JP3146689B2 - Insulation tubing for preventing electrolytic corrosion with excellent coating adhesion - Google Patents

Insulation tubing for preventing electrolytic corrosion with excellent coating adhesion

Info

Publication number
JP3146689B2
JP3146689B2 JP28736792A JP28736792A JP3146689B2 JP 3146689 B2 JP3146689 B2 JP 3146689B2 JP 28736792 A JP28736792 A JP 28736792A JP 28736792 A JP28736792 A JP 28736792A JP 3146689 B2 JP3146689 B2 JP 3146689B2
Authority
JP
Japan
Prior art keywords
corrosion
film
resistant
coating
insulating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP28736792A
Other languages
Japanese (ja)
Other versions
JPH06136574A (en
Inventor
信彦 平出
昌克 植田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP28736792A priority Critical patent/JP3146689B2/en
Priority to US08/002,492 priority patent/US5660211A/en
Priority to EP93100154A priority patent/EP0570657B1/en
Priority to DE69306466T priority patent/DE69306466T2/en
Publication of JPH06136574A publication Critical patent/JPH06136574A/en
Application granted granted Critical
Publication of JP3146689B2 publication Critical patent/JP3146689B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Non-Disconnectible Joints And Screw-Threaded Joints (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)
  • Preventing Corrosion Or Incrustation Of Metals (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、一般の管、特に油井管
の配管にあたり、異種金属の管材を継ぐ場合に生ずる電
食および隙間腐食を防止すると共に、被覆される膜材の
密着性を高めた電食防止用絶縁管材に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to pipes of general pipes, especially oil well pipes, which prevents electric corrosion and crevice corrosion which occur when connecting pipes of different metals, and reduces the adhesiveness of the film material to be coated. The present invention relates to an improved insulating tubing for preventing electrolytic corrosion.

【0002】[0002]

【従来の技術】油井における金属管には様々なものがあ
る。原油や天然ガスを地下の産出層から地上に運搬する
ためのチュービング、掘られた井戸の保護のために前記
チュービングの周囲に設けられるケーシング、油層の圧
力上昇を図るために配管されるスチームインジェクショ
ンパイプおよび石油二次回収用のCO2 配管等である。
2. Description of the Related Art There are various types of metal pipes in oil wells. Tubing for transporting crude oil and natural gas from underground production layers to the ground, casings provided around the tubing for protection of dug wells, steam injection pipes plumbed to increase the pressure of the oil layer And CO 2 piping for secondary oil recovery.

【0003】油井においては、これらの油井用金属管材
が原油や天然ガスの採取、生産のために地盤の表面に垂
直、あるいは垂直に近い角度で地下数千メートルに及ん
で配管される。なお、本明細書では、これらの管すべて
を油井管と称する。
[0003] In oil wells, these metal pipes for oil wells are plumbed several thousand meters underground at an angle perpendicular or nearly perpendicular to the surface of the ground for the extraction and production of crude oil and natural gas. In the present specification, all of these pipes are referred to as oil country tubular goods.

【0004】一般に、油井においては、深い場所では温
度が高いために腐食性が大きく、逆に浅い場所では温度
が低いために腐食性が小さい。よって、経済性を考慮し
て井戸の深い部分には、たとえば各種ステンレス鋼、N
i基合金、Ti、Ti合金等の高耐食性金属管材を使用
し、浅い部分には、たとえば炭素鋼、低合金金属等の低
耐食性金属管材を使用することが多い。
[0004] Generally, in an oil well, corrosiveness is high in a deep place due to high temperature, and conversely, it is low in a shallow place because the temperature is low. Therefore, in consideration of economy, the deep part of the well is made of, for example, various kinds of stainless steel, N
In many cases, a highly corrosion-resistant metal tube such as an i-base alloy, Ti, or a Ti alloy is used, and a low-corrosion-resistant metal tube such as carbon steel or a low-alloy metal is used in a shallow portion.

【0005】したがって、当然低耐食性金属管材と高耐
食性金属管材との連結部が生じるが、前記耐食性金属管
材と高耐食性金属管材とを単純連結した場合、異種金属
材料の接触により電位差が生じ、いわゆるガルバニック
腐食(電食)が発生する。このガルバニック腐食によっ
て、低耐食金属管材側では、たとえば通常の炭素鋼管材
単独の腐食に比べて、2〜10倍の速度で腐食が進行す
るものであった。一方、高耐食性金属管材側では、水素
が発生し、この水素が内部に進入して、水素脆性を生じ
るものであった。さらに、継手部の隙間では、隙間腐食
が生じ、電食によって腐食が促進されるものであった。
[0005] Therefore, a connection portion between the low-corrosion-resistant metal tube and the high-corrosion-resistant metal tube naturally occurs, but when the corrosion-resistant metal tube and the high-corrosion-resistant metal tube are simply connected, a potential difference is generated due to contact between different kinds of metal materials. Galvanic corrosion (electrolytic corrosion) occurs. Due to this galvanic corrosion, the corrosion proceeds on the low corrosion resistant metal pipe side at a rate of 2 to 10 times as fast as the corrosion of ordinary carbon steel pipe alone. On the other hand, hydrogen was generated on the high corrosion-resistant metal tube side, and this hydrogen entered into the inside to cause hydrogen embrittlement. Furthermore, crevice corrosion occurs in the gap between the joints, and the corrosion is promoted by electric corrosion.

【0006】これらの問題に対して、現状においては、
低耐食性金属管材と高耐食性金属管材とを直接連結せ
ず、耐食性が前記低耐食性金属管材と高耐食性金属管材
との中間にある2相ステンレス鋼等の金属管材を介在さ
せて腐食防止を図っている。しかしながら、たとえ中間
金属管材を介在させた場合でも、部材相互間の電食およ
び隙間腐食を完全に防止することは不可能であり、腐食
速度を若干緩和させるに過ぎないものであった。
In response to these problems, at present,
Do not directly connect the low-corrosion-resistant metal tube and the high-corrosion-resistant metal tube, and try to prevent corrosion by interposing a metal tube such as duplex stainless steel whose corrosion resistance is between the low-corrosion-resistant metal tube and the high-corrosion-resistant metal tube. I have. However, even when an intermediate metal pipe is interposed, it is impossible to completely prevent electrolytic corrosion and crevice corrosion between members, and the corrosion rate is only slightly reduced.

【0007】他方、管材同士をネジ継手構造により連結
する際に、完全に密封してシールすることは、事実上不
可能なことであり、不可避的に一方腐食環境に開いた隙
間が存在することとなる。ネジ継手構造部分に上記隙間
が存在すると、この隙間部では液体の流動がほとんどな
いため、鉄等の金属が腐食されて生じた水素イオン等が
高濃度で溜まりやすく、pHが非常に低下し、母材より
も激しい腐食が生じる。すなわち、隙間腐食は母材部の
腐食環境より弱い環境下でも発生することとなる。この
隙間腐食が生じると、応力腐食割れに発展する危険があ
ると共に、シール面を侵食することにより継手として重
要機能であるシール性を損なう結果となるものであっ
た。
[0007] On the other hand, it is practically impossible to completely seal and seal the pipe members when they are connected to each other by the threaded joint structure. Inevitably, there is a gap open in a corrosive environment. Becomes If the above gap exists in the threaded joint structure, since there is almost no flow of liquid in this gap, hydrogen ions and the like generated by corrosion of metals such as iron easily accumulate at a high concentration, and the pH is extremely lowered, More severe corrosion occurs than the base metal. In other words, crevice corrosion occurs even under an environment that is weaker than the corrosion environment of the base material. When this crevice corrosion occurs, there is a danger of developing into stress corrosion cracking, and erosion of the seal surface results in impairing the sealability, which is an important function as a joint.

【0008】上記問題を解決するため、たとえば特開平
1−199088号公報においては、重量%でCrを
7.5%以上含有する同一材質の油井管のネジ継手部分
に1〜100μmの非金属層を被覆することにより、腐
食環境から遮断し、隙間腐食を防止する継手を提案して
いる。
In order to solve the above problem, for example, Japanese Patent Application Laid-Open No. Hei 1-1199088 discloses a non-metallic layer of 1 to 100 μm in a threaded joint portion of an oil country tubular good of the same material containing 7.5% or more by weight of Cr. A joint that shields from corrosive environment and prevents crevice corrosion by covering the surface is proposed.

【0009】[0009]

【発明が解決しようとする課題】しかし上記公報におけ
る技術に従って非金属層を被覆すると、次のような不都
合が生じる。つまり、被覆する非金属層を、導体と絶縁
物とに分けて考えると、導体により被覆したとしても、
全く貫通孔の存在しない無欠陥の被膜形成は事実上不可
能で、通常かなり多量の貫通孔が生成されるので、その
被膜欠陥部の腐食が促進されることを阻止できない。一
方、絶縁物で被覆した場合でも、その被覆の被覆率次第
ではやはり隙間腐食が生じ、いずれにしても上記公報技
術では隙間腐食を十分に防止できないものであった。
However, when the non-metal layer is coated according to the technique disclosed in the above publication, the following inconvenience occurs. In other words, considering that the non-metal layer to be covered is divided into a conductor and an insulator, even if it is covered with a conductor,
It is virtually impossible to form a defect-free film without any through-holes, and since a considerable amount of through-holes is usually generated, it is impossible to prevent the corrosion of the film defects from being accelerated. On the other hand, even in the case of coating with an insulating material, crevice corrosion still occurs depending on the coverage of the coating, and in any case, the above gazette technology cannot sufficiently prevent crevice corrosion.

【0010】かかる被膜欠陥部を減少させるには被膜の
厚みを大きくして貫通孔数を減少させればよいとも考え
られるが、被膜厚みの増大は母材への密着性の低下を招
き、継手締結時に、母材と被膜とのヤング率の相違に起
因する剪断応力等により被膜が剥離する恐れのあるもの
である。
It is considered that the number of through-holes may be reduced by increasing the thickness of the coating in order to reduce such defective coatings. However, an increase in the thickness of the coating causes a decrease in adhesion to the base material, and At the time of fastening, the coating may be peeled off due to shear stress or the like caused by a difference in Young's modulus between the base material and the coating.

【0011】したがって、本発明の目的は、油井等にお
いて異種金属管材を継ぐ場合に生じる電食及び隙間腐食
を防止するとともに、前記金属管材に対する密着性に優
れた電食防止用絶縁管材を提供することにある。
[0011] Accordingly, an object of the present invention is to provide an insulating tube for preventing electrolytic corrosion which is excellent in adhesion to the metal tube while preventing electrolytic corrosion and crevice corrosion occurring when connecting different types of metal tubes in an oil well or the like. It is in.

【0012】[0012]

【課題を解決するための手段】上記目的は、管端部に連
結用の螺合ネジ部が形成され、Cr量が13wt%以上、
かつNi量が20wt%以上のステンレス鋼あるいはNi
基合金管材において、前記管材が連結されたとき露出す
る内面および外面の少なくとも一方面における前記螺合
ネジ部を除く内面端または外面端から60mm以上の範
囲にわたって、ならびに連結したとき隙間が生じる前記
螺合ネジ部分に、Crもしくはその酸化物,窒化物,炭
化物、Niもしくはその酸化物の単層あるいは複合層を
形成した後、この上層に厚さ0.4μm以上でかつ比抵
抗が108 Ωcm以上の絶縁性無機化合物被膜を被覆率
90%以上100%未満で形成したことで達成できる。
さらに、この場合において、好ましくは前記絶縁性無機
化合物被膜の表面にその絶縁性無機化合物被膜保護用の
合成樹脂被膜が積層される。
SUMMARY OF THE INVENTION The object of the present invention is to form a screw thread for connection at the end of a pipe, and to have a Cr content of 13% by weight or more.
Stainless steel or Ni having a Ni content of 20 wt% or more
In the base alloy pipe material, the screw which forms a gap over a range of 60 mm or more from the inner surface end or outer surface end excluding the screwed screw portion on at least one of the inner surface and the outer surface exposed when the tube material is connected, and when the tube material is connected. After forming a single layer or a composite layer of Cr or its oxides, nitrides, carbides, Ni or its oxides on the combined screw portion, the upper layer has a thickness of 0.4 μm or more and a specific resistance of 10 8 Ωcm or more. Can be achieved by forming the insulating inorganic compound coating of the above at a coverage of 90% or more and less than 100%.
Further, in this case, a synthetic resin film for protecting the insulating inorganic compound film is preferably laminated on the surface of the insulating inorganic compound film.

【0013】ここで、前記絶縁性被膜の下層として用い
られるCrもしくはその酸化物,窒化物,炭化物、Ni
もしくはその酸化物は、前記Cr量が13%以上、Ni
量が20%以上のステンレス鋼,Ni基合金管材あるい
はその表面被膜の組成と似ているため、相互の密着性向
上に寄与できることを、本発明者らは知見した。
Here, Cr or its oxide, nitride, carbide, Ni used as a lower layer of the insulating film is used.
Alternatively, the oxide thereof may have a content of Cr of 13% or more and Ni
The present inventors have found that since the content is similar to the composition of the stainless steel or the Ni-based alloy tube or the surface coating of 20% or more, it can contribute to the improvement of mutual adhesion.

【0014】そこで本発明者等は、この層を前記管材と
絶縁性被膜と中間に形成することにより、油井環境にお
ける応力下での耐剥離性に優れることを見い出した。さ
らに、前記Crもしくはその酸化物,窒化物,炭化物層
を多層化あるいは異種金属化合物層を複合化(本発明に
おいては、これらの多層化と複合化を総称して複合層と
言う)しても同等、あるいはそれ以上の油井環境におけ
る応力下での耐剥離性に優れることを見い出した。
Therefore, the present inventors have found that by forming this layer between the above-mentioned tube material and the insulating film, the layer has excellent resistance to peeling under stress in an oil well environment. Further, the Cr or its oxide, nitride, and carbide layers may be multi-layered or different metal compound layers may be composited (in the present invention, these multi-layers and composites are collectively referred to as composite layers). It has been found that it has excellent resistance to delamination under stress in an oil well environment of equal or higher level.

【0015】前記絶縁性被膜としては、比抵抗が108
Ωcm以上のAl2O3,Si3N4,Ta2O5,SiO2,AlN,BN を想定し
ており、使用する膜種の選定においては使用される環境
に応じて決定されることが望ましい。
The insulating film has a specific resistance of 10 8.
Ωcm or more Al 2 O 3, Si 3 N 4, Ta 2 O 5, SiO 2, AlN, assumes the BN, be determined in accordance with the environment used in the film type selection to be used desirable.

【0016】前記Crもしくはその酸化物,窒化物,炭
化物、Niもしくはその酸化物層と絶縁性無機化合物被
膜との合計膜厚は、100μm以内とするのが望まし
い。合計膜厚が100μmを超えると、ネジ部形成部お
よびシール部の寸法精度に悪影響を及ぼすおそれがある
とともに、膜の内部応力等による剥離が懸念されるため
である。前記Crもしくはその酸化物,窒化物,炭化
物、Niもしくはその酸化物は、前記管材と絶縁性無機
化合物被膜との間の密着性向上を目的とするもので、前
記絶縁性無機化合物被膜より薄いことが望まれる。好適
に選定されるCrもしくはその酸化物,窒化物,炭化
物、Niもしくはその酸化物層の合計膜厚としては、
0.1μm〜5μmの範囲とされる。膜厚が0.1μm
未満では、その効果がほとんど得られず、5μmを超え
るとその効果はほとんど消失するからである。
The total film thickness of the Cr or its oxide, nitride, carbide, Ni or its oxide layer and the insulating inorganic compound film is desirably 100 μm or less. If the total thickness exceeds 100 μm, the dimensional accuracy of the threaded portion and the seal portion may be adversely affected, and peeling due to internal stress of the film may be caused. The Cr or its oxide, nitride, carbide, Ni or its oxide is intended to improve the adhesion between the tube and the insulating inorganic compound film, and is thinner than the insulating inorganic compound film. Is desired. The preferred total thickness of Cr or its oxide, nitride, carbide, Ni or its oxide layer is
The range is from 0.1 μm to 5 μm. Thickness 0.1μm
If it is less than 5, the effect is hardly obtained, and if it exceeds 5 μm, the effect is almost lost.

【0017】一方、前記被覆率は、電気化学的方法によ
り決定される。すなわち、母材のみが溶解しうるような
液中において、定電位分極によりその電流をモニター
し、 被覆率(%)=〔(被覆のない母材の電流密度)−(被
覆のある母材の電流密度)〕/(被覆のない電流密度)
×100 により定義される値とされる。
On the other hand, the coverage is determined by an electrochemical method. That is, in a liquid in which only the base material can be dissolved, the current is monitored by constant potential polarization, and the coverage (%) = [(current density of base material without coating) − (base material with coating) Current density)] / (current density without coating)
× 100.

【0018】なお、本発明において、管としては油井管
にのみ限定されることはなく、例えば海水および土壌運
搬用パイプライン、プラント用パイプライン等におい
て、異種金属を継ぐ場合にも適用しうる。
In the present invention, the pipe is not limited to an oil well pipe, and may be applied to a case where different kinds of metals are connected in, for example, a pipeline for transporting seawater and soil, a pipeline for a plant, and the like.

【0019】[0019]

【作用】異種金属が接触した場合に生じるガルバニック
腐食は、腐食しにくい金属がカソード(陰極)となり、
腐食し易い金属をアノード(陽極)として、アノード側
の反応が促進されることに起因する。すなわち、異種金
属間の電位によりボルタ電池が組み立てられるためであ
る。したがって、電食を防止するためには、異種金属間
に絶縁性無機化合物被膜を被覆して、その相互の距離を
離して液間抵抗を大きくすることにより、腐食電流が流
れないようにしてやればよいことを本発明者等は知見
し、かつこの態様が実際に有効であることを確認した。
ここで、本発明で用いる絶縁性無機化合物の比抵抗を1
8 Ωcm以上と規定するのは、一般に完全な絶縁性が
得られるのは、比抵抗が108 Ωcm以上の場合であ
り、比抵抗が108 Ωcm未満の場合には半導電性とな
り、この半導電性被膜では導電性被膜の場合と同様に、
低耐食性管材との間で電食が生じる危険性が極めて大き
いからである。また、絶縁性無機化合物被膜の被覆率と
被覆領域の大きさにより、電食防止効果の発現の有無が
決定されるが、この点は以下の実施例により明らかにす
る。さらに、被覆率を100%未満としたのは、現状で
は、ピンホール欠陥(母材まで貫通している膜の欠陥)
のない膜をコーティングすることが困難であることが知
られているためである。
[Action] Galvanic corrosion that occurs when dissimilar metals come into contact is as follows.
This is because the reaction on the anode side is promoted by using a readily corrosive metal as an anode. That is, the voltaic battery is assembled by the potential between different metals. Therefore, in order to prevent electrolytic corrosion, it is necessary to cover the insulating inorganic compound film between different metals and increase the inter-liquid resistance by increasing the distance between them to prevent corrosion current from flowing. The present inventors have found that this is good, and have confirmed that this embodiment is actually effective.
Here, the specific resistance of the insulating inorganic compound used in the present invention is 1
0 8 [Omega] cm to define the above, the generally complete insulation is obtained, a case specific resistance of more than 10 8 [Omega] cm, when the specific resistance is less than 10 8 [Omega] cm becomes semiconductive, this In the case of a semiconductive film, as in the case of a conductive film,
This is because there is an extremely high risk of electrolytic corrosion occurring with the low corrosion resistant pipe. The presence or absence of the electrolytic corrosion prevention effect is determined by the coverage of the insulating inorganic compound film and the size of the coating region. This will be clarified by the following examples. Further, the reason why the coverage is set to less than 100% is that pinhole defects (defects of the film penetrating to the base material) at present.
This is because it is known that it is difficult to coat a film having no particles.

【0020】一方、隙間腐食は、腐食により生じた金属
イオン及び水素イオン,塩素イオン等が隙間部に溜ま
り、pHが非常に低下し、著しい腐食が起きる現象であ
る。通常、油井管はネジ継手を用いて連結されるが、図
1および図2におけるネジ部20の内面と外面の連結境
界A,B部分に示すように隙間が存在し、ここに隙間腐
食が生じる。さらに、この隙間腐食は電食により促進さ
れる。
On the other hand, crevice corrosion is a phenomenon in which metal ions, hydrogen ions, chlorine ions, and the like generated by corrosion accumulate in gaps, causing a significant drop in pH and significant corrosion. Normally, the oil country tubular goods are connected using a threaded joint, but there are gaps as shown at the connection boundaries A and B between the inner surface and the outer surface of the threaded portion 20 in FIGS. 1 and 2, where crevice corrosion occurs. . Furthermore, this crevice corrosion is promoted by electrolytic corrosion.

【0021】そこで本発明者等は、この隙間部に絶縁性
被膜を被覆することにより、隙間腐食を防止できること
を知見し、かつこの態様が実際に有効であることを確認
した。また、上記手段により電食および隙間腐食を防止
すると、高耐食性管材側の水素の進入が抑えられ、水素
脆性の防止にも有効である。
The present inventors have found that crevice corrosion can be prevented by coating the gap with an insulating film, and have confirmed that this embodiment is actually effective. Further, when the electrolytic corrosion and crevice corrosion are prevented by the above means, the intrusion of hydrogen on the high corrosion resistant tube side is suppressed, which is also effective in preventing hydrogen embrittlement.

【0022】さらに、以上の電食及び隙間腐食防止法に
おいて用いられる絶縁性無機化合物被膜と、Cr量が1
3wt%以上、Ni量が20wt%以上のステンレス鋼ある
いはNi基合金管材の間にCrもしくはその酸化物,窒
化物,炭化物、Niもしくはその酸化物の単層あるいは
複合層を形成することにより、特に応力下にある油井環
境において絶縁性無機化合物被膜の耐剥離性向上に有効
である。
Further, an insulating inorganic compound film used in the above-described method for preventing electrolytic corrosion and crevice corrosion, and a Cr content of 1
By forming a single layer or a composite layer of Cr or its oxides, nitrides, carbides, Ni or its oxides between stainless steel or Ni-based alloy tubing having a Ni content of 3 wt% or more and a Ni content of 20 wt% or more, It is effective for improving the peeling resistance of the insulating inorganic compound film in an oil well environment under stress.

【0023】前記、下層に形成されるCrもしくはその
酸化物,窒化物,炭化物、Niもしくはその酸化物層、
上層に形成されるAl2O3,Si3N4,Ta2O5, SiO2,AlN,BN絶縁
体層を形成する手法には、イオン(プラズマ)を用いた
酸化,窒化,浸炭処理,イオンプレーティング,スパッ
タリング,プラズマCVD,熱CVD,MO(MetalOrg
anic )−CVD,溶射といった方法が採られ、適宜そ
の物質にあった手法を選択すればよい。ただ、このうち
下層に形成されるCrの酸化物,窒化物,炭化物層につ
いては、イオン(プラズマ)を用いた酸化,窒化,浸炭
処理は、Cr量が13wt%、Ni量が20wt%以上のス
テンレス鋼、Ni基合金からのCr拡散が優先的に起こ
し、Crの酸化物,窒化物あるいは浸炭層からなる拡散
層が形成されるので、密着性向上には有効な手法であ
る。
The Cr or its oxide, nitride, carbide, Ni or its oxide layer formed in the lower layer,
Al 2 O 3 formed on the upper layer, Si 3 N 4, Ta 2 O 5, SiO 2, AlN, the method for forming a BN insulator layer, oxidation using an ion (plasma), nitriding, carburizing, Ion plating, sputtering, plasma CVD, thermal CVD, MO (MetalOrg)
anic)-A method such as CVD or thermal spraying is adopted, and a method suitable for the substance may be appropriately selected. However, among the oxide, nitride, and carbide layers of Cr formed in the lower layer, the oxidation, nitridation, and carburization treatments using ions (plasma) have a Cr content of 13 wt% and a Ni content of 20 wt% or more. This is an effective method for improving adhesion since Cr diffusion from stainless steel or Ni-based alloy occurs preferentially and a diffusion layer composed of an oxide, nitride or carburized layer of Cr is formed.

【0024】[0024]

【実施例】以下、本発明を主に油井管に適用した場合の
具体例について詳説する。図1および図2は本発明に係
わる絶縁性被膜、より具体的に絶縁性無機化合物被膜を
施した油井管の連結部を示す図である。図1はカップリ
ングを使用連結型の場合について示し、図2は直接連結
型の場合について示す。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, a specific example in which the present invention is mainly applied to an oil country tubular good will be described in detail. FIGS. 1 and 2 are views showing a connecting portion of an oil country tubular good coated with an insulating coating according to the present invention, more specifically, an insulating inorganic compound coating. FIG. 1 shows the case of a coupling type using a coupling, and FIG. 2 shows the case of a direct coupling type.

【0025】図1において、前記低耐食性管体1と高耐
食性管体2は、カップリング3をもって螺合連結されて
いる。これらは本発明に言う連結要素を構成する。な
お、前記カップリング3は、通常高耐食性管材2と同材
質か、実質的同材質のもので制作される。
In FIG. 1, the low corrosion resistant tube 1 and the high corrosion resistant tube 2 are screwed together with a coupling 3. These constitute the connecting element referred to in the present invention. The coupling 3 is usually made of the same material or substantially the same material as the highly corrosion-resistant tubing 2.

【0026】本具体例においては、前記低耐食性管材1
の管材の内外面においてネジ部20を除く管端から60
mm以上の範囲に(符号Lで示す範囲、以下同じ)に渡
って、ならびにネジ部20の連結境界A,B部(図7に
A部分、図8にB部分をそれぞれ模式拡大して示す)に
対して、本発明に係わる下層にCr層もしくはその酸化
物,窒化物,炭化物、Niもしくはその酸化物層からな
る層とこの上層に積層された絶縁性無機化合物被膜から
なる層(以下、この多層膜を密着性絶縁被膜と言う)が
4,5,21,22部に形成されている。カップリング
3においては、管材内外面のネジ部20のA,B部分を
含む全域に渡って、密着性絶縁被膜が符号6,7,2
3,24部に形成されている。
In this specific example, the low corrosion resistant tubing 1
60 mm from the pipe end except for the thread 20 on the inner and outer surfaces of the pipe material
mm or more (the range indicated by the symbol L, the same applies hereinafter), and the connection boundaries A and B of the screw portion 20 (A portion in FIG. 7 and B portion in FIG. 8 are schematically enlarged). On the other hand, a lower layer according to the present invention comprises a Cr layer or a layer composed of oxides, nitrides, carbides, Ni or oxides thereof, and a layer composed of an insulating inorganic compound film laminated on the upper layer (hereinafter referred to as the The multilayer film is referred to as an adhesive insulating film) at 4, 5, 21, and 22 parts. In the coupling 3, the adhesive insulating coatings are denoted by reference numerals 6, 7, 2 over the entire area including the A and B portions of the threaded portion 20 on the inner and outer surfaces of the tube.
3, 24 parts.

【0027】一方、前記高耐食性管材2においても前記
低耐食性管材1と同様に管材の内外面においてネジ部2
0を除く管端部から60mm以上の範囲に渡って、ネジ
部20の連結境界A,B部に対して、本発明に係わる密
着性絶縁被膜が符号8,9,21,22部に形成されて
いる。
On the other hand, in the high corrosion resistant tubing 2 as well, similarly to the low corrosion resistant tubing 1, the screw portion 2 is formed on the inner and outer surfaces of the tube.
The adhesive insulating coating according to the present invention is formed on portions 8, 9, 21, and 22 of the connection boundaries A and B of the screw portion 20 over a range of 60 mm or more from the pipe end excluding 0. ing.

【0028】なお、前記具体例の場合には、低耐食性管
材1、高耐食性管材2およびカップリング3の全てに対
して、密着性絶縁被膜を4〜9および21〜26部に形
成させたが、電食防止の観点から見る場合には、低耐食
性管材1、高耐食性管材2及びカップリング3のいずれ
か1つまたは2つに前記密着性絶縁被膜を形成させても
よく、カップリング3の6,7部に形成させるのが望ま
しい。要するに、前記密着性絶縁被膜の適用箇所及びそ
の組合せは、用途や予想される腐食の程度により適宜選
定できる。
In the case of the above-mentioned specific example, the adhesive insulating coatings were formed on all of the low-corrosion-resistant tubing 1, the high-corrosion-resistant tubing 2 and the coupling 3 in 4 to 9 and 21 to 26 parts. From the viewpoint of preventing electrolytic corrosion, the adhesive insulating coating may be formed on any one or two of the low-corrosion-resistant tubing 1, the high-corrosion-resistant tubing 2, and the coupling 3. It is desirable to form it in 6 or 7 parts. In short, the application site of the adhesive insulating coating and the combination thereof can be appropriately selected depending on the application and the expected degree of corrosion.

【0029】一方、図2の場合には、低耐食性管材1と
高耐食性管材2とがカップリングを用いることなく直接
螺合連結されている。図2具体例の場合も図1具体例と
同様に、低耐食性管材1の管材の内外面においてネジ部
20を除く管端から60mmの範囲に渡って、ならびに
ネジ部20の連結境界A,B部分(図9にA部分、図1
0にB部分を模式拡大して示す)に対して、本発明に係
わる密着性絶縁被膜が4,5,21,22部に形成され
ている。また、高耐食性管材2においても、前記低耐食
性管材1と同様に管材の内外面において前記ネジ部20
を除く管端部から60mm以上の範囲に渡って、ならび
にネジ部20の連結境界A,B部分に対して、前記密着
性絶縁被膜が符号8,9,25,26部に形成されてい
る。
On the other hand, in the case of FIG. 2, the low corrosion resistant tube 1 and the high corrosion resistant tube 2 are directly screwed together without using a coupling. In the case of the specific example of FIG. 2 as well as the specific example of FIG. Portion (portion A in FIG. 9, FIG. 1
(Part B is schematically enlarged to 0), and the adhesive insulating coating according to the present invention is formed in 4, 5, 21 and 22 parts. Also, in the high corrosion resistant tubing 2, similarly to the low corrosion resistant tubing 1, the screw portion 20 is formed on the inner and outer surfaces of the tube.
The adhesive insulating coatings are formed at portions 8, 9, 25, and 26 over a range of 60 mm or more from the end of the pipe except for the portion along the connection boundaries A and B of the screw portion 20.

【0030】図2の具体例の場合も図1と同様に低耐食
性管材1及び高耐食性管材2の両方に対して、すなわち
密着性絶縁被膜を符号4,5,8,9,21,22,2
5,26部に形成させたが、電食防止の観点からは、高
耐食性管材2側の8,9部のみとすることもできる。な
お、図1及び図2において、4部にも前記密着性絶縁被
膜を形成する場合には、その下層のCrもしくはその酸
化物,窒化物,炭化物、Niもしくはその酸化物層が導
電性膜である場合には、この膜と、低耐食性管材1との
間で電食が危惧される。その場合には、上層の絶縁性膜
の被覆領域を下層より長くすればよい。
In the specific example of FIG. 2, as in FIG. 1, the low-corrosion-resistant tube 1 and the high-corrosion-resistant tube 2 are coated with the adhesive insulating coatings 4, 5, 8, 9, 21, 22, and 22, respectively. 2
Although formed in 5, 26 parts, from the viewpoint of preventing electrolytic corrosion, it is also possible to use only 8, 9 parts on the high corrosion resistant tube 2 side. In FIGS. 1 and 2, when the above-mentioned adhesive insulating film is formed also in four parts, the underlying Cr or its oxide, nitride, carbide, Ni or its oxide layer is a conductive film. In some cases, there is a fear that electrolytic corrosion will occur between this film and the low corrosion resistant tubing 1. In that case, the covering region of the upper insulating film may be longer than the lower layer.

【0031】また、密着性絶縁被膜を施す面は、前記2
つの具体例の場合には管材1,2の内外面の両方とした
が、必ずしも内外面の両方に施す必要はなく、最低限油
井において腐食環境に曝される面のみでよい。具体的に
は、チュービングの場合には内外面の両方、ケーシング
の場合には内面のみとすることができる。
Further, the surface on which the adhesive insulating film is to be provided
In the case of one specific example, both the inner and outer surfaces of the pipe materials 1 and 2 are used. However, it is not always necessary to apply both to the inner and outer surfaces, and at least the surface exposed to the corrosive environment in the oil well may be used. Specifically, in the case of tubing, both inner and outer surfaces can be used, and in the case of a casing, only the inner surface can be used.

【0032】ところで、ワイヤーロープを用いて吊り下
げ搬送操作により管材1,2の表面に傷がつけられるお
それのある場合には、絶縁性無機化合物被膜の表面にそ
の剥離や破壊防止のためために、フッ素系樹脂あるいは
ポリプロピレン系等の有機被膜を施すのが好ましい。
When there is a possibility that the surfaces of the tubular members 1 and 2 may be damaged by the hanging and transporting operation using a wire rope, the surface of the insulating inorganic compound film is prevented from being peeled or broken. It is preferable to apply an organic coating such as a fluorine resin or a polypropylene resin.

【0033】一方、上記各例では、連結要素端を基準と
して密着性被膜を形成範囲Lを60mm以上として規定
しているが、連結要素の連結境界を挟んで上記膜層を形
成する場合、例えば一方の連結要素に対して30mm以
上の長さに渡って、他方の連結要素に対しても30mm
以上の長さに渡って形成し、合計として60mm以上の
長さ範囲になってもよい。
On the other hand, in each of the above examples, the forming range L of the adhesive film is defined as 60 mm or more based on the end of the connecting element. However, when the film layer is formed across the connecting boundary of the connecting element, for example, Over a length of 30 mm or more for one connecting element, 30 mm for the other connecting element
It may be formed over the above length, and the total length may be 60 mm or more.

【0034】ただし、上記各例において、連結したとき
に隙間が生じる箇所においては、電食と隙間腐食が重畳
することを考慮すると、最低限腐食環境に曝される図7
〜10中の隙間部21〜26には、前記密着性絶縁被膜
を形成することが必要となる。また、密着性絶縁被膜を
4〜9部に形成するにあたり、連結境界を挟んで前記密
着性絶縁被膜を形成する場合、両膜層が可能な限り連続
するようにすることが望ましいことは、言うまでもな
い。したがって、図1または図2に示すように、金属管
材1,2とカップリング3間に段差がある場合、その段
の壁面にも上記密着性絶縁被膜を形成するのが現実的に
必須となることが多い。
However, in each of the above-mentioned examples, considering that the electrolytic corrosion and the crevice corrosion are superimposed at the places where the gaps are formed when they are connected, FIG.
It is necessary to form the above-mentioned adhesive insulating coating in the gaps 21 to 26 in the range from 10 to 10. In forming the adhesive insulating coating in 4 to 9 parts, it is needless to say that when the adhesive insulating coating is formed across the connection boundary, it is desirable that both film layers be as continuous as possible. No. Therefore, as shown in FIG. 1 or FIG. 2, when there is a step between the metal pipes 1 and 2 and the coupling 3, it is practically essential to form the adhesive insulating film on the wall surface of the step. Often.

【0035】以下実施例を示しながら、本発明の数値限
定理由と、本発明の効果を明らかにする。 (実施例1)電食試験においては、図1例の連結構造を
想定して、図3に示されるように上面が裸の低耐食性材
料10と上面が裸の高耐食性材料11との間に、密着性
絶縁被膜13を施した継ぎ材12を直列的に連結させる
とともに、各部相互間をボルト14をもって連結させ電
食状況について調べた。なお、L1,3 共100mmと
し、各部材の側面及び裏面はフッ素被膜を形成した。一
方、隙間腐食試験においては、図4に示されるように、
30mm×30mmで厚さ3mmの板状の低耐食性材料
10と高耐食性材料11とに密着性絶縁被膜13を施し
たものを製作し、両者の密着性絶縁被膜13同士を向か
い合わせて積層しボルト14により締結し試験に供し
た。
The reasons for limiting the numerical values of the present invention and the effects of the present invention will be clarified with reference to the following examples. (Embodiment 1) In the electrolytic corrosion test, assuming the connection structure of the example of FIG. 1, as shown in FIG. 3, between the low-corrosion-resistant material 10 having a bare upper surface and the high-corrosion-resistant material 11 having a bare upper surface as shown in FIG. The joining material 12 provided with the adhesive insulating coating 13 was connected in series, and the respective parts were connected with bolts 14 to examine the state of electrolytic corrosion. Incidentally, the L 1, L 3 both 100 mm, sides and back of each member to form a fluorine coating. On the other hand, in the crevice corrosion test, as shown in FIG.
A 30 mm × 30 mm, 3 mm-thick plate-shaped low corrosion-resistant material 10 and a high corrosion-resistant material 11 each having an adhesive insulating film 13 formed thereon, and the two adhesive insulating films 13 are laminated with the adhesive insulating films 13 facing each other. No. 14 was used for the test.

【0036】また、耐剥離性試験においては、継ぎ材1
2と同材質により、図5に示す形状の引張試験片を製作
した。前記試験片は、全長L4:120mm、中間の小径
部長L5:50mm、両端の太径部がφ1;20mmで、中
間の小径部がφ2:10±0.05mmである。そして、
この試験片全体に前記密着性絶縁被膜を形成し、0.3
%の引張歪を付加して、腐食試験に供し剥離の有無につ
いて調べた。
In the peeling resistance test, the joint material 1
A tensile test piece having the shape shown in FIG. The test strip has an overall length L 4: 120 mm, intermediate diameter Director L 5: 50 mm, the large-diameter portion is phi 1 at both ends; at 20 mm, 2 small diameter portion of the intermediate phi: a 10 ± 0.05 mm. And
The adhesive insulating film was formed on the entire test piece,
% Tensile strain was applied and subjected to a corrosion test to examine the presence or absence of peeling.

【0037】以上の試験に用いられる低耐食性材料10
としては、API-L80 級用の中炭素鋼を用いた。一方、高
耐食性材料11としては、UNSNO.N08825(22Cr-42Ni-3M
o) とUNSNO.N10276(16Cr-56Ni-16Mo)の2種類を用い、
密着性絶縁被膜を施したものを用いた。また、前記継ぎ
材12としてはUNSNO.N08825(22Cr-42Ni-3Mo) とUNSNO.
N10276(16Cr-56Ni-16Mo)の2種類を用い、密着性絶縁被
膜を施したものを用いた。
The low corrosion resistant material 10 used in the above test
The medium carbon steel for API-L80 grade was used. On the other hand, as the high corrosion resistance material 11, UNSNO.N08825 (22Cr-42Ni-3M
o) and UNSNO.N10276 (16Cr-56Ni-16Mo)
One having an adhesive insulating film was used. Also, as the joining material 12, UNSNO.N08825 (22Cr-42Ni-3Mo) and UNSNO.
Two types of N10276 (16Cr-56Ni-16Mo) were used, which were provided with an adhesive insulating coating.

【0038】密着性絶縁被膜の下層には、Cr,Cr2O3,Cr
N,Cr7C3,Ni,NiO を、上層の絶縁性無機化合物被膜層1
3としては、比抵抗108 Ωcm以上のAl2O3,Si3N4,Ta
2O5,SiO2,AlN,BN を用いた。また、比較のため、比抵抗
が107 Ωcmである半導電性のTiO2も用いた。ここ
で、CrN はイオンを用いた窒化処理、Cr7C3 はイオンを
用いた浸炭処理、Al2O3,Ta2O5,TiO2はスパッタリング
法、Si3N4,BNはプラズマCVD法、Cr,Cr2O3,Ni,NiO,Si
O2,AlNはイオンプレーティング法を用いて形成した。さ
らに、前記絶縁性無機化合物被膜層の保護のため、その
上層にフッ素系樹脂を積層させたものについても同様の
試験を行った。
Cr, Cr 2 O 3 , Cr
N, Cr 7 C 3 , Ni, NiO is coated on the upper insulating inorganic compound coating layer 1
The 3, specific resistance 10 8 [Omega] cm or more Al 2 O 3, Si 3 N 4, Ta
2 O 5 , SiO 2 , AlN, BN were used. For comparison, semiconductive TiO 2 having a specific resistance of 10 7 Ωcm was also used. Here, CrN is nitriding treatment using ions, Cr 7 C 3 is carburizing treatment using ions, Al 2 O 3 , Ta 2 O 5, TiO 2 is a sputtering method, and Si 3 N 4 , BN is a plasma CVD method. , Cr, Cr 2 O 3 , Ni, NiO, Si
O 2 and AlN were formed by using an ion plating method. Further, for protecting the insulating inorganic compound coating layer, a similar test was performed on a layer in which a fluorine-based resin was laminated thereon.

【0039】前記電食、隙間腐食及び耐剥離性試験にお
ける腐食環境としては、炭酸ガス環境:1気圧CO2
硫化水素ガス環境:1気圧H2 Sを用いて、温度60
℃、溶液は、5%−NaCl、試験時間は720時間と
した。そして密着性絶縁被膜13を施した継ぎ材12の
長さL2 を50mm、または60mmにかえて被覆率を
測定し、その腐食速度及び隙間環境の有無から必要前記
被膜厚さ,長さ,被覆率を求めた。
[0039] The electrolytic corrosion, the corrosive environment in the crevice corrosion and peeling resistance test, carbon dioxide gas environment: 1 atm CO 2 and hydrogen sulfide gas environment: with 1 atm H 2 S, the temperature 60
C, the solution was 5% -NaCl, and the test time was 720 hours. The adhesion insulation 50mm length L 2 of the joint member 12 having been subjected to coating 13 or in place of the 60mm measured coverage, the corrosion rate and the gap existence requires the coating thickness from the environment, the length, the coating The rate was determined.

【0040】さらに絶縁性無機化合物被膜13のエロー
ジョン・コロージョン性を調べるため、腐食試験後に5
%−NaCl沸騰溶液中て半径5mmの半球体を10k
g/mm2 の力で5回/minの速度で24時間連続し
て擦りつけて、剥離の有無について調べた。この際に、
前記フッ素系樹脂の積層効果についても調べた。
Further, in order to examine the erosion / corrosion properties of the insulating inorganic compound film 13, 5
% -NaCl boiling solution in a 5 mm radius hemisphere
It was continuously rubbed at a rate of 5 times / min with a force of g / mm 2 for 24 hours, and the presence or absence of peeling was examined. At this time,
The laminating effect of the fluororesin was also examined.

【0041】以上の試験を行った結果を表1,表2およ
び表3に示す。
The results of the above tests are shown in Tables 1, 2 and 3.

【0042】[0042]

【表1】 [Table 1]

【0043】[0043]

【表2】 [Table 2]

【0044】[0044]

【表3】 [Table 3]

【0045】表1,表2および表3から明らかなよう
に、48通りの試験ケースのうち、試験No.42〜4
4,48の場合には低耐食性材料10の腐食速度が1.
0(g/m2 )/hとなり、耐食性に劣る結果となった
のに対し、比抵抗108 Ωcm以上、絶縁性無機化合物
被膜厚0.4μm以上、絶縁性無機化合物被膜長60m
m以上、被覆率90%以上99.999%以下の試験N
o.1〜41及び45の場合には腐食速度が低く電食及
び隙間腐食を防止して、かつ耐剥離性良好であることが
わかった。
As is clear from Tables 1, 2 and 3, out of the 48 test cases, test No. 42-4
In the case of 4,48, the corrosion rate of the low corrosion resistant material 10 is 1.
0 (g / m 2 ) / h, which resulted in poor corrosion resistance. On the other hand, the specific resistance was 10 8 Ωcm or more, the insulating inorganic compound coating film thickness was 0.4 μm or more, and the insulating inorganic compound coating length was 60 m.
test N with a coverage of 90% or more and 99.999% or less
o. In the case of Nos. 1 to 41 and 45, it was found that the corrosion rate was low, electric corrosion and crevice corrosion were prevented, and peeling resistance was good.

【0046】No.45のフッ素系樹脂を施した場合の
ものは、有機被膜を形成しない場合に比較して、特に剥
離防止等に有効であったことが確認された。
No. It was confirmed that the case where the fluorine-based resin was applied was particularly effective in preventing peeling and the like, as compared with the case where the organic film was not formed.

【0047】また、下層膜の膜厚が0.1〜5μmの範
囲外にあるNo.46および47では、剥離のみが見ら
れる結果となった。
Further, when the thickness of the lower layer film was out of the range of 0.1 to 5 μm, In 46 and 47, only the peeling was observed.

【0048】(実施例2)次に、水素脆性について試験
を行った結果について示す。図6に示す形状の鋼材を用
いて試験を行った。その中で、低耐食性材料10として
はAPI-L80 級用の中炭素鋼を用いた。一方、高耐食性材
料11としてはUNSNO.N10276(16Cr-56Ni-16Mo)を用い
た。また、継ぎ材12としては、UNSNO.10276(16Cr-56N
i-16Mo) を用い、その下層膜には厚さ0.5μmのNi
を、上層膜には5μmのAl2O3,Si3N4,Ta2O5,SiO2,AlN,B
N 被膜13を施したものを使用した。
(Example 2) Next, results of a test on hydrogen embrittlement will be described. A test was performed using a steel material having the shape shown in FIG. Among them, medium carbon steel for API-L80 grade was used as the low corrosion resistant material 10. On the other hand, UNSNO.N10276 (16Cr-56Ni-16Mo) was used as the high corrosion resistance material 11. In addition, UNSNO.10276 (16Cr-56N
i-16Mo), and the underlying film is a 0.5 μm thick Ni
And 5 μm of Al 2 O 3 , Si 3 N 4 , Ta 2 O 5 , SiO 2 , AlN, B
The one with the N coating 13 was used.

【0049】供試体の寸法は、低耐食性材料10は板状
帯で幅10mm、長さ100mmのものとし、一方、高
耐食性材料11は幅100mm、長さ100mmのもの
を水素浸食が効果的に行われるようにするためU字状に
折り曲げたものを使用した。継ぎ材12は、幅10mm
とし、長さについては、40mm、60mm、80mm
の3種類のものを用意した。連結にあたっては低耐食性
材料10と継ぎ材12とをボルト14で固定し、一方継
ぎ材12と高耐食性材料11とは長尺ボルト15で直列
的に固定するとともに、前記長尺ボルト15を高耐食性
材料11の他方端に形成された通孔に貫通させ、ナット
16により締め付けることによりU字先端部位の離間距
離を5mmだけ絞り込み、拘束応力を与えるようにし
た。
The dimensions of the test piece were such that the low-corrosion-resistant material 10 was a plate-shaped band having a width of 10 mm and a length of 100 mm, while the high-corrosion-resistant material 11 was formed of a width of 100 mm and a length of 100 mm by hydrogen erosion effectively. What was bent in a U-shape was used in order to perform it. The joining material 12 has a width of 10 mm
And the length is 40 mm, 60 mm, 80 mm
3 types were prepared. At the time of connection, the low-corrosion-resistant material 10 and the joining material 12 are fixed with bolts 14, while the joining material 12 and the high-corrosion-resistant material 11 are fixed in series with long bolts 15, and the long bolts 15 are connected with high-corrosion resistance. By penetrating through a through hole formed at the other end of the material 11 and tightening with a nut 16, the separation distance at the U-shaped tip portion was narrowed by 5 mm to apply a restraining stress.

【0050】被覆率は、いずれの長さの継ぎ材12にお
いても90%以上であった。カソード側(高耐食性材料
側)で発生する水素による脆性は、常温において最も吸
収が行われ感受性が高いため、試験は下記に示す工程1
〜2の2工程を行った。
The coverage was 90% or more for the joint material 12 of any length. The brittleness due to hydrogen generated on the cathode side (high corrosion resistant material side) is most absorbed at room temperature and the sensitivity is high.
2 were performed.

【0051】<工程1>炭酸ガス環境(1気圧CO2
において温度150℃、溶液は5%−NaCl、試験時
間は、720時間とする。
<Step 1> Carbon dioxide gas environment (1 atm CO 2 )
, The temperature was 150 ° C, the solution was 5% -NaCl, and the test time was 720 hours.

【0052】<工程2>炭酸ガス環境(1気圧CO2
において温度25℃、溶液は5%−NaCl、試験時間
は720時間とする。
<Step 2> Carbon dioxide gas environment (1 atm CO 2 )
, The temperature was 25 ° C, the solution was 5% -NaCl, and the test time was 720 hours.

【0053】以上の工程1と工程2を経た供試材につい
て、Uベンド部におけるワレの発生の有無について調べ
た。その結果を表4に示す。
With respect to the test material having passed through the above steps 1 and 2, the presence or absence of cracks in the U-bend portion was examined. Table 4 shows the results.

【0054】[0054]

【表4】 [Table 4]

【0055】表4から明らかなように、継ぎ材12の長
さ(絶縁被膜長)が60mm以上である60mm,80
mm(ケースNo.2,3)の場合には、ワレが発生せ
ず高耐食性材料11側での水素発生を抑制することが判
明された。
As is apparent from Table 4, the length of the joining material 12 (the length of the insulating coating) is 60 mm or more and 80 mm or more.
mm (Case Nos. 2 and 3), it was found that cracks did not occur and the generation of hydrogen on the high corrosion resistant material 11 side was suppressed.

【0056】[0056]

【発明の効果】以上の説明から明らかな如く、本発明に
よれば、油井等において、異種金属間材を継ぐ場合に生
じる電食及び隙間腐食を確実に防止す得るとともに、か
つ応力下でも耐剥離性良好な金属管材を得ることが可能
となる。
As is evident from the above description, according to the present invention, in an oil well or the like, electric corrosion and crevice corrosion that occur when connecting dissimilar intermetallic materials can be reliably prevented, and even under stress. It is possible to obtain a metal pipe material having good peelability.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係わる電食防止を施した油井管および
カップリングの連結部を示す図である。
FIG. 1 is a view showing a connection part of an oil country tubular good and a coupling in which electrolytic corrosion prevention is performed according to the present invention.

【図2】本発明に係わる電食防止を施した油井管の連結
部を示す図である。
FIG. 2 is a diagram showing a connecting portion of an oil country tubular good according to the present invention, in which electrolytic corrosion prevention is performed.

【図3】実施例1における耐食性試験の供試体を示す図
である。
FIG. 3 is a view showing a specimen for a corrosion resistance test in Example 1.

【図4】実施例1における隙間腐食試験の供試体を示す
図である。
FIG. 4 is a view showing a specimen for a crevice corrosion test in Example 1.

【図5】実施例1における耐剥離性試験の供試体を示す
図である。
FIG. 5 is a view showing a specimen for a peel resistance test in Example 1.

【図6】実施例2における水素脆性試験の供試体を示す
図である。
FIG. 6 is a view showing a specimen for a hydrogen embrittlement test in Example 2.

【図7】図1のA部分の拡大図である。FIG. 7 is an enlarged view of a portion A in FIG.

【図8】図1のB部分の拡大図である。FIG. 8 is an enlarged view of a portion B in FIG. 1;

【図9】図2のA部分の拡大図である。FIG. 9 is an enlarged view of a portion A in FIG. 2;

【図10】図2のB部分の拡大図である。FIG. 10 is an enlarged view of a portion B in FIG. 2;

【符号の説明】[Explanation of symbols]

1…低耐食性管材、2…高耐食性管材、3…カップリン
グ、4〜9…絶縁性被膜、10…低耐食性材料、11…
高耐食性材料、12…継ぎ材、絶縁性被膜。
DESCRIPTION OF SYMBOLS 1 ... Low corrosion resistant tubing, 2 ... High corrosion resistant tubing, 3 ... Coupling, 4-9 ... Insulating coating, 10 ... Low corrosion resistant material, 11 ...
High corrosion resistance material, 12 ... joint material, insulating coating.

フロントページの続き (56)参考文献 特開 平1−199088(JP,A) 特開 平5−149486(JP,A) 特開 昭60−205091(JP,A) 特開 昭60−121385(JP,A) 特開 平1−147081(JP,A) 特開 昭53−45362(JP,A) (58)調査した分野(Int.Cl.7,DB名) C23F 15/00 C23C 28/00 F16L 15/04 Continuation of the front page (56) References JP-A-1-199088 (JP, A) JP-A-5-149486 (JP, A) JP-A-60-205091 (JP, A) JP-A-60-121385 (JP, A) , A) JP-A-1-147081 (JP, A) JP-A-53-45362 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) C23F 15/00 C23C 28/00 F16L 15/04

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】管端部に連結用の螺合ネジ部が形成され、
Cr量が13wt%以上、かつNi量が20wt%以上のス
テンレス鋼あるいはNi基合金管材において、 前記管材が連結されたとき露出する内面および外面の少
なくとも一方面における前記螺合ネジ部を除く内面端ま
たは外面端から60mm以上の範囲にわたって、ならび
に連結したとき隙間が生じる前記螺合ネジ部分に、Cr
もしくはその酸化物,窒化物,炭化物、Niもしくはそ
の酸化物の単層あるいは複合層を形成した後、この上層
に厚さ0.4μm以上でかつ比抵抗が108 Ωcm以上
の絶縁性無機化合物被膜を被覆率90%以上100%未
満で形成したことを特徴とする被膜密着性に優れた電食
防止用絶縁管材。
1. A threaded screw portion for connection is formed at a pipe end,
In a stainless steel or Ni-based alloy tube material having a Cr content of 13 wt% or more and a Ni content of 20 wt% or more, an inner surface end excluding the screwed screw portion on at least one of an inner surface and an outer surface exposed when the tube material is connected. Alternatively, over a range of 60 mm or more from the outer surface end, and in the screwing screw portion where a gap occurs when connected, Cr
Alternatively, after forming a single layer or a composite layer of oxide, nitride, carbide, Ni or its oxide, an insulating inorganic compound film having a thickness of 0.4 μm or more and a specific resistance of 10 8 Ωcm or more. Is formed at a coverage of 90% or more and less than 100%.
【請求項2】前記絶縁性無機化合物被膜の表面にその絶
縁性無機化合物被膜保護用の合成樹脂被膜が積層されて
いることを特徴とする請求項1記載の電食防止用絶縁管
材。
2. The insulating tubing according to claim 1, wherein a synthetic resin film for protecting the insulating inorganic compound film is laminated on the surface of the insulating inorganic compound film.
JP28736792A 1992-01-06 1992-10-26 Insulation tubing for preventing electrolytic corrosion with excellent coating adhesion Expired - Fee Related JP3146689B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP28736792A JP3146689B2 (en) 1992-10-26 1992-10-26 Insulation tubing for preventing electrolytic corrosion with excellent coating adhesion
US08/002,492 US5660211A (en) 1992-01-06 1993-01-06 Galvanic corrosion resistant insulating pipe having excellent film adhesion
EP93100154A EP0570657B1 (en) 1992-01-06 1993-01-07 corrosion resistant pipe
DE69306466T DE69306466T2 (en) 1992-01-06 1993-01-07 Pipe resistant to corrosion

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28736792A JP3146689B2 (en) 1992-10-26 1992-10-26 Insulation tubing for preventing electrolytic corrosion with excellent coating adhesion

Publications (2)

Publication Number Publication Date
JPH06136574A JPH06136574A (en) 1994-05-17
JP3146689B2 true JP3146689B2 (en) 2001-03-19

Family

ID=17716449

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28736792A Expired - Fee Related JP3146689B2 (en) 1992-01-06 1992-10-26 Insulation tubing for preventing electrolytic corrosion with excellent coating adhesion

Country Status (1)

Country Link
JP (1) JP3146689B2 (en)

Also Published As

Publication number Publication date
JPH06136574A (en) 1994-05-17

Similar Documents

Publication Publication Date Title
EP0852703B1 (en) Flow tube lining
Beavers et al. External corrosion of oil and natural gas pipelines
US9494263B2 (en) Flexible pipe
US20080048443A1 (en) Bimetal bore seal
EP0329990B1 (en) Oil-well tubing joints with anti-corrosive coating
AU2017226940B2 (en) System and method for cathodic protection by distributed sacrificial anodes
JP3146689B2 (en) Insulation tubing for preventing electrolytic corrosion with excellent coating adhesion
JPH06136575A (en) Insulated tube for preventing galvanic corrosion excellent in film adhesion
US5660211A (en) Galvanic corrosion resistant insulating pipe having excellent film adhesion
JPH06136576A (en) Insulated tube for preventing galvanic corrosion excellent in film adhesion
US3445370A (en) Corrosion prevention device for irrigation pipe
JPH05179470A (en) Insulated tubing for stray current corrosion prevention excellent in adhesivity of film
Baboian Galvanic corrosion
JPH06193781A (en) Insulating tube having excellent close film adhesiveness for preventing electric corrosion
JPH06192809A (en) Insulating pipe material for preventing electrolytic corrosion having excellent corrosion resistance
JPH04254594A (en) Method for preventing electric corrosion of pipe and insulating tube prepared thereby
JPH04214883A (en) Method for preventing galvanic corrosion of pipe and its insulating pipe
JP2007100135A (en) Corrosion-resistant member
JPH04362388A (en) Pipe joint excellent in film adhesion crevice corrosion resistance
JP3354818B2 (en) External Corrosion Protection Method for Ductile Cast Iron Pipe
JPH04362389A (en) Pipe joint excellent in film adhesion and crevice corrosion resistance
Neal Pipeline coating failure-not always what you think it is
JPH07127770A (en) High alloy fitting excellent in protection against corrosion, wear resistance and seizure resistance
Kivisäkk et al. Uns S33207 A New Hyper Duplex Stainless Steel For Umbilicals
JPS59177383A (en) Structure for preventing stress corrosion cracking of stainless steel

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees