cushioning material non-uniform, and also reducing the average properties. . In an extreme case, there is a problem that the creaking between the yarns becomes large and pre-opening cannot be performed, which is not preferable. In addition, a polymer having a high molecular weight is difficult to bleed out, but it is not general because the cost is significantly increased. The content of the antioxidant per the preferred soft segment content of the present invention is 2 to 6% by weight, more preferably 3 to 5% by weight. Under particularly preferable antioxidant application conditions of the present invention, even in an elastomer having a soft segment content of 60% by weight or more, explosive thermal decomposition does not occur at a temperature of 210 ° C. in air for less than 15 minutes, A wide range of processing conditions can be selected, and since there are few molecular chain breaks in the soft segment, good stretchability can be maintained, so a cushioning material with excellent performance can be prepared. Furthermore, the effect of suppressing thermal decomposition is that the number of repeating units of the hard segment of the elastomer is increased to improve the heat resistance of the pseudo-crosslinking point, and the heat bonding can be performed at a higher processing temperature depending on the proportion of the melting point increasing. Since it is possible to improve the heat resistance at the bonding point of the prepared cushioning material and also maintain a high degree of stretchability, a cushioning material with extremely excellent performance can be prepared. As a means for evaluating the heat resistance of such an elastomer, the heat generation start temperature or heat generation start time is measured while raising the temperature by a differential scanning calorimeter (DSC) or by holding it at a constant temperature. Therefore, the heat resistance of the elastomer can be known. Incidentally, as a preferred method of adding the antioxidant in the present invention, when added in a large amount during the polymerization, it causes sublimation and troubles such as clogging of the polymerization vessel, and the addition effect is drastically reduced.
Preferably, after polymerization, kneading under pressure, uniaxially or 2
It is better to knead with a screw that has a high mixing function such as a dalmage on the shaft. Therefore, the thermoplastic elastomer constituting the heat-bonded fiber of the present invention does not contain an ultraviolet absorber. Therefore, the heat-bonded fiber of the present invention is added to 180 to 220.
Even during the heat-sealing process in which the temperature is kept at ℃ for a long time, no toxic fuming gas consisting of the ultraviolet absorber is generated, so that the working environment is not significantly polluted. When a thermoplastic elastomer having such heat resistance is used to form a sheath-core type structure as a preferred form of the heat-bondable fiber of the present invention, the non-elastomer component of the core component is polybutylene terephthalate. Polyethylene terephthalate (PET), polyethylene naphthalate (PE
N), polycyclohexylene dimethyl terephthalate (PCHDT) and other high melting point highly crystalline polyesters, so plastic deformation is less likely to occur.
The heat resistance and durability when used as a cushion material can also be improved.

【0011】本発明の熱接着繊維は、マトリックス繊維
との接触部を熱接着成分である熱可塑性エラストマ−を
溶融流動させて接着点を形成してクッション材を作成す
る目的で使用するので、該熱可塑性エラストマ−は、少
なくとも複合繊維表面の50%以上、好ましくは繊維表
面全体を占めることで、接触部の全てで熱接着でき、ク
ッション材としては、マトリックス繊維とのネットワ−
ク構造が伸縮性の優れた熱可塑性エラストマ−を介し形
成されるので、どの様な方向から大きい力や大変形を与
えられても、伸縮性の優れた接着点が容易に変形して、
個々の繊維は少ししか変形しなくても、該接着点を介し
ネットワ−ク構造全体に伝播して、構造体として力や歪
みを吸収できるため、個々の繊維の受けるダメ−ジは著
しく軽減することができ、次いで変形力が解除される
と、該熱可塑性エラストマ−のゴム弾性が発現して元の
形状に復元するため耐久性がすぐれ、この挙動が適度の
反発力として発現し、優れたクッション性をしめす。該
熱可塑性エラストマ−が複合繊維表面の50%未満で
は、上記該接着点が少なくなるので構造体として力や歪
みを吸収し難くなり、個々の繊維の受けるダメ−ジも大
きくなって、構造体の耐久性やクッション性が劣るもの
となるので好ましくない。なお、本発明の繊維構造は公
知の方法、例えばサイドバイサイド型またはシ−スコア
型の複合紡糸により形成でき、ついで延伸、巻縮付与し
て所望の繊維長さに切断して得ることが出来る。
The thermoadhesive fiber of the present invention is used for the purpose of forming a cushioning material by melting and flowing a thermoplastic elastomer, which is a thermoadhesive component, at a contact portion with a matrix fiber to form an adhesive point, so that The thermoplastic elastomer occupies at least 50% of the composite fiber surface, preferably the entire fiber surface, so that it can be heat-bonded at all of the contact portions, and the cushioning material is a network with the matrix fiber.
Since the structure is formed through the thermoplastic elastomer having excellent elasticity, the adhesive point with excellent elasticity easily deforms even if a large force or large deformation is applied from any direction,
Even if the individual fibers are slightly deformed, they can be propagated through the entire network structure through the bonding points and absorb the force and strain as a structure, so that the damage received by the individual fibers is significantly reduced. When the deforming force is released next, the rubber elasticity of the thermoplastic elastomer is developed and the thermoplastic elastomer is restored to the original shape, so that the durability is excellent, and this behavior is expressed as an appropriate repulsive force, which is excellent. Shows cushioning properties. If the thermoplastic elastomer is less than 50% of the surface of the composite fiber, the number of the above-mentioned adhesion points is small, so that it becomes difficult for the structure to absorb force and strain, and the damage received by each fiber becomes large, so that the structure becomes large. It is not preferable because the durability and cushioning property of the product will be deteriorated. The fiber structure of the present invention can be formed by a known method, for example, a side-by-side type or sheath-core type composite spinning, and can be obtained by drawing and crimping and then cutting to a desired fiber length.

【0012】本発明では上記伸縮性の接着点を形成する
該熱接着繊維中の熱可塑性エラストマ−含有量は10〜
70重量%である。10重量%未満では接着点を形成す
る熱可塑性エラストマ−の量が不足し接着断面積が小さ
くなるため、接着点の変形回復力が低下しクッション材
としての耐久性や弾力性が低下するので好ましくない。
他方、70重量%を越えると、ゴム弾性を抑制し、熱接
着繊維の寸法安定性を保持する非弾性成分が少なくなる
ことで開繊等の加工段階で容易に変形するため工程通過
性が悪くなるので好ましくない。好ましい該熱接着繊維
中の熱可塑性エラストマ−含有量は30重量%以上、よ
り好ましくは40〜60重量%である。
In the present invention, the content of the thermoplastic elastomer in the heat-bonding fibers forming the elastic bonding points is 10 to 10.
It is 70% by weight. When the amount is less than 10% by weight, the amount of the thermoplastic elastomer forming the adhesive point is insufficient and the adhesive cross-sectional area becomes small, so that the deformation recovery force of the adhesive point decreases and the durability and elasticity as the cushioning material decrease, which is preferable. Absent.
On the other hand, if it exceeds 70% by weight, rubber elasticity is suppressed, and the non-elastic component that holds the dimensional stability of the heat-bonded fiber is reduced, so that it easily deforms in the processing stage such as opening, so the process passability is poor. Therefore, it is not preferable. A preferable thermoplastic elastomer content in the heat-bonded fiber is 30% by weight or more, more preferably 40 to 60% by weight.

【0013】本発明の熱接着繊維の好ましい捲縮形態は
加工時立体捲縮が発現していると、特にエラストマ−は
粘着性があり、糸糸の摩擦が高いためカ−ド開繊時開繊
が不良となるので、工程通過性からは捲縮がジグザグの
機械捲縮が好ましい。機械捲縮は捲縮数が5〜30山/
インチ、捲縮率が5〜30%の範囲であるば使用できる
が、好ましくは捲縮数が10〜25山/インチ、捲縮率
が10〜25%である。より好ましくは工程通過時は機
械捲縮の形態を維持し、クッション材に熱成形する時、
螺旋状の立体捲縮を発現する潜在捲縮能を有するもので
ある。そのことで、3次元的に接着点を形成し、スプリ
ング効果を有するコイル状ネットワ−ク構造を作れるた
め、通常のアメ−バ−状接着点を有するクッション材よ
り極めて良好なクッション性と耐久性を付与できる。そ
の様な繊維構造とするには、サイドバイサイド型でも良
いが、好ましくは偏芯シ−スコア型やシ−スコア型でコ
アをサイドバイサイド型または偏芯シ−スコア型とする
のが望ましい。また、より捲縮発現能や曲げ剛性を向上
できる中空の偏芯シ−スコア型やシ−スコア型でコアを
サイドバイサイド型または偏芯シ−スコア型とすること
でクッション性や弾発力の高いものとすることができ
る。なお、本発明のより好ましい巻縮能を付与する延伸
条件は、延伸温度を温浴70℃以下で破断延伸倍率の約
0.8〜0.9倍で延伸し機械巻縮を付与し、機械巻縮
が伸びないように低張力でカッタ−に供給切断して得る
ことができる。高温で延伸すると巻縮付与後や加工工程
で立体巻縮が発現し、開繊しにくくなる。
The preferred crimped form of the heat-bondable fiber of the present invention is that when a three-dimensional crimp is developed during processing, the elastomer is sticky and the friction of the yarn is high, so that it is opened during card opening. From the viewpoint of processability, mechanical crimping with zigzag crimping is preferable because the fiber becomes defective. Mechanical crimps have 5 to 30 threads /
It can be used as long as the inch and the crimp ratio are in the range of 5 to 30%, but the number of crimps is preferably 10 to 25 threads / inch, and the crimp ratio is 10 to 25%. More preferably, the shape of the mechanical crimp is maintained during passage through the step, and when thermoformed into a cushion material,
It has a latent crimping ability to develop a spiral three-dimensional crimp. As a result, the bonding points can be formed three-dimensionally and a coiled network structure having a spring effect can be formed, so that the cushioning properties and durability are much better than those of the cushioning material having the ordinary ameber-shaped bonding points. Can be given. To form such a fiber structure, a side-by-side type may be used, but it is preferable to use an eccentric sheath-core type or a core-side type, and the core is preferably a side-by-side type or an eccentric sheath-core type. Further, by providing a hollow eccentric sheath core type or core score type that can further improve crimping ability and bending rigidity, the core is a side-by-side type or an eccentric core score type, so that the cushioning property and elasticity are high. Can be one. The stretching conditions for imparting a more preferable crimping ability of the present invention include stretching at a stretching temperature of 70 ° C. or less at a stretching ratio of about 0.8 to 0.9 times the breaking stretching ratio to impart mechanical crimping, and mechanical stretching. It can be obtained by feeding and cutting the cutter with a low tension so that the shrinkage does not extend. When stretched at a high temperature, a three-dimensional crimp is developed after the crimp is applied or in the processing step, which makes it difficult to open the fiber.

【0014】本発明の熱接着繊維の繊度は特に限定され
ないが、繊度が太すぎると、繊維構造体とするときの構
成本数が減少してネットワ−ク構造が粗くなり力の分散
がしにくくなる。他方、マトリックスの繊維が太い繊度
の場合は、熱接着繊維の繊度が細過ぎると混繊がしにく
くなり、均一なネットワ−ク構造を形成しにくくなる。
極端に熱接着繊維の繊度が細過ぎると開繊も困難となる
ので通常2〜15デニ−ルの範囲が良い。油剤は熱分解
しにくいもの、例えば、ラウリルホスフェ−トカリウ
ム、セチルホスフェ−トカリウムなどのホスフェ−ト塩
を使用するのが好ましい。また、摩擦係数が低くなる油
剤を使うと開繊性が向上するので特に好ましい。 本発
明の熱接着繊維は、単独で不織布、クッション材等の繊
維集合体にしてもよいが、該熱接着繊維を5重量%以上
含む他繊維(マトリックス繊維、または母材)との混合
集合体にしても良い。好ましい混合母材としては、PE
T、PEN,PCHDT等の高融点高結晶性のポリエス
テル及びPBTからなる繊維があり、接着性も良好であ
り、優れたクッション性、優れた耐熱耐久性、着用時蒸
れにくい、及びリサイクルが可能なポリエステル系クッ
ション材となる繊維集合体を容易に製造することが可能
である。なお、本発明の特に好ましい熱接着繊維を含有
する繊維集合体を熱成形前に任意の密度に圧縮し、加熱
処理して捲縮発現によるによる絡まり点をつくり、絡ま
り点および接触点を融着一体化するには、熱接着成分の
融点より10〜120℃高く、好ましくは20〜100
℃高い温度で熱成形して任意の密度や硬さの繊維成形体
をえられる。次いで一旦冷却固化させた後、熱接着成分
の融点より少なくとも10℃以上低い温度で熱処理する
と、好ましくは10%以上の歪みを付与して熱処理する
と、融着処理のみのものよりクッション性、耐熱耐久性
が格段に向上する。なお、接着成分の酸成分に非晶性と
なる成分が多く含まれるほどこの効果は著しく減少す
る。
The fineness of the heat-bonding fiber of the present invention is not particularly limited, but if the fineness is too large, the number of constituents in the case of forming a fibrous structure decreases, the network structure becomes rough, and it becomes difficult to disperse the force. . On the other hand, when the fibers of the matrix have a large fineness, if the fineness of the heat-adhesive fibers is too small, it becomes difficult to mix fibers, and it becomes difficult to form a uniform network structure.
If the fineness of the heat-bonded fiber is extremely thin, it will be difficult to open the fiber. Therefore, the range of 2 to 15 denier is usually preferable. It is preferable to use an oil agent which is not easily decomposed by heat, for example, a phosphate salt such as potassium lauryl phosphate or potassium cetyl phosphate. In addition, it is particularly preferable to use an oil agent having a low friction coefficient because the openability is improved. The heat-adhesive fiber of the present invention may be made into a fiber aggregate such as a non-woven fabric or a cushioning material alone, but it is a mixture aggregate with other fibers (matrix fiber or matrix) containing 5 wt% or more of the heat-adhesive fiber. You can PE is a preferable mixed base material.
There are fibers made of polyester with high melting point and high crystallinity such as T, PEN, PCHDT and PBT, and also has good adhesiveness, excellent cushioning property, excellent heat resistance and durability, does not easily get damp when worn, and can be recycled. It is possible to easily manufacture a fiber assembly that serves as a polyester cushion material. Incidentally, a fiber assembly containing a particularly preferred heat-bonded fiber of the present invention is compressed to an arbitrary density before thermoforming, and heat-treated to form a entanglement point due to crimp expression, and the entanglement point and the contact point are fused. To be integrated, the melting point of the heat-adhesive component is higher by 10 to 120 ° C., preferably 20 to 100.
Thermoformed at a temperature as high as ℃, you can get a fiber molding of any density and hardness. Then, once it is cooled and solidified, it is heat-treated at a temperature lower than the melting point of the heat-adhesive component by at least 10 ° C., and preferably heat-treated with a strain of 10% or more. Sexuality is greatly improved. Note that this effect is significantly reduced as the acid component of the adhesive component contains more amorphous component.

【0015】[0015]

【実施例】【Example】

実施例1〜4、比較例1〜6、及び参考例1 Examples 1 to 4, Comparative Examples 1 to 6, and Reference Example 1

【0016】酸成分としてジメチルテレフタレ−ト(D
MT)とグリコ−ル成分として1・4・ブタンジオ−ル
およびポリテトラメチレングリコ−ル(PTMG)を少
量の触媒と安定剤とともに仕込み、公知の方法でエステ
ル交換反応後昇温減圧しつつ重縮合してポリエステルエ
−テルブロック共重合物を生成した。該ポリエステルエ
−テルブロック共重合物を加熱真空乾燥し、抗酸化剤と
して1・3・5・トリメチル・2・4・6・トリス(3
・5・ジ・t・ブチル・4・ヒドロキシベンジル)ベン
ゼン(TTtBHB)、または平均分子量3000のメ
チルスチレン/フェノ−ル重縮合体(MSP400)を
2軸押出機にてソフトセグメント当たり0〜11重量%
溶融練込みしたものをペレット化し、加熱不活性ガスに
て水分を充分除去し熱接着成分に供した。得られたポリ
エステルエ−テルブロック共重合体の処方および特性を
表1に示す。参考のため紫外線吸収剤として2・(2’
・ヒドロキシ・3’・5’・ジアシルフェニル)ベンゾ
トリアゾ−ル(HDFB)をソフトセグメント当たり5
重量%溶融練込みしたもの同様にして作成した。尚、ポ
リマ−の発熱開始温度は空気中210℃に保持して測定
したものを示す。
Dimethyl terephthalate (D
MT) and 1,4-butanediol and polytetramethylene glycol (PTMG) as a glycol component are charged together with a small amount of a catalyst and a stabilizer, and after a transesterification reaction by a known method, polycondensation is performed while heating and reducing pressure. To produce a polyester ether block copolymer. The polyester ether block copolymer is dried by heating under vacuum, and 1,3,5, trimethyl, 2,4,6, tris (3
・ 5 ・ di ・ t ・ butyl ・ 4 ・ hydroxybenzyl) benzene (TTtBHB) or methylstyrene / phenol polycondensate (MSP400) having an average molecular weight of 3000 is used in a twin-screw extruder in an amount of 0 to 11 per soft segment. %
The melt-kneaded product was pelletized, and water was sufficiently removed with a heated inert gas to be used as a heat-adhesive component. Table 1 shows the formulation and characteristics of the obtained polyester ether block copolymer. As a UV absorber for reference, 2 ・ (2 '
-Hydroxy-3'-5'-diacylphenyl) benzotriazole (HDFB) 5 per soft segment
It was prepared in the same manner as that in which the composition was melt-kneaded by weight%. The heat generation start temperature of the polymer is measured by keeping it at 210 ° C. in air.

【0017】[0017]

【表1】 [Table 1]

【0018】得られたポリエステルエ−テルブロック共
重合体を鞘成分に、PETを芯成分にし、鞘/芯の重量
比を50/50で偏芯になるように常法により紡糸温度
を280℃にて紡糸し、未延伸糸を得た。尚、偏芯の程
度は、繊維の中心から芯部の中心までの距離Lと繊維の
半径Rを加えた値(L+R)をLで徐した値((L+
R)/L)で1.15となるようにした。次いで、50
℃温浴で3.4倍に延伸し、クリンパ−にて機械捲縮を
付与し、機械捲縮が伸びない張力でカッタ−に供給し5
1mmに切断して4デニ−ルの熱接着繊維を作成した。比
較のため、サイドバイサイド型(S/S)でポリエステ
ルエ−テルブロック共重合体/PETの重量比で30/
70の複合繊維を同様にして作成した。得られた繊維の
特性を表2に示す。なお、繊維中のポリエステルエ−テ
ルブロック共重合体の相対粘度は溶液粘度に加成性が成
立するとして、PETの紡糸条件と同一の条件で両成分
にPETを供給して得た繊維の相対粘度と該複合繊維の
組成比で補正した相対粘度として求めた。繊維中の抗酸
化剤量は繊維中の抗酸化剤を溶剤で抽出し、不純物を分
離除去後、添加組成物を比較ブランクに定量分析して組
成比に補正して求めた。ポリエステルエ−テルブロック
共重合体の繊維表面の専有率は繊維断面より求めた。糸
表面への抗酸化剤の析出は、繊維とKBr粉末をまぶし
て、繊維表面の抗酸化剤をKBr粉末に付着させ、赤外
線スペクトルパタ−ンを取り、抗酸化剤の存在を確認し
て、繊維表面を走査型電子顕微鏡でその析出状態を観察
した。粘着状態は、繊維を手で開繊したときの繊維のば
らけ易さで判断した。
The obtained polyester ether block copolymer is used as a sheath component and PET is used as a core component, and the spinning temperature is 280 ° C. by an ordinary method so that the weight ratio of the sheath / core is eccentric. Was spun to obtain an unstretched yarn. The degree of eccentricity is a value obtained by dividing the value (L + R) obtained by adding the distance L from the center of the fiber to the center of the core and the radius R of the fiber by L ((L +
R) / L) was set to 1.15. Then 50
Stretched 3.4 times in a hot bath at ℃, mechanically crimped with a crimper, and fed to the cutter with a tension that prevents the mechanical crimps from stretching.
It was cut into 1 mm to prepare a 4-denier heat-bonded fiber. For comparison, a side-by-side type (S / S) weight ratio of polyester ether block copolymer / PET of 30 /
70 composite fibers were similarly prepared. The properties of the fibers obtained are shown in Table 2. Assuming that the relative viscosity of the polyester ether block copolymer in the fiber establishes additivity to the solution viscosity, the relative viscosity of the fiber obtained by supplying PET to both components under the same conditions as the spinning conditions of PET. It was determined as a relative viscosity corrected by the viscosity and the composition ratio of the conjugate fiber. The amount of the antioxidant in the fiber was determined by extracting the antioxidant in the fiber with a solvent, separating and removing impurities, and then quantitatively analyzing the additive composition as a comparative blank and correcting the composition ratio. The fiber surface occupation rate of the polyester ether block copolymer was determined from the fiber cross section. To deposit the antioxidant on the yarn surface, sprinkle the fiber and KBr powder, attach the antioxidant on the fiber surface to KBr powder, take an infrared spectrum pattern, and confirm the presence of the antioxidant. The fiber surface was observed for its deposited state with a scanning electron microscope. The adhesive state was judged by the ease with which the fibers were separated when the fibers were opened by hand.

【0019】[0019]

【表2】 [Table 2]

【0020】得られた機械捲縮を持つ熱接着繊維を30
重量%と常法にて作成した13デニ−ルの中空で外側に
3個の突起を有する断面で立体捲縮を有するPET短繊
維を70重量%とをカ−ドにて混繊−開繊して得たウエ
ッブを密度0.03g/cm 3 となるように圧縮し、2
00〜230℃の熱風を強制貫通させて5分間熱処理
し、次いで、一旦冷却し、密度が0.04g/cm3
なるように圧縮し、100℃で30分再熱処理して、平
板状のクッション材を得た。開繊不良のものは、手で混
繊しカ−ドで開繊したが、ネップなども発生し、混繊も
不充分なものとなる。得られたクッション材の作成状況
と特性及び加熱試験結果を表3に示す。なお、加熱試験
は開繊−混繊したウエッブを密度0.03g/cm3
なるように圧縮し、210℃の熱風を強制貫通させて、
ウエッブ中の熱センサ−にて温度を測定し、210℃以
上に昇温する時までの時間で示す。70℃の圧縮残留歪
み、常温での繰返し圧縮残留歪み、及び反発弾性はJI
S−K−6401の方法による。
30% of the obtained heat-bonded fiber having mechanical crimp
Outside with a hollow of 13% denier made by the conventional method and weight%
PET short fibers having a three-dimensional crimp in a cross section having three protrusions
Wafer obtained by mixing and opening fiber with 70% by weight of card
The density is 0.03g / cm 3So that it becomes 2
Heat treatment for 5 minutes by forcibly penetrating hot air of 00 to 230 ° C
Then, once cooled, the density is 0.04 g / cm3When
And heat-treat for 30 minutes at 100 ℃,
A plate-shaped cushion material was obtained. If the spread is poor, mix it by hand.
Although it was opened with a squeezing card, nep etc. also occur, and mixed fibers
It will be insufficient. Creation status of the obtained cushion material
Table 3 shows the characteristics and heating test results. In addition, heating test
Is an open-mixed web with a density of 0.03 g / cm3When
Compressed so that the hot air of 210 ℃ is forced to penetrate,
Measure the temperature with a heat sensor in the web,
The time until the temperature rises is shown. Compressive residual strain of 70 ℃
However, the repetitive compression residual strain at room temperature and the impact resilience are JI
According to the method of SK-6401.

【0021】[0021]

【表3】 [Table 3]

【0022】本発明の実施例1〜4は抗酸化剤を適正量
添加しており、耐熱性に優れ、クッション材成形性に優
れ、クッション材の性能も優れたものを得ることができ
る。比較例1及び比較例5は本発明の熱接着繊維のエラ
ストマ−のソフトセグメント量が外れるものである。抗
酸化材を適正量添加しているため、耐熱性は良好だが、
本発明の実施例1〜4に比較し、比較例1はソフトセグ
メント量が多すぎて融点の低下による耐熱性の低下と粘
着性が大きくなり開繊不良となってクッション材の特性
は劣るものとなる。比較例5はソフトセグメント量が少
ないためゴム弾性の機能が低く、塑性変形し易くなり、
クッション材の特性は劣るものとなる。比較例2〜3は
抗酸化剤の添加量が少ないものである。得られるクッシ
ョン材の特性は、マトリックス繊維に熱接着繊維が巻き
つき熱接着されたコイルスプリング状ネットワ−ク構造
をもつため比較的良好な特性を維持しているが、抗酸化
剤の添加量が少ないため、耐熱性が著しく劣る。比較例
4は抗酸化剤の添加量が多過ぎ繊維表面にブリ−ドアウ
トして、開繊性を著しく低下させる例である。このた
め。耐熱性は良いが、得られるクッション材の特性は劣
るものとなる。参考例1は紫外線吸収剤を添加した例で
ある。紡糸時発煙が著しく、環境を汚染する。更に、熱
成形時も発煙し、加工機を汚した。しかも、紫外線吸収
剤は、熱分解を抑制しないためか、熱分解が促進し、加
工性が悪く、得られたクッション材の性能は著しく劣る
ものしか得られなっかった。比較例6は熱接着繊維表面
に熱接着成分が占める割合が本発明を外れ少ないため、
得られるクッション材の熱接着による接着点が少なくな
り耐へたり性は低下する。なお、本発明と比較例の繊維
から得られたクッション材は全て熱融着処理後、再熱処
理して疑似結晶化によりエラストマ−の弾性回復性を著
しく向上せしめているため、及び、マトリックス繊維に
熱接着繊維が巻きつきコイルスプリング状ネットワ−ク
構造をもつため、特性は熱融着処理のみのものより一段
と向上した特性となっている例である。
In Examples 1 to 4 of the present invention, an appropriate amount of antioxidant is added, and it is possible to obtain a product having excellent heat resistance, excellent moldability of cushion material, and excellent performance of cushion material. In Comparative Example 1 and Comparative Example 5, the amount of soft segment of the elastomer of the heat-bonded fiber of the present invention is deviated. Heat resistance is good because an appropriate amount of antioxidant is added, but
Compared to Examples 1 to 4 of the present invention, Comparative Example 1 has a too large amount of soft segment, a decrease in heat resistance due to a decrease in melting point, an increase in adhesiveness, and poor opening, resulting in poor cushioning properties. Becomes Comparative Example 5 has a small amount of soft segments and thus has a low rubber elasticity function, and is easily plastically deformed.
The characteristics of the cushion material will be inferior. Comparative Examples 2 and 3 have a small amount of antioxidant added. The obtained cushioning material has relatively good characteristics because it has a coil spring-like network structure in which heat-bonding fibers are wound around matrix fibers and heat-bonded, but the amount of antioxidant added is Since the amount is small, the heat resistance is extremely poor. Comparative Example 4 is an example in which the amount of the antioxidant added was too large and bleeds out on the surface of the fiber to significantly reduce the openability. For this reason. Although the heat resistance is good, the characteristics of the cushion material obtained are inferior. Reference Example 1 is an example in which an ultraviolet absorber was added. Smoke generation during spinning is significant and pollutes the environment. Furthermore, during thermoforming, smoke was emitted and the processing machine was soiled. Moreover, the ultraviolet absorber accelerates the thermal decomposition probably because it does not suppress the thermal decomposition, and the workability is poor. Only the performance of the obtained cushioning material is remarkably inferior. In Comparative Example 6, since the proportion of the heat-adhesive component on the surface of the heat-adhesive fiber is less than the present invention,
The resulting cushioning material has fewer bonding points due to heat bonding, and the sag resistance is reduced. The cushion materials obtained from the fibers of the present invention and the comparative example are all heat-bonded and then re-heat-treated to significantly improve the elastic recovery of the elastomer by pseudo-crystallization, and the matrix fibers Since the heat-bonded fiber has a coil spring-like network structure wrapped around it, the characteristics are an example in which the characteristics are further improved as compared with the case where only the heat fusion treatment is performed.

【0023】実施例5、比較例7〜8Example 5, Comparative Examples 7-8

【0024】実験No.A−2のポリエステルエ−テルブ
ロック共重合体を鞘成分に、PETを芯成分にし、鞘/
芯の重量比を5/95〜80/20となるように常法に
より紡糸温度を280℃にて紡糸し、未延伸糸を得た。
尚、偏芯はさせていない。次いで、50℃温浴で3.4
倍に延伸し、クリンパ−にて機械捲縮を付与し、機械捲
縮が伸びない張力でカッタ−に供給し51mmに切断して
4デニ−ルの熱接着繊維を作成した。得られた機械捲縮
を持つ熱接着繊維を30重量%と常法にて作成した13
デニ−ルの中空で外側に3個の突起を有する断面で立体
捲縮を有するPET短繊維を70重量%とをカ−ドにて
混繊−開繊して得たウエッブを密度0.03g/cm3
となるように圧縮し、200℃の熱風を強制貫通させて
5分間熱処理して平板状のクッション材を得た。得られ
たクッション材の特性を表4に示す。
The polyester ether block copolymer of Experiment No. A-2 was used as a sheath component, and PET was used as a core component.
An unstretched yarn was obtained by spinning at a spinning temperature of 280 ° C. by a conventional method so that the weight ratio of the core was 5/95 to 80/20.
Note that no eccentricity is applied. Then, in a 50 ° C warm bath,
It was stretched twice, mechanically crimped by a crimper, fed to a cutter with a tension such that the mechanical crimp did not extend, and cut into 51 mm to prepare a 4-denier heat-bonded fiber. The heat-bonded fiber having the mechanical crimp thus obtained was prepared by a conventional method in an amount of 30% by weight.
A hollow web of denier and 70% by weight of PET short fibers having a three-dimensional crimp in the cross section having three protrusions on the outside was mixed and opened with a card to obtain a web having a density of 0.03 g. / Cm 3
And was forced to penetrate with hot air at 200 ° C. and heat-treated for 5 minutes to obtain a flat cushion material. The characteristics of the obtained cushion material are shown in Table 4.

【0025】[0025]

【表4】 [Table 4]

【0026】比較例7は実施例5に比較して、熱接着成
分が著しく少ない場合で、熱接着点の形成が不充分なた
め工程通過性は良好だが、耐久性が劣るものである。比
較例8は実施例5に比較して熱接着成分が著し多い場合
で、開繊時に不均一に熱接着繊維が引き延ばされ、ゴム
弾性で縮み均一に混繊できなっかたため、クッション材
の特性が劣るものとなる。本発明の実施例5は加工性、
クッション性能とも良くなっている。尚、通常のクッシ
ョン材と同様に作成し、特別な効果を付与しなかったの
で前記例より性能は全般に劣る例である。
In Comparative Example 7, as compared with Example 5, the heat-adhesive component was remarkably small, and the formation of heat-adhesion points was insufficient, so that the process passability was good, but the durability was poor. In Comparative Example 8, the heat-adhesive component was significantly larger than that in Example 5, and the heat-adhesive fibers were unevenly stretched at the time of opening the fiber, and it was difficult to uniformly mix the fibers by shrinking due to rubber elasticity. The properties of the material will be inferior. Example 5 of the present invention has processability,
Cushion performance is also improved. Incidentally, the performance is generally inferior to that of the above example because it was produced in the same manner as an ordinary cushion material and no special effect was given.

【0027】[0027]

【発明の効果】本発明の耐熱性エラストマ−系熱接着繊
維は、他繊維をマトリックスに用いてクッション材など
を製造する際、工程通過性が良好で、特に熱成形する
時、高温で熱処理しても有毒ガスの発生が殆どないので
作業環境を汚染せず、耐熱加工性が著しく優れているた
め極めて加工条件の選択幅が広く取れ、かつ、ソフトセ
グメントの分子鎖切断が少ないため良好な伸縮性を保持
できるので、優れた性能のクッション材を作成できる。
さらに熱分解が抑制される効果はエラストマ−のハ−ド
セグメントの繰り返し単位を多くして疑似架橋点の耐熱
性を向上させ、融点が高くなる割合に応じ、より高い加
工温度で熱接着できるため、作成したクッション材の接
着点の耐熱性を向上させ、そのうえ、高度の伸縮性をも
保持したものとできるので、極めて優れたクッション
性、常温および加熱下での耐久性を持つクッション材を
提供できる。特にポリエステル繊維とは接着性が良好で
あり上記性能がより向上できるとともに透湿透水性も保
持できるので蒸れの少ない快適な座席を提供できる。本
発明の耐熱性エラストマ−系熱接着繊維を用いて得られ
るクッション材の用途としては、車両用、船舶用、家
具、ベッド用に適するが、特には自動車、電車用に適す
る。他の用途としては、伸縮性を生かした不織布用途、
例えば衛材基布、肩パッドやカップ、合成皮革基布や立
毛布帛類用基布、通気性良好で接着できるワディング層
や内装材、70℃を越えない範囲の断熱材や衝撃吸収
材、更には紡績して伸縮性の編織物等々に広く適用でき
る。
EFFECT OF THE INVENTION The heat-resistant elastomer-based heat-bonded fiber of the present invention has good processability when a cushioning material or the like is manufactured by using other fibers as a matrix, and is heat-treated at a high temperature particularly during thermoforming. However, it does not pollute the work environment because it produces almost no toxic gas, and has extremely excellent heat-resistant processability, which allows a wide range of processing conditions to be selected, and because there are few molecular chain breaks in the soft segment, good expansion and contraction. Since it retains its properties, it is possible to create a cushioning material with excellent performance.
Furthermore, the effect of suppressing thermal decomposition is that the number of repeating units of the hard segment of the elastomer is increased to improve the heat resistance of the pseudo-crosslinking point, and the heat bonding can be performed at a higher processing temperature depending on the proportion of the melting point increasing. The cushioning material that has been made has improved heat resistance at the bonding points, and at the same time, it can retain a high degree of elasticity, so it provides a cushioning material with extremely excellent cushioning properties and durability at room temperature and under heating. it can. Particularly, the adhesiveness with polyester fiber is good, the above-mentioned performance can be further improved, and the moisture and water permeability can be maintained, so that a comfortable seat with less stuffiness can be provided. The cushion material obtained by using the heat-resistant elastomer-based heat-adhesive fiber of the present invention is suitable for vehicles, ships, furniture and beds, but is particularly suitable for automobiles and trains. Other uses include non-woven fabric applications that take advantage of elasticity.
For example, sanitary base cloth, shoulder pads and cups, synthetic leather base cloth and base cloth for napped cloths, wading layers and interior materials that have good air permeability and can be bonded, heat insulating materials and shock absorbing materials that do not exceed 70 ° C, and Can be widely applied to stretchable knitted fabrics and the like by spinning.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 D04H 1/54 B 7199−3B (72)発明者 作田 光浩 山口県岩国市灘町1番1号 東洋紡績株式 会社岩国工場内─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 5 Identification number Internal reference number FI Technical indication location D04H 1/54 B 7199-3B (72) Inventor Mitsuhiro Sakuda 1-1 Nada-cho, Iwakuni-shi, Yamaguchi Prefecture Toyobo Co., Ltd. Iwakuni Factory

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 熱可塑性エラストマーと非エラストマー
よりなる熱接着複合繊維であり、該熱接着複合繊維の断
面から見て、熱可塑性エラストマー成分が断面外周の5
0%以上を占めており、繊維中の熱可塑性エラストマー
含有量が10〜70重量%であり、該熱可塑性エラスト
マーは、20〜80重量%のソフトセグメントと80〜
20重量%のハードセグメントからなり、全ソフトセグ
メントに対して1〜10重量%のヒンダード系抗酸化剤
が含有されていることを特徴とする耐熱性エラストマー
系熱接着繊維。
1. A heat-bonding composite fiber composed of a thermoplastic elastomer and a non-elastomer, wherein the thermoplastic elastomer component is 5 at the outer circumference of the cross-section when viewed from the cross-section of the heat-bonding composite fiber.
0% or more, the content of the thermoplastic elastomer in the fiber is 10 to 70% by weight, and the thermoplastic elastomer has 20 to 80% by weight of the soft segment and 80 to 80% by weight.
A heat-resistant elastomeric heat-bonded fiber comprising 20% by weight of a hard segment and containing 1 to 10% by weight of a hindered antioxidant with respect to all soft segments.
JP4344521A 1992-12-24 1992-12-24 Heat-resistant elastomeric hot-melt fiber Pending JPH06192916A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4344521A JPH06192916A (en) 1992-12-24 1992-12-24 Heat-resistant elastomeric hot-melt fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4344521A JPH06192916A (en) 1992-12-24 1992-12-24 Heat-resistant elastomeric hot-melt fiber

Publications (1)

Publication Number Publication Date
JPH06192916A true JPH06192916A (en) 1994-07-12

Family

ID=18369924

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4344521A Pending JPH06192916A (en) 1992-12-24 1992-12-24 Heat-resistant elastomeric hot-melt fiber

Country Status (1)

Country Link
JP (1) JPH06192916A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0861412A (en) * 1994-08-23 1996-03-08 Nhk Spring Co Ltd Fiber cushion body
GB2389073A (en) * 2002-05-29 2003-12-03 Wilkie J & D Ltd Thermal camouflage fabric and method of production
JP2020193415A (en) * 2019-05-29 2020-12-03 ユニチカ株式会社 Multifilament yarn and thermoforming method of fiber product using the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0861412A (en) * 1994-08-23 1996-03-08 Nhk Spring Co Ltd Fiber cushion body
GB2389073A (en) * 2002-05-29 2003-12-03 Wilkie J & D Ltd Thermal camouflage fabric and method of production
JP2020193415A (en) * 2019-05-29 2020-12-03 ユニチカ株式会社 Multifilament yarn and thermoforming method of fiber product using the same

Similar Documents

Publication Publication Date Title
KR100290974B1 (en) Fiber structure and manufacturing method thereof
JP2001226863A (en) Fibrous structure
JPH06192916A (en) Heat-resistant elastomeric hot-melt fiber
JP3204344B2 (en) Elastomer-based heat-bonded conjugate fiber and method for producing the same
JP3275973B2 (en) Elastomer-based heat-bonded fiber and method for producing the same
JP3092679B2 (en) Cushioning material
JP3233227B2 (en) Cushion material and its manufacturing method
JP3596623B2 (en) Seat and manufacturing method
JP3129557B2 (en) Heat resistant fiber structure
JP3654366B2 (en) Fibrous wadding material and method for producing the same
JP2705440B2 (en) Thermal bonding fiber
JP3454363B2 (en) Fiber structure and manufacturing method thereof
JPH10276866A (en) Bed mat core
JP3496724B2 (en) Fiber structure and manufacturing method thereof
JP3275974B2 (en) Polyester-based low-shrink heat-bonded fiber
JP3468341B2 (en) Thermal adhesive polyester fiber
JP2001226831A (en) Hot-melt type conjugated fiber and structured fiber product composed thereof
JP3589307B2 (en) Seat and recipe
JP2001061605A (en) Seat for vehicle
JPH0913219A (en) Thermally adhesive fiber and its production
JP3102529B2 (en) Fiber structure
JP3646814B2 (en) Cushion material and its manufacturing method
JP2001226830A (en) Hot-melt type conjugated fiber and structured fiber product composed thereof
JPH06184826A (en) Polyester-based heat bonding conjugate fiber
JP2005068579A (en) Heat bonding conjugate fiber and fiber structure