JPH06192793A - Metal sheet for fe-cu alloy lead frame minimal in inplane anisotropy of bending and its production therefor - Google Patents

Metal sheet for fe-cu alloy lead frame minimal in inplane anisotropy of bending and its production therefor

Info

Publication number
JPH06192793A
JPH06192793A JP34697092A JP34697092A JPH06192793A JP H06192793 A JPH06192793 A JP H06192793A JP 34697092 A JP34697092 A JP 34697092A JP 34697092 A JP34697092 A JP 34697092A JP H06192793 A JPH06192793 A JP H06192793A
Authority
JP
Japan
Prior art keywords
alloy
rolling
bending
young
lead frame
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP34697092A
Other languages
Japanese (ja)
Other versions
JP2705875B2 (en
Inventor
Kosaku Shioda
浩作 潮田
Satoru Nishimura
哲 西村
Yozo Suga
洋三 菅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP4346970A priority Critical patent/JP2705875B2/en
Publication of JPH06192793A publication Critical patent/JPH06192793A/en
Application granted granted Critical
Publication of JP2705875B2 publication Critical patent/JP2705875B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Continuous Casting (AREA)
  • Heat Treatment Of Steel (AREA)
  • Heat Treatment Of Sheet Steel (AREA)
  • Lead Frames For Integrated Circuits (AREA)

Abstract

PURPOSE:To provide superior bendability and excellent stiffness and heat dissipation property by subjecting an Fe-Cu alloy stock to cold rolling, annealing, and aging treatment under respectively specified conditions and then applying residual stress uniformizing treatment. CONSTITUTION:A molten Fe-Cu alloy of 10-90wt.% Cu content is cast into a metal plate of 0.5-8mm thickness at (10 to 1000) deg.C/sec solidification cooling rate. If necessary, after softening at 500-900 deg.C, surface grinding is done. Subsequently, cold rolling is performed while regulating the ratio between the rolling draft in a longitudinal direction of a stock and that in a width direction to 1-10 and also regulating the total draft to >=30%. The resulting cold rolled stock is annealed at 600-1100 deg.C and aged at 300-650 deg.C. Then, residual stress uniformizing treatment is performed by using a tension leveler and a tension annealer. By this method, the metal sheet for lead frame, where the number of 90 deg. repeated bending times in the longitudinal and vertical directions of coil is regulated to >=3 and which has minimal inplane anisotropy and >=15000 kgf/mm<2> Young's modulus, can be obtained.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、高集積の半導体のリー
ドフレームなどに用いられる金属板およびその製造方法
に関する。本発明材は、曲げの面内異方性が小さく、従
来材よりスティフネスと電気伝導度のバランスに優れた
材料であるので、高集積の薄型多ピンパッケージング用
リードフレームに好適の材料である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a metal plate used for a highly integrated semiconductor lead frame and the like and a method for manufacturing the same. The material of the present invention has a small in-plane anisotropy of bending and has a better balance of stiffness and electrical conductivity than conventional materials, and is therefore a material suitable for a highly integrated thin multi-pin packaging lead frame. .

【0002】[0002]

【従来の技術】近年の半導体の著しい高集積化のニーズ
に対応するため、薄型多ピンでかつ熱放散性の良好なリ
ードフレーム材が要求されている。これらの要求を満た
すためには、(1)ピンをリードフレームの4方向から
採るので特性の面内異方性が小さいこと、(2)薄型化
しても剛性(以降スティフネスと称す)を低下させない
ために高い強度を有すること、(3)優れた熱放散性を
確保するために高い熱伝導度(言い換えれば電気伝導
度)を有すること、が必須となる。
2. Description of the Related Art In order to meet the recent demand for extremely high integration of semiconductors, a thin lead pin material having a large number of pins and good heat dissipation is required. In order to meet these requirements, (1) the pins are taken from four directions of the lead frame, so that the in-plane anisotropy of the characteristics is small, and (2) the rigidity (hereinafter referred to as stiffness) is not reduced even if the thickness is reduced. Therefore, it is essential to have high strength, and (3) to have high thermal conductivity (in other words, electrical conductivity) in order to ensure excellent heat dissipation.

【0003】このような要求を満たすために、リードフ
レーム材として従来から用いられているFe−42Ni
合金あるいはCu基合金の分野においては、スティフネ
スの向上を目的に高強度リードフレーム材が鋭意開発さ
れている。たとえば、Fe−Ni合金の分野において
は、特開昭59−198741号公報に開示されている
Fe−(26〜30)%Ni−(11〜16)%Coを
含むコバール合金、あるいは特開昭60−11147号
公報に開示されているFe−(30〜50)%Niを含
む合金などがその例である。
In order to meet such requirements, Fe-42Ni, which has been conventionally used as a lead frame material, is used.
In the field of alloys or Cu-based alloys, high-strength lead frame materials have been earnestly developed for the purpose of improving stiffness. For example, in the field of Fe-Ni alloys, Kovar alloy containing Fe- (26-30)% Ni- (11-16)% Co disclosed in JP-A-59-198741, or JP-A-SHO-I. An example thereof is an alloy containing Fe- (30-50)% Ni disclosed in JP-A-60-11147.

【0004】これらのFe−Ni合金は、その熱膨張特
性がSiとマッチングしておりかつ性能、品質が極めて
安定しているために現在多用されているが、実際には電
気伝導度は高々5%IACSであり、熱放散性に劣る問題が
ある。また、製造コストも極めて高い問題がある。一
方、Cu基合金の分野においても高強度材の開発が積極
的に行われている。たとえば特開昭60−218442
号公報記載の合金では、Sn,Fe,Si,P,Ni,
Cr,Ti,Coなどを添加して高強度化を図ってい
る。しかし、これらの元素の添加は、合金コストの上
昇、電気伝導度の劣化といった問題を招くと同時に、C
u基合金では基本的にFe−Ni合金並の高強度化が極
めて困難であり、スティフネスの観点から薄手化に限界
があるという問題がある。
[0004] These Fe-Ni alloys are currently widely used because their thermal expansion characteristics match Si and their performance and quality are extremely stable. % IACS, which has a problem of poor heat dissipation. In addition, the manufacturing cost is extremely high. On the other hand, in the field of Cu-based alloys, development of high-strength materials is being actively conducted. For example, JP-A-60-218442
In the alloy described in the publication, Sn, Fe, Si, P, Ni,
Cr, Ti, Co, etc. are added to increase the strength. However, addition of these elements causes problems such as increase in alloy cost and deterioration of electric conductivity, and at the same time, C
With u-based alloys, it is basically extremely difficult to achieve the same high strength as Fe-Ni alloys, and there is a problem that there is a limit to thinning from the viewpoint of stiffness.

【0005】[0005]

【発明が解決しようとする課題】以上のような課題を解
決するために本発明者らは、Cu量が10%〜90%ま
での広い範囲で変化したFe−Cu合金の開発に取り組
んできた。その骨子とするところは、特公平3−591
31号公報および特公平4−024420号公報に開示
しているように、Fe−Cu合金はFe相とCu相から
なる二相合金であり、強度をFe相が電気伝導度をCu
相が担い、それぞれの相の特徴を最大限活用する点にあ
る。この観点から、これらの合金は強度と電気伝導度の
バランスに優れている。しかし、二相合金であるがゆえ
に一方向の冷間圧延・焼鈍の工程を経て製造する場合に
は、たとえ再結晶焼鈍しても組織が圧延方向に伸びた形
状を有するため特性の面内異方性、特に曲げ性の面内異
方性が大きくなる欠点を持つ。
In order to solve the above problems, the present inventors have been working on the development of a Fe-Cu alloy in which the amount of Cu has changed in a wide range from 10% to 90%. . The main point is the Japanese Patent Publication 3-591
As disclosed in Japanese Patent No. 31 and Japanese Patent Publication No. 04-024420, an Fe-Cu alloy is a two-phase alloy consisting of an Fe phase and a Cu phase, and the Fe phase has the strength and the electrical conductivity the Cu.
It is the responsibility of each phase to maximize the characteristics of each phase. From this viewpoint, these alloys have an excellent balance between strength and electrical conductivity. However, because it is a two-phase alloy, when it is manufactured through a unidirectional cold rolling / annealing process, even if it is recrystallized and annealed, the structure has an elongated shape in the rolling direction, so the in-plane characteristics are different. It has the drawback that the in-plane anisotropy of the directionality, especially bendability, becomes large.

【0006】従って、本発明が解決しようとする第1の
課題は、Fe−Cu合金の曲げ性の面内異方性を改善す
ることであり、さらに第2の課題は、上記合金のスティ
フネスを改善することである。
Therefore, the first problem to be solved by the present invention is to improve the in-plane anisotropy of bendability of the Fe-Cu alloy, and the second problem is to improve the stiffness of the alloy. To improve.

【0007】[0007]

【課題を解決するための手段】本発明は、上記課題を解
決するために構築されたものであり、その要旨とすると
ころは以下のとおりである。 (1)重量%で10〜90%Cuを含有するFe−Cu
合金であって、かつコイル長手方向および垂直方向の9
0度繰り返し曲げ回数(それぞれnL ,nC )が3回以
上で、これらの比(nC /nL )が1〜3と小さい面内
異方性を有し、さらにそれぞれの方向のヤング率が15
000 kgf/mm2 以上、常温の電気伝導度が10%IACS
以上を有する、スティフネスと熱放散性とのバランスに
優れたリードフレーム用金属板。 (2)重量%で10〜90%Cuを含有するFe−Cu
溶融金属を10から1000℃/sの凝固冷却速度で板
厚0.5〜8mmの金属板に鋳造し、必要により、得られ
た鋳片を500〜900℃の温度範囲で軟化焼鈍してか
ら表面研削を施し、次に、素材長手方向の圧延圧下率
(rL )と幅方向の圧延圧下率(rC )との比(rL
C )を1〜10とし、かつ全圧下率が30%以上の冷
間圧延を行い、該冷間圧延材を600〜1100℃の温
度範囲で焼鈍した後、300〜650℃の温度範囲で時
効処理を施し、その後テンションレベラーおよび/また
はテンションアニーラーを用いて残留応力の均一化処理
を行なう、曲げの面内異方性が小さくスティフネスと熱
放散性とのバランスに優れたリードフレーム用金属板の
製造方法。
The present invention has been constructed to solve the above problems, and the gist thereof is as follows. (1) Fe-Cu containing 10 to 90% by weight of Cu
Alloy and in the longitudinal and vertical direction of the coil 9
The number of 0-degree repeated bendings (n L and n C , respectively) is 3 times or more, and the ratio (n C / n L ) of these has a small in-plane anisotropy of 1 to 3, and further Young's in each direction Rate is 15
000 kgf / mm 2 or more, electrical conductivity at room temperature is 10% IACS
A metal plate for a lead frame, which has the above and has an excellent balance between stiffness and heat dissipation. (2) Fe-Cu containing 10 to 90% by weight of Cu
The molten metal is cast into a metal plate having a plate thickness of 0.5 to 8 mm at a solidification cooling rate of 10 to 1000 ° C./s, and if necessary, the obtained slab is softened and annealed in a temperature range of 500 to 900 ° C. Surface grinding is performed, and then the ratio of the rolling reduction (r L ) in the longitudinal direction of the material to the rolling reduction (r C ) in the width direction (r L /
r C ) is 1 to 10 and cold rolling is performed at a total reduction of 30% or more, and the cold rolled material is annealed at a temperature range of 600 to 1100 ° C., and then at a temperature range of 300 to 650 ° C. A lead frame metal that has a small in-plane anisotropy of bending and a good balance between stiffness and heat dissipation, which is subjected to an aging treatment and then a residual stress is made uniform using a tension leveler and / or a tension annealer. Method of manufacturing a plate.

【0008】本発明者らは上記発明を完成するために、
まず第1に、曲げ性の改善について鋭意研究開発を行っ
た。その結果、Fe−Cu合金のように二相組織からな
る合金の曲げ特性の面内異方性を改善するためには、組
織を等方的にすることが基本であることに着眼して、一
方向のみに圧延加工を施すのでなく、これと垂直方向に
も圧延を施せば、すなわちクロス圧延を行えば組織がよ
り均一となるので、曲げ特性の面内異方性が著しく改善
されるという工業的に極めて重要な知見を得た。これ
は、クロス圧延により金属組織が一方向のみに展伸する
のでなく、これと垂直方向にも展伸するため面内異方性
が小さくなるものと考えられる。クロス圧延を施すため
には、簡単には切り板で圧延方向を互いに直行する二つ
の方向にとることにより可能であるが、コイル形状でも
たとえば特公昭62−45007号公報に開示されてい
る方法を用いれば連続的に可能となる。
In order to complete the above invention, the present inventors have
First of all, intensive research and development were carried out on improvement of bendability. As a result, in order to improve the in-plane anisotropy of the bending characteristics of an alloy having a two-phase structure such as an Fe-Cu alloy, it is essential to make the structure isotropic, By rolling not only in one direction but also in a direction perpendicular to this, that is, when cross rolling is performed, the structure becomes more uniform, so the in-plane anisotropy of bending properties is significantly improved. We obtained an extremely important finding industrially. It is considered that the in-plane anisotropy is reduced because the metal structure is not expanded only in one direction by the cross rolling but is also expanded in the direction perpendicular thereto. Cross-rolling can be performed simply by using a cutting plate to set the rolling directions in two directions orthogonal to each other. However, even in the coil shape, the method disclosed in Japanese Patent Publication No. 62-45007 can be used. If used, it will be possible continuously.

【0009】第2に、スティフネスの向上方法について
も研究し、従来から取り組まれている高強度化ではな
く、高ヤング率化(縦弾性係数の向上)がもっとも効果
的であることを新たに明らかにした。すなわち、スティ
フネスは、図1に示すように短冊状試験片1の一方の端
を固定し他端に荷重を付加した場合の曲げメーメント
(M)と変位量(δ)との関係から測定され、同一曲げ
モーメントに対して変位量が小さいほどスティフネスが
良好である。これはいわゆる片持ち梁の曲げ変形の問題
であり、Mとδとの間には、次式(1)が成立する。
Secondly, a method for improving stiffness is also researched, and it is newly revealed that increasing the Young's modulus (improving the longitudinal elastic modulus) is the most effective, rather than the conventional strengthening. I chose That is, the stiffness is measured from the relationship between the bending measurement (M) and the displacement (δ) when one end of the strip-shaped test piece 1 is fixed and a load is applied to the other end as shown in FIG. The smaller the displacement for the same bending moment, the better the stiffness. This is a problem of so-called cantilever bending deformation, and the following expression (1) is established between M and δ.

【0010】 M=w・t3 /(4・l2 )・E・δ (1) ここで、Eはヤング率、wは試験片幅、lは固定点から
荷重点までの距離である。図2は、本発明範囲内のFe
−Cu合金、現行の高強度Fe−42%Ni合金、Cu
基合金などの各種材料についてのMとδの関係を実測し
た結果を示す。同図から明らかなように、Mとδとの関
係は、上の(1)式で整理できることがわかる。したが
って、スティフネスは強度でなくヤング率で決まること
が明らかとなった。
M = w · t 3 / (4 · l 2 ) · E · δ (1) Here, E is the Young's modulus, w is the width of the test piece, and l is the distance from the fixed point to the load point. FIG. 2 shows Fe within the scope of the present invention.
-Cu alloy, current high strength Fe-42% Ni alloy, Cu
The results of actual measurement of the relationship between M and δ for various materials such as base alloys are shown. As is clear from the figure, the relationship between M and δ can be arranged by the above equation (1). Therefore, it became clear that stiffness is determined by Young's modulus rather than strength.

【0011】以下、Fe−Cu合金のヤング率の改善方
法について述べる。ヤング率は同じ組成の材料でも、結
晶方位によって大きく異なることは周知である。たとえ
ば、Feのランダム方位のヤング率は、約2100 kgf
/mm2 であり、最大方向の<111>には29000 k
gf/mm2 となる。また、ヤング率は少量の元素を添加し
ても殆ど変化しないことも知られている。しかし、Fe
−42Ni合金のようにNiを42%も多量に添加する
と、ヤング率は約1500 kgf/mm2 程度まで低下す
る。一方、CuはFeより融点が低いためヤング率が約
1300 kgf/mm 2 とFeより著しく低い。このよう
に、従来材のヤング率はFeと比較し著しく低い欠点を
持っている。
The method for improving the Young's modulus of Fe-Cu alloys is as follows.
Describe the method. Young's modulus has the same composition even if it has the same composition.
It is well known that the crystal orientation varies greatly. for example
For example, Young's modulus of random orientation of Fe is about 2100 kgf.
/ Mm2And the maximum direction <111> is 29000 k.
gf / mm2Becomes In addition, Young's modulus is the addition of a small amount of elements
However, it is known that it hardly changes. However, Fe
Add 42% Ni as much as -42Ni alloy
And Young's modulus is about 1500 kgf / mm2Drop to a degree
It On the other hand, since Cu has a lower melting point than Fe, its Young's modulus is about
1300 kgf / mm 2And significantly lower than Fe. like this
In addition, the Young's modulus of the conventional material is significantly lower than that of Fe.
have.

【0012】そこでFe−Cu合金のように、多量のC
uを添加してもそのヤング率をFe並に高く維持するた
めに、次のような新たな発想で取り組んだ。すなわち、
本発明者らは、Cu量を10〜90%含有するFe−C
u合金は、ヤング率の高いFe相と低いCu相の二相組
織となることに着目した。リードの採取される4方向に
ヤング率の高いFe相を展伸させておけば、4方向のス
ティフネスの異方性は著しく改善されるはずである。そ
こで、その具体的手段としてクロス圧延が有効であるこ
とを見いだした。すなわち、クロス圧延と焼鈍の基本工
程で製造したFe−Cu合金では、Fe相が圧延方向と
これに垂直方向に展伸しているので、これら両方向にお
けるヤング率はFeのヤング率に近い高い値が得られる
ことになる。これは、fcc構造の単一相からなるFe
−42Ni,Cu基合金の場合と本質的に異なる点であ
る。
Therefore, a large amount of C, such as Fe--Cu alloy, is used.
In order to maintain the Young's modulus as high as that of Fe even if u is added, the following new idea was taken. That is,
The present inventors have found that Fe-C containing 10 to 90% of Cu.
It was noted that the u alloy has a two-phase structure of a Fe phase having a high Young's modulus and a Cu phase having a low Young's modulus. If the Fe phase having a high Young's modulus is spread in the four directions in which the leads are collected, the stiffness anisotropy in the four directions should be significantly improved. Therefore, they found that cross rolling is effective as a concrete means. That is, in the Fe-Cu alloy produced by the basic steps of cross rolling and annealing, the Fe phase is expanded in the rolling direction and the direction perpendicular to the rolling direction, so the Young's modulus in these directions is a high value close to that of Fe. Will be obtained. This is Fe consisting of a single phase with an fcc structure.
This is a point essentially different from the case of -42Ni, Cu-based alloy.

【0013】なお、本発明において基本組成となるCu
を10〜90%含有したFe−Cu合金を製造するため
には、溶融金属を急冷して0.5mmから8mmの板厚の鋼
帯に直接鋳造することが必須である。すなわち、特公平
4−024420号公報記載のように、従来からの基本
工程である熱間圧延を本発明合金に適用すると、Cu相
はその温度域で未だ融液状態にあるため、熱間脆化が発
生する。これを抜本的に防止するために、熱間圧延を省
略した、いわゆる双ロール鋳造機などを用いるストリッ
プキャスト法と呼ばれる薄鋳片の製造法を適用する。上
に述べた厚さの鋼帯が直接鋳造されれば、必要に応じて
軟化焼鈍を施すだけで、冷間圧延によってFe−Cu合
金は0.1mm以下の金属箔の領域までの極薄化が可能と
なる。また、クロス圧延すれば同時に幅拡大も可能とな
る。
The basic composition of Cu in the present invention is Cu.
In order to produce a Fe-Cu alloy containing 10 to 90% of Fe, it is essential to quench the molten metal and directly cast it into a steel strip having a plate thickness of 0.5 mm to 8 mm. That is, as described in JP-B-4-024420, when hot rolling, which is a conventional basic process, is applied to the alloy of the present invention, since the Cu phase is still in the melt state in that temperature range, hot brittleness occurs. Occurs. In order to prevent this drastically, a method for manufacturing thin cast pieces called a strip casting method using a so-called twin roll casting machine in which hot rolling is omitted is applied. If the steel strip having the above-mentioned thickness is directly cast, the Fe-Cu alloy can be extremely thinned to the region of the metal foil of 0.1 mm or less by cold rolling by only performing softening annealing as necessary. Is possible. In addition, the width can be increased simultaneously by cross rolling.

【0014】本発明はこのような従来にない新しい考え
方と知見に基づいて成されたものである。
The present invention has been made based on such a novel idea and knowledge as never before.

【0015】[0015]

【作用】本発明において材料特性、鋼組成および製造条
件を上述のように限定する理由について詳細に説明す
る。 (1)曲げ性:4方向からリードをとるQFPタイプの
リードフレームにおいては、曲げ加工性が良好でかつ面
内異方性のないことが求められる。まず、曲げ加工性を
満足するためには、コイル長手方向に垂直(nC )およ
び平行(nL )に90度曲げる場合の繰り返し曲げ回数
がそれぞれ3回以上あることが必要である。次に、これ
らの比(nC /nL )を1〜3に限定する。3を超える
と面内異方性が大きくなりすぎる。
The reason for limiting the material properties, steel composition and manufacturing conditions as described above in the present invention will be explained in detail. (1) Bendability: In a QFP type lead frame in which leads are taken from four directions, it is required that the bendability is good and there is no in-plane anisotropy. First, in order to satisfy the bending workability, it is necessary that the number of repeated bendings in the case of bending 90 degrees perpendicular (n C ) and parallel (n L ) to the coil longitudinal direction is 3 times or more. Next, these ratios (n C / n L ) are limited to 1 to 3. If it exceeds 3, the in-plane anisotropy becomes too large.

【0016】(2)ヤング率:薄型化してもスティフネ
スを維持するためには、ヤング率の向上が必須である。
現行の高強度Fe−Ni合金のヤング率は約15000
kgf/mm2 以上であるので、ヤング率の下限を1500
0 kgf/mm2 とする。 (3)電気伝導度:本発明では、上記の高いヤング率を
有し、かつ電気伝導度が10%IACS以上の材料特性を規
定する。Fe−Ni合金の分野では、電気伝導度は高々
5%IACSである。一方、Cu基合金の分野では、電気伝
導度は良好であるがヤング率は高々13000 kgf/mm
2 程度で低い。したがって、本願では両合金の優れた特
性を共に兼ね備え、15000 kgf/mm2 以上のヤング
率と同時に、10%IACS以上の電気伝導度を規定する。
(2) Young's modulus: In order to maintain the stiffness even if the thickness is reduced, it is essential to improve the Young's modulus.
The Young's modulus of the current high-strength Fe-Ni alloy is about 15,000.
Since it is more than kgf / mm 2 , the lower limit of Young's modulus is 1500
It shall be 0 kgf / mm 2 . (3) Electric conductivity: In the present invention, the material characteristics having the above-mentioned high Young's modulus and having an electric conductivity of 10% IACS or more are defined. In the field of Fe-Ni alloys, the electrical conductivity is at most 5% IACS. On the other hand, in the field of Cu-based alloys, the electrical conductivity is good, but the Young's modulus is at most 13000 kgf / mm.
2 is low. Therefore, in the present application, both alloys have excellent properties, and a Young's modulus of 15,000 kgf / mm 2 or more and an electrical conductivity of 10% IACS or more are specified at the same time.

【0017】(4)組成:基本組成は、重量%で10〜
90%Cuを含有するFe−Cu合金とするが、特公平
3−59131号公報および特公平4−024420号
公報に記載されているように、これに耐食性を維持する
目的でCrを添加したり、強度と電気伝導度を向上する
目的で、Ti,Zrなどを添加したりすることもでき
る。
(4) Composition: The basic composition is 10% by weight.
An Fe-Cu alloy containing 90% Cu is used, but as described in JP-B-3-59131 and JP-B-4-024420, Cr may be added thereto for the purpose of maintaining corrosion resistance. For the purpose of improving strength and electric conductivity, Ti, Zr, etc. may be added.

【0018】(5)製造方法 (イ)凝固冷却速度と鋳造板厚:溶融金属を10〜10
00℃/sの凝固冷却速度で板厚0.5〜8mmの金属板
に鋳造する。凝固冷却速度が、10℃/s未満となると
Fe相とCu相とからなる凝固組織が極めて粗くなり、
いわゆる急冷凝固の効果が消失する。また、凝固冷却速
度が1000℃/s超となると、凝固シェルの発達が不
十分となるため、鋳造がきわめて不安定になる。また、
鋳造厚は、上記凝固冷却速度との関係から、0.5〜
8.0mmとなる。
(5) Manufacturing method (a) Solidification cooling rate and cast plate thickness: 10 to 10 molten metal
Cast into a metal plate having a plate thickness of 0.5 to 8 mm at a solidification cooling rate of 00 ° C./s. When the solidification cooling rate is less than 10 ° C / s, the solidification structure composed of the Fe phase and the Cu phase becomes extremely rough,
The so-called rapid solidification effect disappears. On the other hand, if the solidification cooling rate exceeds 1000 ° C./s, the solidification shell is not sufficiently developed, so that casting becomes extremely unstable. Also,
From the relationship with the solidification cooling rate, the casting thickness is 0.5 to
It will be 8.0 mm.

【0019】(ロ)軟化焼鈍、酸洗、表面研磨:上記し
た鋳造板を必要に応じて軟化焼鈍、酸洗あるいは表面研
削する。中でも軟化焼鈍は、あとで行う冷間圧延を容易
にするために有効であり、500〜900℃が好まし
い。 (ハ)冷間圧延条件:冷間圧延条件は、面内異方性の小
さい良好な曲げ性を確保するために、本発明において最
も重要な構成要件である。まず、全圧下率は必要な製品
厚と強度を得るために30%以上とする。次に、素材長
手方向の圧延圧下率(rL )と幅方向の圧延圧下率(r
C )との比(rL /rC )が1〜10となるような範囲
で、クロス圧延を施す。rL /rC の値が1未満および
10超の値となると、クロス圧延の効果がなくなり曲げ
性の面内異方性が目標を満たさなくなる。また、素材長
手方向への圧延と幅方向への圧延の順序は曲げ性の面内
異方性に基本的には影響しないので問わないが、最終製
品の表面性状の観点から、最終の5%以上の冷間圧延は
素材長手方向に施すのが好ましい。このようなクロス圧
延は切り板は勿論のこと、コイルでも特公昭62−45
007号公報に開示の方法を用いれば可能である。
(B) Softening annealing, pickling, surface polishing: The above-mentioned cast plate is softened annealing, pickling or surface-ground as required. Above all, the softening annealing is effective for facilitating cold rolling to be performed later, and is preferably 500 to 900 ° C. (C) Cold rolling condition: The cold rolling condition is the most important structural requirement in the present invention in order to secure good bendability with small in-plane anisotropy. First, the total rolling reduction is 30% or more in order to obtain the required product thickness and strength. Next, the rolling reduction (r L ) in the material longitudinal direction and the rolling reduction (r L in the width direction
C) the ratio of (r L / r C) is in a range such that 10 performs cross rolling. If the value of r L / r C is less than 1 or more than 10, the effect of cross rolling is lost and the in-plane anisotropy of bendability does not satisfy the target. The order of rolling in the longitudinal direction of the material and rolling in the width direction does not matter because it does not basically affect the in-plane anisotropy of bendability, but from the viewpoint of the surface properties of the final product, the final 5% The above cold rolling is preferably performed in the longitudinal direction of the material. Such cross rolling can be applied not only to cut plates, but also to coils, in Japanese Patent Publication No. 62-45.
This is possible by using the method disclosed in Japanese Patent Publication No. 007.

【0020】(ニ)冷間圧延後の焼鈍条件:上記冷間圧
延材を600〜1100℃の範囲で、特に好ましくは8
00〜1050℃の範囲で焼鈍する。焼鈍温度が600
℃未満になると、延性が不足するため曲げ性が悪い。一
方、1100℃超の温度で焼鈍すると、Cuの融点を越
えるので品質上の欠陥が生じたり、連続焼鈍する場合に
は板破断する問題が発生する。
(D) Annealing condition after cold rolling: The cold rolled material is in the range of 600 to 1100 ° C., particularly preferably 8
Anneal in the range of 00 to 1050 ° C. Annealing temperature is 600
When the temperature is lower than 0 ° C, the ductility is insufficient and the bendability is poor. On the other hand, if the annealing is performed at a temperature higher than 1100 ° C., the melting point of Cu is exceeded, so that a defect in quality occurs, and in the case of continuous annealing, there is a problem of plate breakage.

【0021】(ホ)時効処理温度条件:300〜650
℃の温度範囲で、特に好ましくは400〜550℃の温
度範囲で時効処理を行う。時効処理の役割は、Fe相に
おいては固溶Cuを微細に析出させ強度を上昇すること
およびCu相においては固溶FeをTi,Zrなどで固
定し電気伝導度を向上することにある。時効処理温度が
300℃未満では、上に述べた析出や固定の反応が生じ
ない。また、時効処理温度が650℃超になると過時効
となり強度が低下する。
(E) Aging treatment temperature condition: 300 to 650
The aging treatment is carried out in the temperature range of 400C, particularly preferably in the temperature range of 400 to 550C. The role of the aging treatment is to finely precipitate the solid solution Cu in the Fe phase to increase the strength, and to fix the solid solution Fe with Ti, Zr or the like in the Cu phase to improve the electric conductivity. If the aging temperature is less than 300 ° C, the above-mentioned precipitation and fixing reactions do not occur. If the aging treatment temperature exceeds 650 ° C, overaging will occur and the strength will decrease.

【0022】(ヘ)表面研磨、調質圧延の条件:上記焼
鈍の後、必要に応じて表面研磨および調質圧延を施す。
表面研磨は鋼板表面に形成されている表面膜を除去する
目的があり、つぎに表面粗度を調整する役割がある。ま
た、圧下率1〜10%の調質圧延は、(a)上記焼鈍で
劣化した板形状を改善する役割、(b)さらに表面粗度
を調整する役割、を有する。調質圧延率が1%未満では
上に述べた二つの役割が達成されない。一方、10%超
になると曲げ性が劣化する。
(F) Conditions for surface polishing and temper rolling: After the above annealing, surface polishing and temper rolling are performed if necessary.
The surface polishing has the purpose of removing the surface film formed on the surface of the steel sheet, and then has the role of adjusting the surface roughness. Further, temper rolling with a reduction rate of 1 to 10% has (a) a role of improving the plate shape deteriorated by the above-described annealing, and (b) a role of further adjusting the surface roughness. If the temper rolling ratio is less than 1%, the above-mentioned two roles cannot be achieved. On the other hand, if it exceeds 10%, the bendability deteriorates.

【0023】(ト)残留応力の均一化:エッチング後の
反りを無くすることを目的に、テンションレベラーまた
はテンションアニーラーの少くとも一方を用いて残留応
力を板厚方向で均一化する。かくして、本発明によれ
ば、良好な曲げ性をもちかつその面内異方性が小さく、
15000 kgf/mm2 以上のヤング率と10%IACS以上
の電気伝導度をもち、スティフネスと熱放散性のバラン
スに優れた重量%で10〜90%Cuを含有するFe−
Cu合金高集積薄型リードフレーム用途金属板を得るこ
とができる。
(G) Uniformization of residual stress: The residual stress is uniformized in the plate thickness direction by using at least one of a tension leveler and a tension annealer for the purpose of eliminating warpage after etching. Thus, according to the present invention, it has good bendability and its in-plane anisotropy is small,
Fe-having a Young's modulus of 15000 kgf / mm 2 or more and an electric conductivity of 10% IACS or more, and having an excellent balance between stiffness and heat dissipation, containing 10 to 90% Cu by weight%
A Cu alloy highly integrated thin lead frame application metal plate can be obtained.

【0024】[0024]

【実施例】【Example】

〔実施例1〕表1に示す組成を有するFe−30%Cu
合金を実験室的に真空溶製した。すなわち、基本組成は
Fe−30%Cu合金であるが、耐食性を確保するため
にCr,Moを、強度と電気伝導度のバランスを改善す
るためにZr,Tiを、さらに鋳造性を改善するために
Alを添加している。双ロール鋳造機を用いて、320
℃/sの表面冷却速度で板厚2.0mmを鋳造した。さら
に、冷間圧延性を改善するために、上に述べた鋳片に8
00℃で1時間の軟化焼鈍を施し、その後1.9mm厚ま
でコイル研削機でコイルの両面を研削した。続いて0.
13mm厚まで冷間圧延を施すにあたり、素材の長手方向
の圧下率rL とその垂直方向の圧下率r C の比(rL
C )を表2に示すように種々変化させた。なお簡単の
ために、最初に素材長手方向に(1−(1−rL )1/2)
の圧下率で圧延し、続いてその垂直方向に圧下率rC
圧延を施し、最後に素材長手方向に圧下率(1−(1−
L )1/2) の圧延を施した。このように作製された冷間
圧延板を光輝焼鈍炉にて焼鈍した。焼鈍条件は、100
0℃−60sである。続いて、真空炉にて500℃で3
時間の時効処理焼鈍を行い、表面研磨の後、圧下率5%
の調質圧延で表面粗度と形状を調整した。そして、残留
応力を均一化するために450℃でテンションアニール
した。
 [Example 1] Fe-30% Cu having the composition shown in Table 1
The alloy was vacuum melted in a laboratory. That is, the basic composition is
Fe-30% Cu alloy, but to ensure corrosion resistance
Cr and Mo to improve the balance between strength and electrical conductivity
Zr and Ti in order to improve castability
Al is added. Using a twin roll caster, 320
A plate thickness of 2.0 mm was cast at a surface cooling rate of ° C / s. Furthermore
In addition, in order to improve the cold rolling property,
Softening annealing at 00 ℃ for 1 hour, then 1.9mm thick
Both sides of the coil were ground with a coil grinder. Then 0.
When performing cold rolling to a thickness of 13 mm, the longitudinal direction of the material
Reduction ratio rLAnd its vertical rolling reduction r CRatio of (rL/
rC) Was changed variously as shown in Table 2. Still simple
First, in the longitudinal direction of the material (1- (1-rL)1/2)
Rolling at a rolling reduction ofCof
Rolling is performed, and finally, the reduction ratio (1- (1-
r L)1/2) Was rolled. Cold produced in this way
The rolled plate was annealed in a bright annealing furnace. The annealing condition is 100
It is 0 ° C-60s. Then, in a vacuum furnace at 500 ℃ 3
Time aging annealing, after surface polishing, rolling reduction 5%
The surface roughness and shape were adjusted by temper rolling. And residual
Tension annealing at 450 ° C to homogenize stress
did.

【0025】[0025]

【表1】 [Table 1]

【0026】[0026]

【表2】 [Table 2]

【0027】引張り特性はJIS13号B試験片を用い
て10mm/min のクロスヘッド変位速度で評価した。繰
り返し曲げ試験は、MIL−STD−883/2004
に準拠して行い、0.5mm幅×30mm長×板厚の試験片
に225gfの荷重を加え90度曲げを繰り返し施す。9
0度曲げ1回を曲げ回数1回とみなした。電気伝導度
は、4端子法を用いて評価した。また、ヤング率は共振
法を用いて求めた。表面粗度は、25mm長にわたる粗度
測定におけるRmax を採用した。表2にこれらの測定結
果をまとめて示す。また、同表に比較のために、市販の
高強度Fe−Ni合金(HT42)、および高強度Cu
合金(KLF185)の結果も示す。
The tensile properties were evaluated using a JIS No. 13 B test piece at a crosshead displacement rate of 10 mm / min. Repeated bending test is MIL-STD-883 / 2004
The test piece having a width of 0.5 mm, a length of 30 mm and a plate thickness is repeatedly subjected to 90 ° bending by applying a load of 225 gf. 9
One bend at 0 ° was considered as one bend. The electrical conductivity was evaluated using the 4-terminal method. The Young's modulus was obtained using the resonance method. As the surface roughness, R max in the roughness measurement over a length of 25 mm was adopted. Table 2 collectively shows these measurement results. Further, for comparison in the table, a commercially available high-strength Fe-Ni alloy (HT42) and high-strength Cu are used.
The results for the alloy (KLF185) are also shown.

【0028】表2から明らかなように、クロス圧延技術
を活用した本発明材は良好な曲げ性を有しかつその面内
異方性が小さい。さらに、ヤング率と電気伝導度のバラ
ンスに優れており、スティフネスと熱放散性が従来にな
い高いレベルでバランスされている。また、表面粗度も
十分小さい。さらに、耐食性の評価を48時間の塩水噴
霧試験による赤錆発生率から実施したが、本発明材はF
e−42Ni並の実力を有し問題なかった。また、本発
明材は濡れ面積率から評価したハンダ性も良好であるこ
とを確認した。 〔実施例2〕実施例1の知見を基に、表3に示す化学組
成を有する鋼B(Fe−50%Cu合金)、鋼C(Fe
−75%Cu)を実験室的に溶製した。これらの鋼に
は、実施例1と同様にCr,Mo,Zr,Ti,Alを
添加している。さらに、双ロール鋳造機を用いて、板厚
2.0mmの鋳片を鋳造した。鋳造コイルの両面を1.9
mm厚まで研削した。続いて0.13mm厚まで冷間圧延を
施すにあたり、素材の長手方向への圧下率rL とその垂
直方向への圧下率rC の比(rL /rC )を表4に示す
ように種々変化させた。なお簡単のために、最初に素材
圧延方向に(1−(1−rL )1/2) の圧下率で圧延し、
続いてその垂直方向に圧下率rC の圧延を施し、最後に
素材長手方向に圧下率(1−(1−rL )1/2) の圧延を
施した。
As is clear from Table 2, the material of the present invention utilizing the cross rolling technique has good bendability and its in-plane anisotropy is small. Furthermore, it has an excellent balance between Young's modulus and electrical conductivity, and balances stiffness and heat dissipation at unprecedentedly high levels. Also, the surface roughness is sufficiently small. Further, the corrosion resistance was evaluated from the red rust generation rate by a salt spray test for 48 hours.
There was no problem because it had the same ability as e-42Ni. In addition, it was confirmed that the material of the present invention had good solderability evaluated from the wet area ratio. [Example 2] Based on the findings of Example 1, Steel B (Fe-50% Cu alloy) and Steel C (Fe having the chemical compositions shown in Table 3)
-75% Cu) was melted in the laboratory. Cr, Mo, Zr, Ti, and Al are added to these steels as in the first embodiment. Further, a twin roll casting machine was used to cast a slab having a plate thickness of 2.0 mm. Both sides of the cast coil are 1.9
It was ground to a thickness of mm. Subsequently, in performing cold rolling to a thickness of 0.13 mm, the ratio (r L / r C ) of the reduction ratio r L in the longitudinal direction of the material and the reduction ratio r C in the vertical direction is shown in Table 4. Various changes were made. For simplicity, first, the material is rolled in the rolling direction at a rolling reduction of (1- (1-r L ) 1/2 ),
Subsequently, rolling with a reduction ratio r C was performed in the vertical direction, and finally, reduction with a reduction ratio (1- (1-r L ) 1/2 ) was performed in the longitudinal direction of the material.

【0029】[0029]

【表3】 [Table 3]

【0030】[0030]

【表4】 [Table 4]

【0031】このように作製された冷間圧延板を光輝焼
鈍炉にて焼鈍した。焼鈍条件は、1000℃−60sで
ある。続いて、真空炉にて500℃で3時間の時効処理
焼鈍を行った。表面研磨の後、圧下率3%の調質圧延を
施した。続いて残留応力を板厚方向に均一化する目的で
コイルをテンションレベラーにかけた。このように製造
した材料を、リードフレーム用途としての基本的な性能
評価に供した。すなわち、引張り試験、繰り返し曲げ試
験、電気伝導度測定、ヤング率測定、表面粗度測定など
を評価したが、これらの評価測定法は、実施例1と全く
同様である。その結果を表4にまとめて示す。また、比
較のために同表に、市販の高強度Fe−Ni合金(HT
42)、および高強度Cu合金(KLF185)の結果
も示す。同表から明らかなように、本発明材はクロス圧
延技術により良好な曲げ性を有しかつその面内異方性が
小さい、さらに、ヤング率と電気伝導度のバランスに優
れており、スティフネスと熱放散性が従来になく良好で
ある。また、表面粗度も十分小さい。さらに、耐食性、
ハンダ性も良好であることを確認した。 〔実施例3〕実施例1の鋼A−2および実施例2の鋼B
−2、さらに比較材として実施例1,2で用いた高強度
Fe−42%Ni合金(HT42)、高強度Cu基合金
(KLF185)の材料を用いてスティフネスを測定し
た。測定方法はASTM−F113−77に準拠した。
図1に示すように、本発明材は曲げモーメントの増加に
対する変位量が従来材と比較し最も小さく、スティフネ
スが良好であった。片持ち梁の理論から求めた曲げモー
メントと変位量の関係は、図1に示すように実験結果と
良い一致を示しており、ヤング率がスティフネスを決定
していることが初めて明らかとなった。本発明の合金
は、ヤング率が従来材と比較し著しく高いので、スティ
フネスが良好であった。
The cold rolled sheet thus produced was annealed in a bright annealing furnace. The annealing condition is 1000 ° C.-60 s. Then, aging annealing was performed at 500 ° C. for 3 hours in a vacuum furnace. After the surface polishing, temper rolling with a rolling reduction of 3% was performed. Subsequently, the coil was put on a tension leveler for the purpose of making the residual stress uniform in the plate thickness direction. The material thus manufactured was subjected to a basic performance evaluation as a lead frame application. That is, a tensile test, a repeated bending test, an electric conductivity measurement, a Young's modulus measurement, a surface roughness measurement and the like were evaluated, and the evaluation measurement methods are exactly the same as in Example 1. The results are summarized in Table 4. Further, for comparison, the same table also shows a commercially available high-strength Fe-Ni alloy (HT
42) and high strength Cu alloy (KLF185) results are also shown. As is clear from the table, the material of the present invention has good bendability and small in-plane anisotropy due to the cross rolling technique, and further has excellent balance between Young's modulus and electrical conductivity, and stiffness and Excellent heat dissipation as never before. Also, the surface roughness is sufficiently small. Furthermore, corrosion resistance,
It was confirmed that the solderability was also good. Example 3 Steel A-2 of Example 1 and Steel B of Example 2
-2, the stiffness was measured using the high strength Fe-42% Ni alloy (HT42) and high strength Cu-based alloy (KLF185) materials used in Examples 1 and 2 as comparative materials. The measuring method was based on ASTM-F113-77.
As shown in FIG. 1, the material of the present invention had the smallest displacement amount with respect to the increase of the bending moment as compared with the conventional material, and had good stiffness. The relationship between the bending moment and the displacement amount obtained from the cantilever theory is in good agreement with the experimental results as shown in Fig. 1, and it became clear for the first time that Young's modulus determines stiffness. The alloy of the present invention has a significantly higher Young's modulus than that of the conventional material, and therefore has good stiffness.

【0032】[0032]

【発明の効果】以上詳述したように、本発明材は曲げ性
が良好でその面内異方性が小さい特徴を有するので、Q
FPなどの高集積リードフレームに好適である。さら
に、従来材と比較し、より優れたヤング率と電気伝導度
のバランスを有するので、実用性能として重要となるス
ティフネスと熱放散性が改善される。したがって、本発
明材をリードフレーム用途に適用すれば、半導体デバイ
スのより一層の高集積化が可能となる。したがって、そ
の工業的意義は極めて高く、多くの分野に影響を及ぼす
ので、その効果は著しい。
As described in detail above, since the material of the present invention has the characteristics of good bendability and small in-plane anisotropy,
It is suitable for highly integrated lead frames such as FP. Furthermore, since it has a better balance of Young's modulus and electrical conductivity than the conventional material, the stiffness and heat dissipation, which are important for practical use, are improved. Therefore, if the material of the present invention is applied to a lead frame, the semiconductor device can be highly integrated. Therefore, its industrial significance is extremely high, and since it affects many fields, its effect is remarkable.

【図面の簡単な説明】[Brief description of drawings]

【図1】材料のスティフネスの測定方法を示す概略図で
ある。
FIG. 1 is a schematic diagram showing a method for measuring the stiffness of a material.

【図2】曲げモーメントと変位量との関係を示す図であ
る。
FIG. 2 is a diagram showing a relationship between a bending moment and a displacement amount.

【符号の説明】[Explanation of symbols]

1…試料 P…荷重 δ…たわみ量 1 ... Sample P ... Load δ ... Deflection amount

フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 C22C 9/00 38/20 C22F 1/08 B H01L 23/50 V 9272−4M Continuation of the front page (51) Int.Cl. 5 Identification number Office reference number FI technical display location C22C 9/00 38/20 C22F 1/08 B H01L 23/50 V 9272-4M

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 重量%でCu:10〜90%を含有する
Fe−Cu合金であって、かつコイル長手方向および垂
直方向の90度繰り返し曲げ回数(それぞれnL
C )が3回以上で、これらの比(nC /nL )が1〜
3と小さい面内異方性を有し、さらにそれぞれの方向の
ヤング率が15000 kgf/mm2 以上、常温の電気伝導
度が10%IACS以上を有することを特徴とするスティフ
ネスと熱放散性とのバランスに優れた曲げの面内異方性
の小さいFe−Cu合金リードフレーム用金属板。
1. An Fe-Cu alloy containing 10 to 90% by weight of Cu, and the number of times of repeated bending at 90 degrees in the coil longitudinal direction and the vertical direction (n L , respectively ) .
n C ) is 3 times or more, and the ratio (n C / n L ) of these is 1 to
3 has small in-plane anisotropy, Young's modulus in each direction is 15000 kgf / mm 2 or more, and electric conductivity at room temperature is 10% IACS or more. Stiffness and heat dissipation Fe-Cu alloy lead frame metal plate with excellent in-plane bending and small in-plane anisotropy.
【請求項2】 重量%でCu:10〜90%を含有する
Fe−Cu溶融金属を10から1000℃/sの凝固冷
却速度で板厚0.5〜8mmの金属板に鋳造し、次に素材
長手方向の圧延圧下率(rL )と幅方向の圧延圧下率
(rC )との比(rL /rC )を1〜10とし、かつ全
圧下率が30%以上の冷間圧延を行い、該冷間圧延材を
600〜1100℃の温度範囲で焼鈍した後、300〜
650℃の温度範囲で時効処理を施し、その後テンショ
ンレベラーまたはテンションアニーラーの少くとも一方
を用いて残留応力の均一化処理を行なうことを特徴とす
るスティフネスと熱放散性とのバランスに優れた曲げの
面内異方性の小さいリードフレーム用金属板の製造方
法。
2. A Fe—Cu molten metal containing Cu: 10 to 90% by weight is cast at a solidification cooling rate of 10 to 1000 ° C./s into a metal plate having a thickness of 0.5 to 8 mm, and then, Cold rolling in which the ratio (r L / r C ) of the rolling reduction (r L ) in the longitudinal direction of the material to the rolling reduction (r C ) in the width direction is 1 to 10 and the total reduction is 30% or more. And annealing the cold rolled material in the temperature range of 600 to 1100 ° C., and then 300 to
Bending with excellent balance between stiffness and heat dissipation, characterized by performing aging treatment in a temperature range of 650 ° C and then performing residual treatment homogenization treatment using at least one of a tension leveler and a tension annealer. Of manufacturing a metal plate for a lead frame having a small in-plane anisotropy.
【請求項3】 鋳造に引き続き、鋳片を500から90
0℃の温度範囲に軟化焼鈍してから冷間圧延することを
特徴とする請求項2に記載の製造方法。
3. Following casting, the slab is 500 to 90
The manufacturing method according to claim 2, wherein the material is softened and annealed in a temperature range of 0 ° C and then cold-rolled.
JP4346970A 1992-12-25 1992-12-25 Metal plate for Fe-Cu alloy lead frame having small in-plane anisotropy of bending and method for producing the same Expired - Fee Related JP2705875B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4346970A JP2705875B2 (en) 1992-12-25 1992-12-25 Metal plate for Fe-Cu alloy lead frame having small in-plane anisotropy of bending and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4346970A JP2705875B2 (en) 1992-12-25 1992-12-25 Metal plate for Fe-Cu alloy lead frame having small in-plane anisotropy of bending and method for producing the same

Publications (2)

Publication Number Publication Date
JPH06192793A true JPH06192793A (en) 1994-07-12
JP2705875B2 JP2705875B2 (en) 1998-01-28

Family

ID=18387050

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4346970A Expired - Fee Related JP2705875B2 (en) 1992-12-25 1992-12-25 Metal plate for Fe-Cu alloy lead frame having small in-plane anisotropy of bending and method for producing the same

Country Status (1)

Country Link
JP (1) JP2705875B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002161341A (en) * 2000-11-21 2002-06-04 Sumitomo Metal Ind Ltd Austenitic stainless steel sheet including b and manufacturing method therefor
CN102199711A (en) * 2011-04-15 2011-09-28 中天合金技术有限公司 Production method of high-precision ultralong oxygen-free copper strip

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0359131A (en) * 1989-07-25 1991-03-14 Toyobo Co Ltd Composite precursor for producing formed article
JPH0424420A (en) * 1990-05-16 1992-01-28 Ngk Spark Plug Co Ltd Sheathed type glow plug
JPH04231102A (en) * 1990-12-28 1992-08-20 Daido Steel Co Ltd Manufacture of material for ic lead frame

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0359131A (en) * 1989-07-25 1991-03-14 Toyobo Co Ltd Composite precursor for producing formed article
JPH0424420A (en) * 1990-05-16 1992-01-28 Ngk Spark Plug Co Ltd Sheathed type glow plug
JPH04231102A (en) * 1990-12-28 1992-08-20 Daido Steel Co Ltd Manufacture of material for ic lead frame

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002161341A (en) * 2000-11-21 2002-06-04 Sumitomo Metal Ind Ltd Austenitic stainless steel sheet including b and manufacturing method therefor
CN102199711A (en) * 2011-04-15 2011-09-28 中天合金技术有限公司 Production method of high-precision ultralong oxygen-free copper strip

Also Published As

Publication number Publication date
JP2705875B2 (en) 1998-01-28

Similar Documents

Publication Publication Date Title
CN101842506B (en) Copper alloy material excellent in strength, bending workability and stress relaxation resistance, and method for producing the same
EP2641983A1 (en) Cu-Ni-Si-Co COPPER ALLOY FOR ELECTRON MATERIAL AND METHOD FOR PRODUCING SAME
CN101946014A (en) Copper alloy material
JP4157899B2 (en) High strength copper alloy sheet with excellent bending workability
JPWO2010064547A1 (en) Cu-Ni-Si-Co-based copper alloy for electronic materials and method for producing the same
CN103443309B (en) Copper alloy sheet material and process for producing same
WO2012043170A1 (en) Cu-Co-Si-BASED COPPER ALLOY FOR ELECTRONIC MATERIAL AND METHOD FOR PRODUCING SAME
JPS6179724A (en) Manufacture of thin plate of high-silicon iron alloy
JP6533401B2 (en) Cu-Ni-Si copper alloy sheet, method for producing the same, and lead frame
JPH06100983A (en) Metal foil for tab tape having high young&#39;s modulus and high yield strength and its production
JPH06192793A (en) Metal sheet for fe-cu alloy lead frame minimal in inplane anisotropy of bending and its production therefor
JPH10287939A (en) Copper alloy for electric and electronic equipment, excellent in punchability
US20220205074A1 (en) Copper alloys with high strength and high conductivity, and processes for making such copper alloys
JPWO2018061530A1 (en) Method of manufacturing Fe-Ni based alloy sheet and Fe-Ni based alloy sheet
US8328961B2 (en) Iron-nickel alloy strip for the manufacture of support grids for the integrated circuits
JP3518707B2 (en) Fe-Ni-based alloy sheet having excellent workability and method for producing the same
JPH06256909A (en) Metallic sheet for electric contact spring having superior bendability and excellent spring characteristic and its production
JPH0424420B2 (en)
JPH0798975B2 (en) Method for producing Fe-Ni alloy
JP4042897B2 (en) Steel plate for CRT frame
JP4679040B2 (en) Copper alloy for electronic materials
JPS63176427A (en) Manufacture of grain-oriented high-silicon steel sheet
JP2004143469A (en) High strength copper alloy excellent in bendability
JPH09268348A (en) Fe-ni alloy sheet for electronic parts and its production
JP3117852B2 (en) Fe-Cu alloy IC lead frame and method of manufacturing the same

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19970902

LAPS Cancellation because of no payment of annual fees