JPH06192825A - Production of shape memory alloy thin film - Google Patents

Production of shape memory alloy thin film

Info

Publication number
JPH06192825A
JPH06192825A JP34673192A JP34673192A JPH06192825A JP H06192825 A JPH06192825 A JP H06192825A JP 34673192 A JP34673192 A JP 34673192A JP 34673192 A JP34673192 A JP 34673192A JP H06192825 A JPH06192825 A JP H06192825A
Authority
JP
Japan
Prior art keywords
thin film
shape memory
memory alloy
alloy thin
target
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP34673192A
Other languages
Japanese (ja)
Inventor
Akira Imai
章 今井
Akira Tanaka
顯 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SWCC Corp
Original Assignee
Showa Electric Wire and Cable Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Electric Wire and Cable Co filed Critical Showa Electric Wire and Cable Co
Priority to JP34673192A priority Critical patent/JPH06192825A/en
Publication of JPH06192825A publication Critical patent/JPH06192825A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Micromachines (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

PURPOSE:To provide a producing method for a shape memory alloy thin film easy in the microcontrol of the composition of the obtained shape memory alloy thin film and capable of easily obtaining the shape memory alloy thin film having a desired composition. CONSTITUTION:In producing the shape memory alloy thin film by sputtering a metallic target, a mosaic target provided with one kind of a metal such as a nickel chip on a target made of another kind of a metal such as Ti is used as the target. The obtained alloy composition is controlled by changing the number and array of the chip.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、スパッタリング法を
用いた形状記憶合金薄膜の製造方法に係り、特に合金組
成の微量制御が可能な形状記憶合金薄膜の製造方法に関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a shape memory alloy thin film using a sputtering method, and more particularly to a method for manufacturing a shape memory alloy thin film capable of controlling a minute amount of alloy composition.

【0002】[0002]

【従来の技術】近年、マイクロマシンの巨大プロジェク
トの推進に伴い、各種産業分野においてマイクロマシン
の動力源となる超小型駆動源としてのマイクロアクチュ
エータが開発されている。ところで、形状記憶合金は加
熱されると6〜8%もの歪みが形状回復に寄与し、その
回復力も500MPa以上と大きく、更に通電による加熱制御
が容易であるため、上記マイクロアクチュエータの材料
として注目されている。この際、アクチュエータとして
の応答性を改善するために薄膜化してマイクロ化するこ
とが提案されている。形状記憶合金の薄膜は一般の合金
薄膜と同様スパッタリング法や真空蒸着法によって形成
されるが、後に行なわれるフォトエッチング等の加工の
容易性や制御回路の同時作成の要請を考慮した場合、ス
パッタリングによる成膜が有利であり、Ti−Ni形状
記憶合金の場合Ti−Ni合金ターゲットを用いたスパ
ッタリングが研究されている。
2. Description of the Related Art In recent years, along with the promotion of huge projects for micromachines, microactuators have been developed in various industrial fields as microminiature drive sources that serve as power sources for micromachines. By the way, when shape memory alloy is heated, strain of 6 to 8% contributes to shape recovery, its recovery force is as large as 500 MPa or more, and heating control by energization is easy. ing. At this time, it has been proposed to reduce the thickness of the actuator into a microstructure in order to improve the response as an actuator. The shape memory alloy thin film is formed by a sputtering method or a vacuum deposition method like a general alloy thin film, but in consideration of the ease of processing such as photoetching performed later and the demand for simultaneous formation of a control circuit, the thin film is formed by sputtering. Film formation is advantageous, and in the case of Ti-Ni shape memory alloy, sputtering using a Ti-Ni alloy target has been studied.

【0003】ところでこのような形状記憶合金として一
般によく知られているTi−Ni形状記憶合金薄膜を作
成する場合、マルテンサイト変態を起こさせるためにN
i濃度が49〜51at%の狭い範囲に調整する必要があ
る。中でもNi量が0.1%の変化に対して逆変態終了
温度Afが10〜20℃も変化するため、最適な均一組
成を得るために組成を微量コントロールすることが重要
であった。
By the way, when a Ti--Ni shape memory alloy thin film, which is generally well known as such a shape memory alloy, is formed, N is added in order to cause martensitic transformation.
It is necessary to adjust the i concentration within a narrow range of 49 to 51 at%. In particular, since the reverse transformation end temperature Af changes by 10 to 20 ° C. with respect to the change of the Ni content of 0.1%, it was important to control the composition in a small amount in order to obtain the optimum uniform composition.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、従来ス
パッタリング法によりTi−Ni形状記憶合金薄膜を作
成する場合、Ti−Ni合金ターゲットを用いている
が、合金ターゲットそのままの組成で成膜されずNiリ
ッチになる傾向があった(日本金属学会春期大会講演19
91年4月、415、日本金属学会秋期大会講演1991年、
2・28)。又、薄膜の組成を合わせるために何枚か
の合金ターゲットを用い、最適組成を実現する試みもあ
るが、試行錯誤により実験を行なわなければならない。
更にターゲットは装置や成膜時の条件設定により合金組
成の異なるものに変えなければならないが、一般にこれ
らのターゲットは高価なものであり薄膜製造がコスト高
になるという問題があった。
However, when a Ti-Ni shape memory alloy thin film is formed by a conventional sputtering method, a Ti-Ni alloy target is used, but the composition of the alloy target is not formed and the Ni-rich alloy is not formed. Tended to become (the Japan Institute of Metals Spring Conference Lecture 19
April 1991, 415, Autumn Meeting, The Japan Institute of Metals, 1991,
S 2・ 28). There is also an attempt to achieve the optimum composition by using several alloy targets to match the composition of the thin film, but an experiment must be conducted by trial and error.
Further, the target must be changed to one having a different alloy composition depending on the apparatus and the condition setting at the time of film formation, but in general, these targets are expensive and there is a problem that the thin film production becomes expensive.

【0005】本発明はこのような従来の難点を解消し、
得られる形状記憶合金薄膜の組成の微量制御が容易で、
容易に所望の組成を有する形状記憶合金薄膜を得ること
ができる形状記憶合金薄膜の製造方法を提供することを
目的とする。さらに本発明は、1種のターゲットで各種
合金組成の薄膜を製造でき、高価なターゲットを極力少
なくすることができる形状記憶合金薄膜の製造方法を提
供することを目的とする。
The present invention solves the above-mentioned conventional problems,
Easy control of the composition of the shape memory alloy thin film obtained,
An object of the present invention is to provide a method for manufacturing a shape memory alloy thin film, which enables a shape memory alloy thin film having a desired composition to be easily obtained. A further object of the present invention is to provide a method for producing a shape memory alloy thin film, which is capable of producing thin films having various alloy compositions with one kind of target and minimizing the number of expensive targets.

【0006】[0006]

【課題を解決するための手段】このような目的を達成す
る本発明の形状記憶合金薄膜の製造方法は、金属ターゲ
ットをスパッタリングして形状記憶合金薄膜を製造する
に際し、1種の金属から成るターゲットに他種の金属の
チップを設置したものを用いたものである。
A method of manufacturing a shape memory alloy thin film according to the present invention which achieves the above object, comprises a target made of one kind of metal when a shape memory alloy thin film is manufactured by sputtering a metal target. It is the one using the other type of metal chips installed.

【0007】[0007]

【作用】1種の金属から成るターゲットに置かれる他種
の金属のチップの数及び位置を変えることにより、所望
の組成を有する形状記憶合金薄膜を形成することができ
る。例えば金属チップをターゲット中心から外周にずら
すことにより組成の微調整を行なうことができる。
The shape memory alloy thin film having a desired composition can be formed by changing the number and the positions of the chips of the other metal placed on the target composed of the one metal. For example, the composition can be finely adjusted by shifting the metal tip from the center of the target to the outer circumference.

【0008】[0008]

【実施例】以下、本発明の形状記憶合金薄膜の製造方法
を図面に基づき詳述する。図1は本発明の形状記憶合金
薄膜の製造方法が適用される高周波マグネトロンスパッ
タ装置を示すもので、スパッタされるモザイクターゲッ
ト1と、成膜される基板2と、そのホルダ3とを備え、
モザイクターゲット1には高周波(RF)電源5から高
周波が印加される。またモザイクターゲット1の下部に
は電子をトラップするための永久磁石4が設置されてい
る。装置内にはアルゴン等のガスが導入されるとともに
排気系により所定の真空度に保たれる。又スパッタリン
グ時モザイクターゲット1は冷却水により冷却される。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A method of manufacturing a shape memory alloy thin film of the present invention will be described in detail below with reference to the drawings. FIG. 1 shows a high-frequency magnetron sputtering apparatus to which the method for manufacturing a shape memory alloy thin film of the present invention is applied, which includes a mosaic target 1 to be sputtered, a substrate 2 to be deposited, and a holder 3 thereof.
A high frequency (RF) power source 5 applies a high frequency to the mosaic target 1. A permanent magnet 4 for trapping electrons is installed below the mosaic target 1. A gas such as argon is introduced into the apparatus, and a predetermined vacuum degree is maintained by an exhaust system. During sputtering, the mosaic target 1 is cooled with cooling water.

【0009】モザイクターゲット1は図2に示すように
成膜する形状記憶合金の組成によって選択される1種の
金属から成るターゲット11に他種の金属チップ12が
複数個配置された形態をなしており、同図(a)にはN
iチップ12をTiターゲット11の同心円上に並べた
もの、同図(b)にはNiターゲット13にTiチップ
14を十字状に並べたもの、同図(c)にはターゲット
13表面にチップ14を均一に並べたものをそれぞれ示
す。配列の仕方は特に限定されないが、Niチップの場
合、永久磁石4の形状から同心円上に配列した方が並べ
やすく、チップの消耗が均一で制御も容易である。基板
2上に成膜される合金の組成を変化させるためには、チ
ップ12又は14の大きさや数を変えるか、配列を変え
る。更に組成の微調整を行なうためには、Niチップを
スパッタされやすいターゲット中心(永久磁石4近傍)
から外周側へ移動させればよい。
As shown in FIG. 2, the mosaic target 1 has a form in which a plurality of metal chips 12 of another kind are arranged on a target 11 made of one kind of metal selected according to the composition of the shape memory alloy to be formed. There is N in the figure (a).
The i chip 12 is arranged on a concentric circle of the Ti target 11, the Ni target 13 is arranged with the Ti chip 14 in a cross shape in the same figure (b), and the chip 14 is formed on the surface of the target 13 in the same figure (c). Are shown in a uniform arrangement. The method of arrangement is not particularly limited, but in the case of Ni chips, it is easier to arrange them on concentric circles due to the shape of the permanent magnets 4, the chips are consumed uniformly, and control is also easy. In order to change the composition of the alloy formed on the substrate 2, the size or number of the chips 12 or 14 is changed, or the arrangement is changed. Further, in order to finely adjust the composition, the Ni chip is easily sputtered at the center of the target (near the permanent magnet 4).
From the outer side to the outer side.

【0010】形状記憶合金薄膜としてCu−Al−N
i、Cu−Zn、Cu−Sn等銅系形状記憶合金の薄膜
を形成する場合には、CuをターゲットしてAl、N
i、Zn、Snのチップを用いてもよい。尚、本発明の
形状記憶合金薄膜の製造方法は上記した高周波マグネト
ロンスパッタの他、三極又は四極スパッタ等チップが並
べられるモザイクターゲットを用いてスパッタリングす
る装置であればすべて適用できる。 実施例1 Φ76mm(3インチ)×5mmのTiターゲット11に1
0×10×1mmのNiチップ12を図2(a)のよう
に、又はNiターゲット13にTiチップ14を図2
(c)のように配列したモザイクターゲットを用いると
ともに、76×26×1mmのガラス基板を用いて、RF
電力300W、Ar圧4.5×10-2Torrでスパッタリ
ングを行ない、ガラス基板上にTi−Ni合金薄膜を成
膜した。この時の基板温度はターゲットからの熱輻射等
で室温から約200℃まで上昇した。なお、基板はモー
タにより4回転/分の速度で回転させながら成膜した。
Cu-Al-N as a shape memory alloy thin film
When a thin film of a copper-based shape memory alloy such as i, Cu-Zn, or Cu-Sn is formed, Cu is targeted and Al or N is used.
You may use the chip of i, Zn, and Sn. The method for producing a shape memory alloy thin film according to the present invention can be applied to any apparatus other than the above-mentioned high frequency magnetron sputtering, as long as it is an apparatus for sputtering using a mosaic target in which chips are arranged such as three-pole or four-pole sputtering. Example 1 For a Ti target 11 of Φ76 mm (3 inches) × 5 mm
The Ni chip 12 of 0 × 10 × 1 mm is as shown in FIG. 2A, or the Ti chip 14 is attached to the Ni target 13 as shown in FIG.
Using a mosaic target arranged as shown in (c) and using a glass substrate of 76 × 26 × 1 mm, RF
Sputtering was performed at an electric power of 300 W and an Ar pressure of 4.5 × 10 −2 Torr to form a Ti—Ni alloy thin film on the glass substrate. At this time, the substrate temperature rose from room temperature to about 200 ° C. due to heat radiation from the target. The substrate was formed while being rotated by a motor at a speed of 4 rotations / minute.

【0011】その結果、均一(平滑)な薄膜を再現性よ
く得ることができたが、チップを図2(a)に示すよう
に配列した場合にはターゲットの透磁率がよくなるた
め、プラズマの立上がりがよく成膜速度を早めることが
できた。組成均一性についてはガラス基板の中心1点と
周辺2点についてプラズマ発光分光により組成分析を行
なったところ、バラツキは図2(a)のターゲットで±
0.5%以下(試料数n=4)であった。また再現性に
ついても表1に示すように、4つの試料についてほぼ同
様の組成の薄膜が得られた。
As a result, it was possible to obtain a uniform (smooth) thin film with good reproducibility, but when the chips were arranged as shown in FIG. It was possible to accelerate the film formation rate well. Regarding the compositional uniformity, compositional analysis was performed by plasma emission spectroscopy at one center and two peripheral points of the glass substrate.
It was 0.5% or less (the sample number n = 4). Regarding reproducibility, as shown in Table 1, thin films having almost the same composition were obtained for the four samples.

【0012】[0012]

【表1】 [Table 1]

【0013】実施例2 図2(a)のTiターゲット及びNiチップを用い、N
iチップの数を変えて実施例と同じスパッタリング条件
で成膜し、得られた合金薄膜の組成を分析した。尚、組
成分析はプラズマ発光分光によった。その結果、図3に
示すようにNiチップ枚数と膜のNi濃度との間には直
線関係があることが示され、チップ数を変えることによ
り膜Ni濃度を変化させることができた。また、Niチ
ップ数を9又は10枚とし、Niチップの位置を調整す
ることによりマイクロアクチュエータとして適当な合金
組成Ti−50%Niの合金薄膜を得ることができた。 実施例3 実施例1で得られたTi−51%Niの合金薄膜を基板か
ら剥離し、記憶処理のために1000℃で1.5時間加
熱して溶体化処理し、更に400℃、6時間の時効処理
を行なった。処理後の合金薄膜について形状記憶効果に
必要なマルテンサイト変態の確認をDSC法により測定
した。この合金薄膜のDSC曲線を図4に示した。図4
からも明らかなようにR相変態とマルテンサイト変態に
伴う2つのピークが観察された。
Example 2 Using the Ti target and Ni chip shown in FIG.
Film formation was performed under the same sputtering conditions as in the example while changing the number of i-chips, and the composition of the obtained alloy thin film was analyzed. The composition analysis was based on plasma emission spectroscopy. As a result, as shown in FIG. 3, it was shown that there is a linear relationship between the number of Ni chips and the Ni concentration of the film, and it was possible to change the film Ni concentration by changing the number of chips. Further, by setting the number of Ni chips to 9 or 10 and adjusting the position of the Ni chips, an alloy thin film having an alloy composition of Ti-50% Ni suitable for a microactuator could be obtained. Example 3 The Ti-51% Ni alloy thin film obtained in Example 1 was peeled off from the substrate and heat treated at 1000 ° C. for 1.5 hours for solution treatment, followed by solution treatment, and further 400 ° C. for 6 hours. The aging treatment was performed. Confirmation of martensitic transformation required for the shape memory effect was measured by the DSC method on the treated alloy thin film. The DSC curve of this alloy thin film is shown in FIG. Figure 4
As is apparent from the above, two peaks associated with the R phase transformation and the martensite transformation were observed.

【0014】本発明の形状記憶合金薄膜の製造方法によ
り製造される形状記憶合金薄膜は、小型で熱容量が小さ
く、応答性が改善されるので、アクチュエータの他、医
療用等にも適用できることは言うまでもない。
The shape memory alloy thin film manufactured by the method for manufacturing a shape memory alloy thin film of the present invention is small in size, has a small heat capacity, and has improved responsiveness. Therefore, it is needless to say that it can be applied not only to actuators but also to medical applications. Yes.

【0015】[0015]

【発明の効果】以上の実施例からも明らかなように、本
発明の形状記憶合金薄膜の製造方法によれば、形状記憶
合金薄膜をスパッタリング法により製造する際にターゲ
ットとして1種の金属から成るターゲットに他の金属の
チップを配置したモザイクターゲットを用いることによ
り、容易に組成の均一な形状記憶合金薄膜を製造するこ
とができ、しかも組成の微量コントロールを容易に行な
うことができる。更に本発明の形状記憶合金薄膜の製造
方法によれば、高価な合金ターゲットを多数必要とせず
1種のターゲットでチップの配列や数を変えるだけで各
種組成の形状記憶合金薄膜を得ることができ、形状記憶
合金薄膜を低コストで製造することができる。
As is apparent from the above examples, according to the method of manufacturing a shape memory alloy thin film of the present invention, when the shape memory alloy thin film is manufactured by the sputtering method, it is composed of one kind of metal as a target. By using a mosaic target in which chips of another metal are arranged as a target, a shape memory alloy thin film having a uniform composition can be easily manufactured, and a trace amount of composition can be easily controlled. Further, according to the method for manufacturing a shape memory alloy thin film of the present invention, it is possible to obtain a shape memory alloy thin film of various compositions by changing the arrangement and number of chips with one target without requiring a large number of expensive alloy targets. The shape memory alloy thin film can be manufactured at low cost.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の形状記憶合金薄膜の製造方法が適用さ
れるスパッタリング装置の一実施例を示す図。
FIG. 1 is a diagram showing an embodiment of a sputtering apparatus to which the method for manufacturing a shape memory alloy thin film of the present invention is applied.

【図2】本発明の形状記憶合金薄膜の製造方法に用いら
れるターゲットを示す図で、(a)、(b)、(c)は
それぞれ異なるチップ配列を示す図。
FIG. 2 is a diagram showing a target used in the method for manufacturing a shape memory alloy thin film of the present invention, in which (a), (b) and (c) show different chip arrangements.

【図3】本発明の形状記憶合金薄膜の製造方法により形
成された薄膜の組成とチップ数との関係を示すグラフ。
FIG. 3 is a graph showing the relationship between the composition of a thin film formed by the method for producing a shape memory alloy thin film of the present invention and the number of chips.

【図4】本発明の形状記憶合金薄膜の製造方法により形
成された薄膜のDSC曲線。
FIG. 4 is a DSC curve of a thin film formed by the method for manufacturing a shape memory alloy thin film of the present invention.

【符号の説明】[Explanation of symbols]

1・・・・・・モザイクターゲット 2・・・・・・基板 11・・・・・・Tiターゲット 12・・・・・・Niチップ 13・・・・・・Niターゲット 14・・・・・・Tiチップ 1-Mosaic target 2-Substrate 11-Ti target 12-Ni chip 13-Ni target 14-・ Ti chip

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】金属ターゲットをスパッタリングして形状
記憶合金薄膜を製造するに際し、前記ターゲットとして
1種の金属から成るターゲットに他種の金属のチップを
設置したモザイクターゲットを用いたことを特徴とする
形状記憶合金薄膜の製造方法。
1. When manufacturing a shape memory alloy thin film by sputtering a metal target, a mosaic target in which a chip made of one kind of metal and a chip made of another kind of metal are installed is used as the target. Method for manufacturing shape memory alloy thin film.
JP34673192A 1992-12-25 1992-12-25 Production of shape memory alloy thin film Withdrawn JPH06192825A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP34673192A JPH06192825A (en) 1992-12-25 1992-12-25 Production of shape memory alloy thin film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP34673192A JPH06192825A (en) 1992-12-25 1992-12-25 Production of shape memory alloy thin film

Publications (1)

Publication Number Publication Date
JPH06192825A true JPH06192825A (en) 1994-07-12

Family

ID=18385438

Family Applications (1)

Application Number Title Priority Date Filing Date
JP34673192A Withdrawn JPH06192825A (en) 1992-12-25 1992-12-25 Production of shape memory alloy thin film

Country Status (1)

Country Link
JP (1) JPH06192825A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009149990A (en) * 2008-12-24 2009-07-09 Nippon Mining & Metals Co Ltd High-purity shape-memory alloy target and high-purity shape-memory alloy thin-film
CN107338418A (en) * 2017-08-30 2017-11-10 深圳先进技术研究院 Transition metal boride metal composite target, filming equipment and application thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009149990A (en) * 2008-12-24 2009-07-09 Nippon Mining & Metals Co Ltd High-purity shape-memory alloy target and high-purity shape-memory alloy thin-film
CN107338418A (en) * 2017-08-30 2017-11-10 深圳先进技术研究院 Transition metal boride metal composite target, filming equipment and application thereof

Similar Documents

Publication Publication Date Title
Ohta et al. Novel fabrication technique of TiNi shape memory alloy film using separate Ti and Ni targets
US6454913B1 (en) Process for deposition of sputtered shape memory alloy films
Thornton High rate thick film growth
US4522844A (en) Corrosion resistant coating
KR100499173B1 (en) Method of making low magnetic permeability cobalt sputter targets
CN110230030A (en) The PVD device and method of settling chamber with multiple target bodys and magnet
CN108611613B (en) Preparation method of nano multilayer structure carbon-based film
CN108330452A (en) The preparation method of MAX phase coatings
CN109338308A (en) High-entropy alloy thin-film material and preparation method thereof
US6464844B1 (en) Sputtering alloy films using a sintered metal composite target
JP3603112B2 (en) Low temperature production of alumina crystalline thin film
US6402906B1 (en) Sputtering alloy films using a crescent-shaped aperture
JPH06192825A (en) Production of shape memory alloy thin film
US6303008B1 (en) Rotating film carrier and aperture for precision deposition of sputtered alloy films
CN102051497B (en) Preparation methods of gold and silver embedded target and film thereof
CN111218657A (en) Amorphous tungsten-based high-entropy alloy thin film material and preparation method thereof
JPH07180038A (en) High-hardness thin film and its production
CN114411098A (en) Coating method of TiNb coating
CN109735817A (en) A kind of noble metal/oxidate compound film and preparation method with catalysis characteristics
JP2002539331A (en) Method and apparatus for applying a hard magnetic SE-FE-B material to a support
CN1158402C (en) Preparation Mn-Co film with low temperature coefficient of resistance
JPH01255668A (en) Formation of film using coaxial magnetron sputtering device
JPH0581668B2 (en)
JPH0581670B2 (en)
CN113151793B (en) Preparation method of high-strength high-plasticity copper-aluminum nano metal multilayer film

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20000307