JPH06192809A - Insulating pipe material for preventing electrolytic corrosion having excellent corrosion resistance - Google Patents

Insulating pipe material for preventing electrolytic corrosion having excellent corrosion resistance

Info

Publication number
JPH06192809A
JPH06192809A JP4347193A JP34719392A JPH06192809A JP H06192809 A JPH06192809 A JP H06192809A JP 4347193 A JP4347193 A JP 4347193A JP 34719392 A JP34719392 A JP 34719392A JP H06192809 A JPH06192809 A JP H06192809A
Authority
JP
Japan
Prior art keywords
corrosion
pipe material
layer
pipe
corrosion resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4347193A
Other languages
Japanese (ja)
Inventor
Toshiro Anraku
敏朗 安楽
Nobuhiko Hiraide
信彦 平出
Masakatsu Ueda
昌克 植田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP4347193A priority Critical patent/JPH06192809A/en
Priority to US08/002,492 priority patent/US5660211A/en
Priority to EP93100154A priority patent/EP0570657B1/en
Priority to DE69306466T priority patent/DE69306466T2/en
Publication of JPH06192809A publication Critical patent/JPH06192809A/en
Pending legal-status Critical Current

Links

Landscapes

  • Non-Disconnectible Joints And Screw-Threaded Joints (AREA)
  • Coating By Spraying Or Casting (AREA)
  • Preventing Corrosion Or Incrustation Of Metals (AREA)

Abstract

PURPOSE:To provide the insulating pipe material which prevents electrolytic corrosion and crevice corrosion arising in the case of connection of different metallic pipes in an oil well, etc., and is excellent in the improvement of both the adhesion and corrosion resistance of films. CONSTITUTION:The low corrosion-resistant pipe material 1 and the highly corrosion-resistant pipe material 2 are screwed and connected directly or by means of a coupling 3. Amorphous insulating ceramics layers, at least the extreme surface layer parts of which are crystalline, are clad in a range L of >=60mm from the pipe end at the inside and outside surfaces of the pipe material of the low corrosion-resistant pipe material 1, in a range L of >=60mm from the pipe end at the inside and outside surfaces of the pipe material of the highly corrosion-resistant pipe material 2, in a range L of >=60mm from both pipe ends of the inside and outside surfaces of the coupling 3 and further in spacing parts A, B when these pipe materials are connected.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、一般の管、特に油井管
の配管にあたり、異種金属の管材を継ぐ場合に生ずる電
食および隙間腐食を防止するとともに、被覆される膜材
の耐食性を高めた電食防止用絶縁管材に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to general pipes, particularly oil well pipes, to prevent electrolytic corrosion and crevice corrosion that occur when pipes of dissimilar metals are spliced, and to improve the corrosion resistance of the film material to be coated. Insulation pipe material for preventing electrolytic corrosion.

【0002】[0002]

【従来の技術】油井における金属管には様々なものがあ
る。原油や天然ガスを地下の産出層から地上に運搬する
ためのチュービング、掘られた井戸の保護のために前記
チュービングの周囲に設けられるケーシング、油層の圧
力上昇を図るために配管されるスチームインジェクショ
ンパイプおよび石油二次回収用のCO2 配管等である。
2. Description of the Related Art There are various types of metal tubes in oil wells. Tubing for transporting crude oil and natural gas from the underground production layer to the ground, casing provided around the tubing for protection of dug wells, steam injection pipes arranged to increase pressure in the oil layer And CO 2 piping for secondary oil recovery.

【0003】油井においては、これらの油井用金属管材
が原油や天然ガスの採取、生産のために地盤の表面に垂
直、あるいは垂直に近い角度で地下数千メートルに及ん
で配管される。なお、本明細書では、これらの管すべて
を油井管と称する。
In oil wells, these metal pipe materials for oil wells are piped up to several thousand meters underground at a vertical or nearly vertical angle to the surface of the ground for the extraction and production of crude oil and natural gas. In addition, in this specification, all of these pipes are called an oil country tubular good.

【0004】一般に、油井においては、深い場所では温
度が高いために腐食性が大きく、逆に浅い場所では温度
が低いために腐食性が小さい。よって、経済性を考慮し
て井戸の深い部分には、たとえば各種ステンレス鋼、N
i基合金、Ti、Ti合金等の高耐食性金属管材を使用
し、浅い部分には、たとえば炭素鋼、低合金金属等の低
耐食性金属管材を使用することが多い。
Generally, in an oil well, corrosiveness is large in a deep place because the temperature is high, and conversely, corrosiveness is small in a shallow place because the temperature is low. Therefore, in consideration of economy, deep stainless steel wells, such as stainless steel and N
A highly corrosion-resistant metal pipe material such as an i-based alloy, Ti, or a Ti alloy is used, and a low-corrosion resistance metal pipe material such as carbon steel or a low alloy metal is often used in the shallow portion.

【0005】したがって、当然低耐食性金属管材と高耐
食性金属管材との連結部が生じるが、前記耐食性金属管
材と高耐食性金属管材とを単純連結した場合、異種金属
材料の接触により電位差が生じ、いわゆるガルバニック
腐食(電食)が発生する。このガルバニック腐食によっ
て、低耐食金属管材側では、たとえば通常の炭素鋼管材
単独の腐食に比べて、2〜10倍の速度で腐食が進行す
るものであった。一方、高耐食性金属管材側では、水素
が発生し、この水素が内部に進入して、水素脆性を生じ
るものであった。さらに、継手部の隙間では、隙間腐食
が生じ、電食によって腐食が促進されるものであった。
Therefore, a connecting portion between the low corrosion resistant metal pipe material and the high corrosion resistant metal pipe material naturally occurs, but when the corrosion resistant metal pipe material and the high corrosion resistant metal pipe material are simply connected, a potential difference occurs due to contact between different metal materials, so-called Galvanic corrosion (electrolytic corrosion) occurs. Due to this galvanic corrosion, corrosion progresses at a rate of 2 to 10 times on the low corrosion resistant metal pipe side, for example, as compared with the corrosion of a normal carbon steel pipe alone. On the other hand, on the side of the highly corrosion-resistant metal pipe material, hydrogen was generated, and this hydrogen penetrated into the inside to cause hydrogen embrittlement. Furthermore, crevice corrosion occurs in the gap of the joint portion, and the corrosion is promoted by electrolytic corrosion.

【0006】これらの問題に対して、現状においては、
低耐食性金属管材と高耐食性金属管材とを直接連結せ
ず、耐食性が前記低耐食性金属管材と高耐食性金属管材
との中間にある2相ステンレス鋼等の金属管材を介在さ
せて腐食防止を図っている。しかしながら、たとえ中間
金属管材を介在させた場合でも、部材相互間の電食およ
び隙間腐食を完全に防止することは不可能であり、腐食
速度を若干緩和させるに過ぎないものであった。
With respect to these problems, under the present circumstances,
To prevent corrosion by directly connecting the low-corrosion-resistant metal pipe material and the high-corrosion-resistant metal pipe material, and by interposing a metal pipe material such as duplex stainless steel, which has corrosion resistance between the low-corrosion metal pipe material and the high-corrosion metal pipe material There is. However, even if an intermediate metal pipe material is interposed, it is impossible to completely prevent electrolytic corrosion and crevice corrosion between members, and it is only to moderate the corrosion rate.

【0007】他方、管材同士をネジ継手構造により連結
する際に、完全に密封してシールすることは、事実上不
可能なことであり、不可避的に一方腐食環境に開いた隙
間が存在することとなる。ネジ継手構造部分に上記隙間
が存在すると、この隙間部では液体の流動がほとんどな
いため、鉄等の金属が腐食されて生じた水素イオン等が
高濃度で溜まりやすく、pHが非常に低下し、母材より
も激しい腐食が生じる。すなわち、隙間腐食は母材部の
腐食環境より弱い環境下でも発生することとなる。この
隙間腐食が生じると、応力腐食割れに発展する危険があ
ると共に、シール面を侵食することにより継手として重
要機能であるシール性を損なう結果となるものであっ
た。
On the other hand, it is virtually impossible to completely seal and seal the pipe materials when they are connected to each other by the screw joint structure, and unavoidably there is an open gap in the corrosive environment. Becomes When the above-mentioned gap exists in the screw joint structure portion, since there is almost no liquid flow in this gap portion, hydrogen ions and the like produced by corrosion of metals such as iron are likely to be accumulated at a high concentration, and the pH is extremely lowered, Corrosion occurs more severely than the base metal. That is, crevice corrosion occurs even in an environment weaker than the corrosive environment of the base material. When this crevice corrosion occurs, there is a risk of developing stress corrosion cracking, and as a result, the sealability, which is an important function as a joint, is impaired by eroding the sealing surface.

【0008】上記問題を解決するため、たとえば特開平
1−199088号公報においては、重量%でCrを
7.5%以上含有する同一材質の油井管のネジ継手部分
に1〜100μmの非金属層を被覆することにより、腐
食環境から遮断し、隙間腐食を防止する継手を提案して
いる。
In order to solve the above problem, for example, in Japanese Patent Laid-Open No. 1-199088, a non-metallic layer of 1 to 100 μm is formed on a threaded joint portion of an oil country tubular goods of the same material containing Cr by 7.5% or more by weight. We have proposed a joint that prevents crevice corrosion by blocking the corrosive environment.

【0009】[0009]

【発明が解決しようとする課題】上記公報における技術
では、非金属層を形成する方法について例示している
が、その例示方法のうち、イオンプレーティング,スパ
ッタリング,プラズマCVDで被覆するときに使用され
るプラズマ出力やスパッタリング用の電気的エネルギー
では、熱力学的に安定な結晶質を得ることは困難である
ため、低いエネルギーで形成される非晶質膜が形成され
るだけである。一方、熱CVD,溶射を用いて被覆する
と、被覆用エネルギーが高いために、結晶質膜が形成さ
れる。
The technique disclosed in the above publication exemplifies a method for forming a non-metal layer. Among the exemplified methods, the method used for coating by ion plating, sputtering or plasma CVD is used. It is difficult to obtain a thermodynamically stable crystalline material with a plasma output or electric energy for sputtering, so that only an amorphous film formed with low energy is formed. On the other hand, when coating is performed using thermal CVD or thermal spraying, a crystalline film is formed because the coating energy is high.

【0010】したがって、この公報記載技術は、非晶質
膜または結晶質膜の一方のみを形成する方法を開示する
ものである。
Therefore, the technique described in this publication discloses a method of forming only one of an amorphous film and a crystalline film.

【0011】しかるに、被覆非金属層が非晶質層である
場合、同種材料の結晶質層に比較して熱膨張率が金属に
近く、また、異方性が少ないため、母材金属に対して比
較的に良好な密着性を示す。しかし、この非結晶層は、
準安定状態であるため、油井環境のような特殊な腐食環
境下においては、被膜中の金属イオンが溶出して被膜厚
みが減少し、その結果絶縁抵抗が劣化し、十分な電食防
止効果が得られない。
However, when the coated non-metal layer is an amorphous layer, the coefficient of thermal expansion is closer to that of a metal than that of a crystalline layer of the same kind of material, and the anisotropy is small. Shows relatively good adhesion. However, this amorphous layer is
Since it is a metastable state, in a special corrosive environment such as an oil well environment, metal ions in the coating elute and the coating thickness decreases, resulting in deterioration of insulation resistance and sufficient electrolytic corrosion prevention effect. I can't get it.

【0012】一方、結晶質層の場合は、良好な耐食性を
示すものの、母材金属との熱膨張差および被膜の異方性
の影響で良好な密着力を得ることが困難となるものであ
る。
On the other hand, in the case of a crystalline layer, although it exhibits good corrosion resistance, it is difficult to obtain good adhesion due to the difference in thermal expansion from the base metal and the anisotropy of the coating. .

【0013】他方で、熱CVDを用いて結晶質層被膜を
形成した場合、被膜自身の耐食性は良好であるが、通
常、コーティング温度が1000℃以上の高温処理が必
要であるために、油井管に必要とされる強度の劣化、プ
レミアムジョイントを含む油井管継手のネジ部の変形等
が生じるため、実際に適用するのは困難である。
On the other hand, when a crystalline layer film is formed by using thermal CVD, the film itself has good corrosion resistance, but since a high temperature treatment at a coating temperature of 1000 ° C. or higher is usually required, the oil country tubular good It is difficult to apply it in practice, because the strength required for it will deteriorate and the threaded part of the oil well pipe joint including the premium joint will be deformed.

【0014】また、溶射により結晶質の被膜を得る場合
には、被膜内部に多数の気孔を含んでいるため、腐食液
が被膜を通じて管表面にまで到達し、腐食防止効果を果
たさない。
Further, when a crystalline coating film is obtained by thermal spraying, since the coating film contains a large number of pores, the corrosive liquid reaches the pipe surface through the coating film and does not exert a corrosion preventing effect.

【0015】したがって、本発明の課題は、油井等にお
いて異種金属管継手を継ぐ場合に生じる電食を防止する
とともに、前記金属管材に対する密着性と耐食性に優れ
る電食防止用絶縁管材を提供することにある。
[0015] Therefore, an object of the present invention is to provide an insulating pipe material for preventing electrolytic corrosion, which is capable of preventing electrolytic corrosion that occurs when connecting dissimilar metal pipe joints in oil wells and the like, and which is excellent in adhesion and corrosion resistance to the metal pipe material. It is in.

【0016】[0016]

【課題を解決するための手段】電食防止継手について本
発明者等は、鋭意研究を重ねた結果、継手の母材金属管
表面を非晶質絶縁性セラミックス層で被覆した後、その
最表層のみを結晶化させることにより、耐食性と耐絶縁
特性の両者に優れた電食防止用絶縁管材を得られること
を知見した。
Means for Solving the Problems As a result of intensive studies on the electrolytic corrosion preventing joint, the present inventors have found that after coating the surface of the base metal tube of the joint with an amorphous insulating ceramics layer, its outermost layer It was found that by crystallizing only the above, an insulating tubing material for preventing electrolytic corrosion, which is excellent in both corrosion resistance and insulation resistance, can be obtained.

【0017】かかる知見に基づく本発明は、管端部に連
結用の螺合ネジ部が形成された金属管材において:この
管材が連結されたとき露出する内面および外面の少なく
とも一方面における前記螺合ネジ部を除く内面端または
外面端から60mm以上の範囲にわたる領域と、連結し
たとき隙間が生じる前記螺合ネジ部領域との少なくとも
一方に;最表層部分が結晶質である非晶質の絶縁性セラ
ミックス層が被覆されていることを特徴とするものであ
る。
According to the present invention based on such knowledge, in a metal pipe material having a threaded screw portion for connection formed on a pipe end portion: the screw engagement on at least one of an inner surface and an outer surface exposed when the pipe material is connected. At least one of a region extending from the inner surface end or the outer surface end excluding the threaded portion to a range of 60 mm or more and the threaded threaded portion area where a gap is formed when connected; an amorphous insulating material having a crystalline outermost layer portion It is characterized in that it is covered with a ceramics layer.

【0018】この場合、絶縁性セラミックス層は、比抵
抗が108 Ωcm以上であり、厚さ0.4μm以上、被
覆率90%以上100%未満で被覆されているのが好適
である。さらに、非晶質な絶縁性セラミックス層と管材
地金との間に、その絶縁性セラミックス層と管材との中
間の膨張係数を有する金属またはその酸化物,窒化物も
しくは炭化物の単層あるいは複合層を有するものも望ま
しい。
In this case, the insulating ceramics layer preferably has a specific resistance of 10 8 Ωcm or more, a thickness of 0.4 μm or more, and a coverage of 90% or more and less than 100%. Further, a single layer or a composite layer of a metal or its oxide, nitride or carbide having an expansion coefficient intermediate between that of the insulating ceramic layer and the pipe material, between the amorphous insulating ceramic layer and the tube metal. Those having

【0019】[0019]

【作用】異種金属が接触した場合に生じるガルバニック
腐食は、腐食しにくい金属がカソード(陰極)となり、
腐食し易い金属をアノード(陽極)として、アノード側
の反応が促進されることに起因する。すなわち、異種金
属間の電位によりボルタ電池が組み立てられるためであ
る。したがって、電食を防止するためには、異種金属間
に絶縁性セラミックス層で被覆して、その相互の距離を
離して液間抵抗を大きくすることにより、腐食電流が流
れないようにしてやればよいことを本発明者等は知見
し、かつこの態様が実際に有効であることを確認してい
る。
[Function] Galvanic corrosion that occurs when dissimilar metals come into contact with each other is
This is due to the fact that the reaction on the anode side is promoted by using a metal that is easily corroded as an anode. That is, the voltaic battery is assembled by the potential between different metals. Therefore, in order to prevent electrolytic corrosion, it is sufficient to cover different metals with an insulating ceramic layer and increase the liquid resistance by separating them from each other so that no corrosion current flows. The present inventors have found that, and confirmed that this aspect is actually effective.

【0020】また、一般に、隙間腐食は、腐食により生
じた金属イオン及び水素イオン,塩素イオン等が隙間部
に溜まり、pHが非常に低下し、著しい腐食が起きる現
象である。通常、油井管はネジ継手を用いて連結される
が、図1および図2におけるネジ部20の内面と外面の
連結境界A,B部分に示すように隙間が存在し、ここに
隙間腐食が生じる。さらに、この隙間腐食は電食により
促進される。この隙間腐食についても、本発明の好適で
態様の下で、絶縁性セラミックス層を形成することによ
り防止できる。
Generally, crevice corrosion is a phenomenon in which metal ions, hydrogen ions, chlorine ions and the like generated by the corrosion are accumulated in the crevices, the pH is extremely lowered, and remarkable corrosion occurs. Normally, the oil country tubular goods are connected using a screw joint, but there is a clearance as shown at the connection boundaries A and B between the inner surface and the outer surface of the screw portion 20 in FIGS. 1 and 2, and crevice corrosion occurs here. . Furthermore, this crevice corrosion is promoted by electrolytic corrosion. This crevice corrosion can also be prevented by forming an insulating ceramic layer under the preferred and preferred embodiment of the present invention.

【0021】しかるに、絶縁性セラミックス層の形成に
あたって、前述のように、被覆非金属層が非晶質(アモ
ルファス)層である場合、母材金属に対して良好な密着
性を示すが、油井環境のような特殊な腐食環境下におい
ては、十分な電食防止効果が得られない。一方、結晶質
である場合は、良好な耐食性を示すものの、母材金属と
間で良好な密着力を得ることが困難である。
However, in forming the insulating ceramic layer, when the coating non-metal layer is an amorphous layer as described above, good adhesion to the base metal is exhibited, but the oil well environment In such a special corrosive environment, a sufficient electrolytic corrosion preventing effect cannot be obtained. On the other hand, when it is crystalline, it exhibits good corrosion resistance, but it is difficult to obtain good adhesion with the base metal.

【0022】そこで、本発明では、上記非結晶層の表面
のみを結晶質とすることにより、腐食環境下に対する優
れた耐食性が発揮されるとともに、下層側を非晶質のま
ま残すことにより、管材に対して良好な密着性が発揮さ
れる。
Therefore, in the present invention, by making only the surface of the non-crystalline layer crystalline, excellent corrosion resistance under a corrosive environment is exhibited, and by leaving the lower layer side amorphous, the pipe material Good adhesion is exhibited against.

【0023】本発明においては、Al2O3 ,Si3N4 ,Ta2O
5 ,SiO2,ZrO2等の絶縁性セラミックスを前述のよう
に、スパッタリング法、イオンプレーティング法、プラ
ズマCVD、MO(Metal Organic )−CVD等の方法
により、管材母材表面を被覆して、非晶質層を形成した
後、非晶質層の表面部を結晶化する。
In the present invention, Al 2 O 3 , Si 3 N 4 , Ta 2 O
5 , the insulating ceramics such as SiO 2 , ZrO 2 and the like, as described above, by coating the surface of the pipe base material by a method such as sputtering, ion plating, plasma CVD, MO (Metal Organic) -CVD, After forming the amorphous layer, the surface portion of the amorphous layer is crystallized.

【0024】非晶質層の表面部を結晶化させる方法とし
ては、加熱法のほか、酸素,二酸化炭素等の酸化性ガ
ス、あるいはこれらの混合ガス中でプラズマを発生さ
せ、非結晶層表面に対してプラズマ処理を行う方法を挙
げることができる。
As a method for crystallizing the surface portion of the amorphous layer, in addition to the heating method, plasma is generated in an oxidizing gas such as oxygen and carbon dioxide, or a mixed gas thereof, and the amorphous layer surface is crystallized. On the other hand, a method of performing plasma treatment can be mentioned.

【0025】なお、最表層部分が結晶質である非晶質な
絶縁性セラミックス層の形成手段としては、前述したス
パッタリング法、イオンプレーティング法、プラズマC
VD,MO−CVD等によって、管材母材表面に非晶質
な絶縁性セラッミクス層を形成し、次いでその表面に熱
CVD法、溶射法等によって結晶質の絶縁性セラミック
ス層を形成するようにしてもよいことは勿論である。
As a means for forming an amorphous insulating ceramics layer having a crystalline outermost layer, the above-mentioned sputtering method, ion plating method, plasma C are used.
An amorphous insulating ceramics layer is formed on the surface of the pipe base material by VD, MO-CVD, or the like, and then a crystalline insulating ceramics layer is formed on the surface by a thermal CVD method, a thermal spraying method, or the like. Of course, it is also good.

【0026】一方、本発明に用いる管材の母材として
は、フェライト系高クロム鋼,オーステナイト系ステン
レス鋼,Ni 量20wt%以下かつCr量13wt%以上の
Ni 基合金,チタン, チタン合金等が挙げられる。
On the other hand, examples of the base material of the pipe material used in the present invention include ferritic high chromium steel, austenitic stainless steel, Ni-based alloys having a Ni content of 20 wt% or less and a Cr content of 13 wt% or more, titanium, titanium alloys and the like. To be

【0027】また、一般に完全な絶縁性が得られるの
は、比抵抗が108 Ωcm以上の場合であり、比抵抗が
108 Ωcm未満の場合には半導電性となり、この半導
電性被膜では導電性被膜の場合と同様に、低耐食性管材
との間で電食が生じる危険性が極めて大きい。したがっ
て、管材を被覆する絶縁性セラミックス層の比抵抗は1
8 Ωcm以上とするのが好ましい。
In general, complete insulation is obtained when the specific resistance is 10 8 Ωcm or more, and when the specific resistance is less than 10 8 Ωcm, it becomes semiconductive. As in the case of the conductive coating, the risk of electrolytic corrosion with the low corrosion resistant pipe material is extremely high. Therefore, the specific resistance of the insulating ceramic layer covering the pipe material is 1
Preferably in the 0 8 Ωcm or more.

【0028】本発明の好適な態様の下では、絶縁性セラ
ミックス層の被覆率は90%以上100%未満とされ
る。この被覆率は、電気化学的方法により決定される。
すなわち、母材のみが溶解しうるような液中において、
定電位分極によりその電流をモニターし、 被覆率(%)=〔(被覆のない母材の電流密度)−(被
覆のある母材の電流密度)〕/(被覆のない電流密度)
×100 により定義される値とされる。
According to a preferred aspect of the present invention, the coverage of the insulating ceramic layer is 90% or more and less than 100%. This coverage is determined by an electrochemical method.
That is, in a liquid in which only the base material can be dissolved,
The current was monitored by potentiostatic polarization, and the coverage (%) = [(current density of base material without coating)-(current density of base material with coating)] / (current density without coating)
The value is defined by × 100.

【0029】また、絶縁性セラミックス層の被覆率と被
覆領域の大きさにより、電食防止効果の発現の有無が決
定されるが、この点は後述の実施例により明らかにす
る。さらに、被覆率を100%未満としたのは、現状で
は、ピンホール欠陥(母材まで貫通している膜の欠陥)
のない膜をコーティングすることが困難であることが知
られているためである。
Further, the presence or absence of the effect of preventing electrolytic corrosion is determined by the coverage of the insulating ceramics layer and the size of the coating region, and this point will be clarified by Examples described later. Furthermore, the coverage is set to less than 100% at present, because of pinhole defects (defects of the film penetrating to the base material).
This is because it is known that it is difficult to coat a film without a coating.

【0030】さらに、絶縁性セラミックス層の下層に、
管材と絶縁性セラミックス層との中間の膨張係数を有す
る後記する表3に示すような金属または、その酸化物,
窒化物もしくは炭化物の単層あるいは複合層よりなる応
力緩和層を形成することにより、特に応力下にある油井
環境において絶縁性被膜の耐剥離性向上に有効である。
この応力緩和層の厚みは、0.1μm〜5μmが好適で
ある。膜厚が0.1μm未満では、その効果がほとんど
得られず、5μmを超えるとその効果はほとんど消失す
るからである。
Further, under the insulating ceramic layer,
A metal having an expansion coefficient intermediate between those of the tube material and the insulating ceramic layer, as shown in Table 3 below, or an oxide thereof,
By forming the stress relaxation layer composed of a single layer or a composite layer of nitride or carbide, it is effective in improving the peeling resistance of the insulating coating particularly in an oil well environment under stress.
The thickness of this stress relaxation layer is preferably 0.1 μm to 5 μm. This is because if the film thickness is less than 0.1 μm, the effect is hardly obtained, and if it exceeds 5 μm, the effect is almost lost.

【0031】本発明のおける絶縁性セラミックス層の厚
みは、0.4μm 以上が好適で、力緩和層との合計膜
厚としては、100μm以内とするのが望ましい。合計
膜厚が100μmを超えると、ネジ部形成部およびシー
ル部の寸法精度に悪影響を及ぼすおそれがあるととも
に、膜の内部応力等による剥離が懸念されるためであ
る。
[0031] The thickness of the insulating ceramic layer definitive present invention is preferably not less than 0.4 .mu.m, as the total thickness of the stress relaxation layer, it is desirable to within 100 [mu] m. This is because if the total film thickness exceeds 100 μm, the dimensional accuracy of the screw part forming part and the seal part may be adversely affected, and peeling due to internal stress of the film may occur.

【0032】[0032]

【実施例】以下、本発明を主に油井管に適用した場合の
具体例について詳説する。なお、本発明において、管と
しては油井管にのみ限定されることはなく、例えば海水
および土壌運搬用パイプライン、プラント用パイプライ
ン等において、異種金属を継ぐ場合にも適用し得ること
は前述の通りである。
EXAMPLES Hereinafter, specific examples in which the present invention is mainly applied to oil country tubular goods will be described in detail. In addition, in the present invention, the pipe is not limited to the oil well pipe, for example, in the pipeline for transporting seawater and soil, the pipeline for plants, etc., it can be applied to the case where different metals are spliced. On the street.

【0033】図1および図2は本発明に係わる絶縁性被
膜、より具体的に絶縁性セラミックスで被覆した油井管
の連結部を示す図である。図1はカップリングを使用し
た連結型の場合について示し、図2は直接連結型の場合
について示す。
FIGS. 1 and 2 are views showing an insulating coating according to the present invention, more specifically a connecting portion of an oil country tubular good coated with insulating ceramics. 1 shows the case of the connection type using a coupling, and FIG. 2 shows the case of the direct connection type.

【0034】図1において、前記低耐食性管材1と高耐
食性管材2は、カップリング3をもって螺合連結されて
いる。これらは本発明に言う連結要素を構成する。な
お、前記カップリング3は、通常高耐食性管材2と同材
質か、実質的同材質のもので作製される。
In FIG. 1, the low-corrosion-resistant pipe material 1 and the high-corrosion-resistant pipe material 2 are screwed together by a coupling 3. These constitute the connecting element referred to in the present invention. The coupling 3 is usually made of the same material as or substantially the same material as the highly corrosion resistant pipe material 2.

【0035】本具体例においては、前記低耐食性管材1
の管材の内外面においてネジ部20を除く管端から60
mm以上の範囲に(符号Lで示す範囲、以下同じ)に渡
って、ならびにネジ部20の連結境界A,B部(図7に
A部分、図8にB部分をそれぞれ模式拡大して示す)に
対して、本発明に係わる下層に非晶質の絶縁セラミック
ス層と、この上層に積層された結晶質セラミックス被膜
からなる層(以下、この多層膜を密着性絶縁被膜と言
う)が4,5,21,22部に形成されている。
In this embodiment, the low corrosion resistance pipe material 1 is used.
60 from the pipe end excluding the threaded portion 20 on the inner and outer surfaces of the pipe material
Over the range of mm or more (the range indicated by the reference symbol L, the same applies hereinafter), and the connection boundaries A and B of the screw portion 20 (the A portion is shown in FIG. 7 and the B portion is shown schematically in FIG. 8). On the other hand, a layer composed of an amorphous insulating ceramics layer as a lower layer and a crystalline ceramics film laminated on the upper layer (hereinafter, this multilayer film is referred to as an adhesive insulating film) according to the present invention is 4, 5 , 21 and 22 parts.

【0036】カップリング3においては、管材内外面の
ネジ部20のA,B部分を含む全域に渡って、密着性絶
縁被膜が符号6,7,23,24部に形成されている。
In the coupling 3, the adhesive insulating coating is formed at 6, 7, 23, and 24 portions over the entire area including the A and B portions of the threaded portion 20 on the inner and outer surfaces of the pipe material.

【0037】一方、前記高耐食性管材2においても前記
低耐食性管材1と同様に管材の内外面においてネジ部2
0を除く管端部から60mm以上の範囲に渡って、ネジ
部20の連結境界A,B部に対して、本発明に係わる密
着性絶縁被膜が符号8,9,21,22部に形成されて
いる。
On the other hand, in the high corrosion resistance pipe material 2, as in the low corrosion resistance pipe material 1, the threaded portion 2 is formed on the inner and outer surfaces of the pipe material.
Over the range of 60 mm or more from the end of the pipe except 0, the adhesive insulating coating according to the present invention is formed on the connecting boundaries A and B of the screw portion 20 at the portions 8, 9, 21, and 22. ing.

【0038】なお、前記具体例の場合には、低耐食性管
材1、高耐食性管材2およびカップリング3の全てに対
して、密着性絶縁被膜を4〜9および21〜26部に形
成させたが、電食防止の観点から見る場合には、低耐食
性管材1、高耐食性管材2およびカップリング3のいず
れか1つまたは2つに前記密着性絶縁被膜を形成させて
もよく、カップリング3の6,7部に形成させるのが望
ましい。要するに、前記密着性絶縁被膜の適用個所およ
びその組合せは、用途や予想される腐食の程度により適
宜選定できる。
In the case of the above-mentioned specific example, the low-corrosion-resistant tubing 1, the high-corrosion-resistant tubing 2 and the coupling 3 were all provided with the adhesive insulating coating at 4 to 9 and 21 to 26 parts. From the viewpoint of preventing electrolytic corrosion, the adhesive insulating coating may be formed on any one or two of the low corrosion resistance pipe material 1, the high corrosion resistance pipe material 2 and the coupling 3. It is desirable to form 6 or 7 parts. In short, the application location of the adhesive insulating coating and the combination thereof can be appropriately selected depending on the application and the expected degree of corrosion.

【0039】一方、図2の場合には、低耐食性管材1と
高耐食性管材2とがカップリングを用いることなく直接
螺合連結されている。図2具体例の場合も図1具体例と
同様に、低耐食性管材1の管材の内外面においてネジ部
20を除く管端から60mmの範囲に渡って、ならびに
ネジ部20の連結境界A,B部分(図9にA部分、図1
0にB部分を模式拡大して示す)に対して、本発明に係
わる密着性絶縁被膜が4,5,21,22部に形成され
ている。また、高耐食性管材2においても、前記低耐食
性管材1と同様に管材の内外面において前記ネジ部20
を除く管端部から60mm以上の範囲に渡って、ならび
にネジ部20の連結境界A,B部分に対して、前記密着
性絶縁被膜が符号8,9,25,26部に形成されてい
る。
On the other hand, in the case of FIG. 2, the low-corrosion resistant pipe material 1 and the high-corrosion resistant pipe material 2 are directly screwed and connected without using a coupling. In the case of the specific example of FIG. 2 as well as the specific example of FIG. 1, over the range of 60 mm from the pipe end excluding the threaded portion 20 and the connection boundaries A, B of the threaded portion 20 on the inner and outer surfaces of the pipe material of the low corrosion resistance tubular material 1. Part (A part in FIG. 9, FIG. 1)
No. 0 is shown by enlarging the B portion), the adhesive insulating coating according to the present invention is formed in 4,5, 21, 22 parts. Further, also in the high corrosion resistance pipe material 2, as in the low corrosion resistance pipe material 1, the threaded portion 20 is formed on the inner and outer surfaces of the pipe material.
The adhesive insulating coating is formed at the portions 8, 9, 25, and 26 over the range of 60 mm or more from the pipe end portion except for and the connection boundaries A and B of the screw portion 20.

【0040】図2の具体例の場合も図1と同様に低耐食
性管材1及び高耐食性管材2の両方に対して、すなわち
密着性絶縁被膜を符号4,5,8,9,21,22,2
5,26部に形成させたが、電食防止の観点からは、高
耐食性管材2側の8,9部のみとすることもできる。
In the case of the concrete example of FIG. 2 as well as in FIG. 1, both the low corrosion resistant pipe material 1 and the high corrosion resistant pipe material 2, that is, the adhesive insulating coatings have the reference numerals 4, 5, 8, 9, 21, 21, 22. Two
Although it is formed in 5, 26 parts, from the viewpoint of preventing electrolytic corrosion, it is possible to form only 8, 9 parts on the highly corrosion resistant pipe material 2 side.

【0041】また、密着性絶縁被膜を施す面は、前記2
つの具体例の場合には管材1,2の内外面の両方とした
が、必ずしも内外面の両方に施す必要はなく、最低限油
井において腐食環境に曝される面のみでよい。具体的に
は、チュービングの場合には内外面の両方、ケーシング
の場合には内面のみとすることができる。
The surface on which the adhesive insulating coating is applied is the same as in 2 above.
In the case of one specific example, both the inner and outer surfaces of the pipe materials 1 and 2 are used, but it is not always necessary to apply it to both the inner and outer surfaces, and at least the surface exposed to the corrosive environment in the oil well is sufficient. Specifically, both inner and outer surfaces can be used in the case of tubing, and only the inner surface can be used in the case of a casing.

【0042】ところで、ワイヤーロープを用いて吊り下
げ搬送操作により管材1,2の表面に傷がつけられるお
それのある場合には、密着性絶縁被膜の表面にその剥離
や破壊防止のために、フッ素系樹脂あるいはポリプロピ
レン系等の有機被膜を施すのが好ましい。
When there is a possibility that the surface of the pipe materials 1 and 2 may be damaged by the suspending and conveying operation using a wire rope, the surface of the adhesive insulating coating is protected by fluorine in order to prevent its peeling or destruction. It is preferable to apply an organic coating of a resin or polypropylene.

【0043】一方、上記各例では、連結要素端を基準と
して密着性絶縁被膜の形成範囲Lを60mm以上として規
定しているが、連結要素の連結境界を挟んで上記膜層を
形成する場合、例えば一方の連結要素に対して30mm以
上の長さに渡って、他方の連結要素に対しても30mm以
上の長さに渡って形成し、合計として60mm以上の長さ
範囲になってもよい。したがって、本発明はこの例も含
むものである。
On the other hand, in each of the above examples, the formation range L of the adhesive insulating coating is specified to be 60 mm or more with reference to the end of the connecting element, but when forming the film layer with the connecting boundary of the connecting element sandwiched, For example, one connecting element may be formed over a length of 30 mm or more, and the other connecting element may be formed over a length of 30 mm or more, so that the total length range may be 60 mm or more. Therefore, the present invention also includes this example.

【0044】ただし、上記各例において、連結したとき
に隙間が生じる箇所においては、電食と隙間腐食が重畳
することを考慮すると、最低限腐食環境に曝される図7
〜10中の隙間部21〜26には、前記密着性絶縁被膜
を形成することが必要となる。また、密着性絶縁被膜を
4〜9部に形成するにあたり、連結境界を挟んで前記密
着性絶縁被膜を形成する場合、両膜層が可能な限り連続
するようにすることが望ましいことは、言うまでもな
い。したがって、図1または図2に示すように、金属管
材1,2とカップリング3間に段差がある場合、その段
の壁面にも上記密着性絶縁被膜を形成するのが現実的に
必須となることが多い。
However, in each of the above-mentioned examples, in consideration of the fact that electric corrosion and crevice corrosion overlap at the place where a gap is formed when they are connected, they are exposed to the minimum corrosive environment.
It is necessary to form the adhesive insulating coating in the gaps 21 to 26 in 10 to 10. In addition, when forming the adhesive insulating coating on 4 to 9 parts, it is needless to say that when the adhesive insulating coating is formed with the connecting boundary interposed, it is desirable that both film layers be continuous as much as possible. Yes. Therefore, as shown in FIG. 1 or FIG. 2, when there is a step between the metal pipe materials 1 and 2 and the coupling 3, it is practically necessary to form the adhesive insulating coating on the wall surface of the step. Often.

【0045】以下実施例を示しながら、本発明の数値限
定理由と、本発明の効果を明らかにする。 (実施例1)電食試験においては、図1例の連結構造を
想定して、図3に示されるように上面が裸の低耐食性材
料10と上面が裸の高耐食性材料11との間に、密着性
絶縁被膜13を施した継ぎ材12を直列的に連結させる
とともに、各部相互間をボルト14をもって連結させ電
食状況について調べた。なお、L1,3 共100mmと
し、各部材の側面及び裏面はフッ素被膜を形成した。一
方、隙間腐食試験においては、図4に示されるように、
30mm×30mmで厚さ3mmの板状の低耐食性材料10と
高耐食性材料11とに密着性絶縁被膜13を施したもの
を製作し、両者の密着性絶縁被膜13同士を向かい合わ
せて積層しボルト14により締結し試験に供した。
The reasons for limiting the numerical values of the present invention and the effects of the present invention will be clarified by showing examples below. (Example 1) In the electrolytic corrosion test, assuming the connection structure of the example of FIG. 1, between the low corrosion resistance material 10 having a bare upper surface and the high corrosion resistance material 11 having a bare upper surface, as shown in FIG. The joint material 12 provided with the adhesive insulating coating 13 was connected in series, and each part was connected with a bolt 14 to examine the electrolytic corrosion condition. Both L 1 and L 3 were 100 mm, and the side surface and the back surface of each member were coated with fluorine. On the other hand, in the crevice corrosion test, as shown in FIG.
A plate-shaped low-corrosion-resistant material 10 and high-corrosion-resistant material 11 having a thickness of 30 mm × 30 mm and a thickness of 3 mm is provided with an adhesive insulating coating 13, and the adhesive insulating coatings 13 of both are laminated to face each other and bolted. It fastened by 14 and used for the test.

【0046】また、耐剥離性試験においては、継ぎ材1
2と同材質により、図5に示す形状の引張試験片を製作
した。前記試験片は、全長L4:120mm、中間の小径部
長L5:50mm、両端の太径部がφ1;20mmで、中間の小
径部がφ2:10±0.05mmである。そして、この試験
片全体に前記密着性絶縁被膜を形成し、0.3%の引張
歪を付加して、腐食試験に供し剥離の有無について調べ
た。
Further, in the peeling resistance test, the joint material 1
A tensile test piece having the shape shown in FIG. The test piece has a total length L 4 : 120 mm, an intermediate small diameter portion length L 5 : 50 mm, large diameter portions at both ends of φ 1 ; 20 mm, and an intermediate small diameter portion of φ 2 : 10 ± 0.05 mm. Then, the adhesive insulating coating was formed on the entire test piece, a tensile strain of 0.3% was applied, and the test piece was subjected to a corrosion test to examine the presence or absence of peeling.

【0047】以上の試験に用いられる低耐食性材料10
としては、API-L80 級用の中炭素鋼を用いた。一方、高
耐食性材料11としては、UNSNO.S31803(2相ステンレ
ス)を用いた。また、前記継ぎ材12としてはUNSNO.S3
1803を用い、密着性絶縁被膜を施したものを用いた。
Low corrosion resistance material 10 used in the above test
As the material, medium carbon steel for API-L80 grade was used. On the other hand, as the high corrosion resistance material 11, UNSNO.S31803 (two-phase stainless steel) was used. Further, as the joint material 12, UNSNO.S3 is used.
1803 was used with an adhesive insulating coating.

【0048】密着性絶縁被膜としては、表1に示すよう
に、下地に前述の応力緩和被膜を被覆した後、アモルフ
ァス状のAl2O3 ,Si3N4 ,Ta2O5 ,SiO2,ZrO2をイオン
プレーティング法,あるいはプラズマCVD法により被
覆した。なお、表1においてコーティング条件をも示し
た。
As the adhesive insulating coating, as shown in Table 1, after coating the above-mentioned stress relaxation coating on the underlayer, amorphous Al 2 O 3 , Si 3 N 4 , Ta 2 O 5 , SiO 2 , ZrO 2 was coated by the ion plating method or the plasma CVD method. The coating conditions are also shown in Table 1.

【0049】[0049]

【表1】 [Table 1]

【0050】次に、それぞれの非晶質層の表面層のみを
ガスバーナーで加熱することにより結晶化処理を実施し
た。このとき、比較材として、結晶化処理を行わない非
晶質単独被膜材および結晶質単独被膜材の表面をフッ素
系樹脂でコーティングした材料についても試験した。
Next, crystallization treatment was carried out by heating only the surface layer of each amorphous layer with a gas burner. At this time, as a comparative material, an amorphous single coating material not subjected to crystallization treatment and a material obtained by coating the surface of the crystalline single coating material with a fluorine resin were also tested.

【0051】前記電食,腐食および耐剥離性試験におけ
る腐食環境としては、炭酸ガス環境:1atm CO2 と硫化
水素ガス環境:1atm H2S を用いて、温度60℃、溶液は
5%NaCl、試験時間は720 時間とした。そして密着性絶
縁被膜13を施した継ぎ材12の長さL2 を60mmとし、
その腐食速度および隙間腐食の有無、試験後の被膜厚み
を調べた。以上の試験結果を表2に示す。
As the corrosive environment in the electrolytic corrosion, corrosion and peeling resistance test, carbon dioxide gas environment: 1 atm CO 2 and hydrogen sulfide gas environment: 1 atm H 2 S were used, the temperature was 60 ° C., the solution was 5% NaCl, The test time was 720 hours. The length L 2 of the joint material 12 having the adhesive insulating coating 13 is set to 60 mm,
The corrosion rate, the presence or absence of crevice corrosion, and the film thickness after the test were examined. Table 2 shows the above test results.

【0052】[0052]

【表2】 [Table 2]

【0053】[0053]

【表3】 [Table 3]

【0054】表2からわかるように、本発明例である試
験No1〜3は、引張歪みにより剥離が生じたが、電食防
止効果および隙間腐食防止効果は十分に認められた。ま
た、No4〜9においては、良好な耐食性を有することが
わかった。
As can be seen from Table 2, in Test Nos. 1 to 3 which are examples of the present invention, peeling occurred due to tensile strain, but the electrolytic corrosion preventing effect and the crevice corrosion preventing effect were sufficiently observed. Further, it was found that Nos. 4 to 9 had good corrosion resistance.

【0055】一方、比較例である試験No10〜14にお
いては、良好な電食防止効果と隙間腐食防止効果は認め
られるが、被膜自身の溶出が確認された。また、比較例
であるNo15〜20においては、十分な電食防止効果を示さ
なかった。
On the other hand, in Test Nos. 10 to 14 as comparative examples, good electrolytic corrosion preventing effect and crevice corrosion preventing effect were recognized, but elution of the coating film itself was confirmed. Further, Comparative Examples No. 15 to 20 did not show a sufficient electrolytic corrosion preventing effect.

【0056】[0056]

【発明の効果】以上の通り、本発明によれば、油井等に
おいて異種金属管継手を継ぐ場合に生じる電食を防止で
きるとともに、金属管材に対する密着性と耐食性の両者
に優れたものが得られる。
As described above, according to the present invention, it is possible to prevent electrolytic corrosion that occurs when connecting dissimilar metal pipe joints in oil wells and the like, and to obtain one having both excellent adhesion to metal pipe materials and corrosion resistance. .

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る電食防止を施した油井管およびカ
ップリングの連結部を示す図である。
FIG. 1 is a view showing a coupling portion of an oil country tubular good and a coupling which are subjected to electrolytic corrosion prevention according to the present invention.

【図2】本発明に係わる電食防止を施した油井管の連結
部を示す図である。
FIG. 2 is a view showing a connecting portion of an oil country tubular good having electrolytic corrosion prevention according to the present invention.

【図3】実施例1における耐食性試験の供試体を示す図
である。
FIG. 3 is a view showing a specimen for a corrosion resistance test in Example 1.

【図4】実施例1における隙間腐食試験の供試体を示す
図である。
FIG. 4 is a diagram showing a specimen for a crevice corrosion test in Example 1.

【図5】実施例1における耐剥離性試験の供試体を示す
図である。
FIG. 5 is a view showing a specimen for a peel resistance test in Example 1.

【図6】実施例2における水素脆性試験の供試体を示す
図である。
FIG. 6 is a view showing a specimen for a hydrogen embrittlement test in Example 2.

【図7】図1のA部分の拡大図である。FIG. 7 is an enlarged view of a portion A in FIG.

【図8】図1のB部分の拡大図である。FIG. 8 is an enlarged view of portion B in FIG.

【図9】図2のA部分の拡大図である。FIG. 9 is an enlarged view of a portion A in FIG.

【図10】図2のB部分の拡大図である。FIG. 10 is an enlarged view of portion B in FIG.

【符号の説明】[Explanation of symbols]

1…低耐食性管材、2…高耐食性管材、3…カップリン
グ、4〜9…絶縁性被膜、10…低耐食性材料、11…
高耐食性材料、12…継ぎ材。
1 ... Low corrosion resistance pipe material, 2 ... High corrosion resistance pipe material, 3 ... Coupling, 4-9 ... Insulating film, 10 ... Low corrosion resistance material, 11 ...
High corrosion resistance material, 12 ... Joint material.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】管端部に連結用の螺合ネジ部が形成された
金属管材において:この管材が連結されたとき露出する
内面および外面の少なくとも一方面における前記螺合ネ
ジ部を除く内面端または外面端から60mm以上の範囲
にわたる領域と、連結したとき隙間が生じる前記螺合ネ
ジ部領域との少なくとも一方に;最表層部分が結晶質で
ある非晶質の絶縁性セラミックス層が被覆されているこ
とを特徴とする耐食性に優れた電食防止用絶縁管材。
1. A metal pipe material having a screw thread portion for connection formed on a pipe end portion: an inner surface end of the metal pipe material excluding the screw thread portion on at least one of an inner surface and an outer surface exposed when the pipe material is connected. Alternatively, at least one of a region extending from the outer surface end to a range of 60 mm or more and the screwed screw portion region where a gap is formed when connected is covered with an amorphous insulating ceramic layer whose outermost layer is crystalline. Insulation pipe material with excellent corrosion resistance for preventing electrolytic corrosion.
【請求項2】絶縁性セラミックス層は、比抵抗が108
Ωcm以上であり、厚さ0.4μm以上、被覆率90%
以上100%未満で被覆されている請求項1記載の耐食
性に優れた電食防止用絶縁管材。
2. The insulating ceramic layer has a specific resistance of 10 8
Ωcm or more, thickness 0.4 μm or more, coverage rate 90%
The insulating tubing for preventing electrolytic corrosion, which is excellent in corrosion resistance, according to claim 1, which is coated with 100% or more and less than 100%.
【請求項3】絶縁性セラミックス層との間に、その絶縁
性セラミックス層と管材との中間の膨張係数を有する金
属またはその酸化物,窒化物もしくは炭化物の単層ある
いは複合層を有する請求項1または請求項2記載の耐食
性に優れた電食防止用金属管材。
3. A single layer or a composite layer of a metal or its oxide, nitride or carbide having an expansion coefficient intermediate between that of the insulating ceramic layer and the pipe material is provided between the insulating ceramic layer and the insulating ceramic layer. Alternatively, the metal pipe material for preventing electrolytic corrosion having excellent corrosion resistance according to claim 2.
JP4347193A 1992-01-06 1992-12-25 Insulating pipe material for preventing electrolytic corrosion having excellent corrosion resistance Pending JPH06192809A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP4347193A JPH06192809A (en) 1992-12-25 1992-12-25 Insulating pipe material for preventing electrolytic corrosion having excellent corrosion resistance
US08/002,492 US5660211A (en) 1992-01-06 1993-01-06 Galvanic corrosion resistant insulating pipe having excellent film adhesion
EP93100154A EP0570657B1 (en) 1992-01-06 1993-01-07 corrosion resistant pipe
DE69306466T DE69306466T2 (en) 1992-01-06 1993-01-07 Pipe resistant to corrosion

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4347193A JPH06192809A (en) 1992-12-25 1992-12-25 Insulating pipe material for preventing electrolytic corrosion having excellent corrosion resistance

Publications (1)

Publication Number Publication Date
JPH06192809A true JPH06192809A (en) 1994-07-12

Family

ID=18388556

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4347193A Pending JPH06192809A (en) 1992-01-06 1992-12-25 Insulating pipe material for preventing electrolytic corrosion having excellent corrosion resistance

Country Status (1)

Country Link
JP (1) JPH06192809A (en)

Similar Documents

Publication Publication Date Title
EP0955447B1 (en) Sand control screen with cathodic protection
US7819439B2 (en) Fishtail bore seal
EP0329990B1 (en) Oil-well tubing joints with anti-corrosive coating
US4745977A (en) Method for resisting corrosion in geothermal fluid handling systems
CN106271387A (en) Inside cover the manufacture method of corrosion resisting alloy straight seam welded steel pipe
US5333913A (en) Galvanic isolation device
US5660211A (en) Galvanic corrosion resistant insulating pipe having excellent film adhesion
JPH06192809A (en) Insulating pipe material for preventing electrolytic corrosion having excellent corrosion resistance
Eliassen New concept for cathodic protection of offshore pipelines to reduce hydrogen induced stress cracking (HISC) in high strength 13% Cr stainless steels
JP3146689B2 (en) Insulation tubing for preventing electrolytic corrosion with excellent coating adhesion
JPH06136575A (en) Insulated tube for preventing galvanic corrosion excellent in film adhesion
JPH06136576A (en) Insulated tube for preventing galvanic corrosion excellent in film adhesion
JPH06193781A (en) Insulating tube having excellent close film adhesiveness for preventing electric corrosion
Aberle et al. High performance corrosion resistant stainless steels and nickel alloys for oil & gas applications
JPH05179470A (en) Insulated tubing for stray current corrosion prevention excellent in adhesivity of film
Schutz Guidelines for successful integration of titanium alloy components into subsea production systems
CN104976438B (en) Outer end pipe and its manufacture method for composite metal pipe
JPH04214883A (en) Method for preventing galvanic corrosion of pipe and its insulating pipe
JPH04254594A (en) Method for preventing electric corrosion of pipe and insulating tube prepared thereby
JPH04362389A (en) Pipe joint excellent in film adhesion and crevice corrosion resistance
Shifler et al. Control measures to mitigate galvanic corrosion
EP0016645A1 (en) Welded structures
JPH07127770A (en) High alloy fitting excellent in protection against corrosion, wear resistance and seizure resistance
JPH04362388A (en) Pipe joint excellent in film adhesion crevice corrosion resistance
US20220090708A1 (en) Tubing component having a cladding of fillet weld, and method for producing a tubing component