JPH06192706A - Method for degreasing sinterable powder compact - Google Patents

Method for degreasing sinterable powder compact

Info

Publication number
JPH06192706A
JPH06192706A JP35846792A JP35846792A JPH06192706A JP H06192706 A JPH06192706 A JP H06192706A JP 35846792 A JP35846792 A JP 35846792A JP 35846792 A JP35846792 A JP 35846792A JP H06192706 A JPH06192706 A JP H06192706A
Authority
JP
Japan
Prior art keywords
degreasing
powder
oxygen
temperature
binder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP35846792A
Other languages
Japanese (ja)
Inventor
Toru Minami
融 南
Jiro Nagarego
治朗 流郷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Chemical Industries Ltd
Original Assignee
Sanyo Chemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Chemical Industries Ltd filed Critical Sanyo Chemical Industries Ltd
Priority to JP35846792A priority Critical patent/JPH06192706A/en
Publication of JPH06192706A publication Critical patent/JPH06192706A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To degrease a sinterable powder compact at low temp. in a short time without oxidizing the powder by heating the compact consisting of a sinterable powder and an org. binder in the oxygen-enriched air to decompose and remove the binder. CONSTITUTION:A composition consisting of a mixture of a sinterable powder consisting of metal powder and/or ceramic powder and org. binder is injection- molded. The obtained compact is heated to decompose and remove the binder from the compact. In this method for degreasing the sinterable powder compact, the binder is preferably decomposed and removed in the oxygne-enriched air contg. 25-50vol.% oxygen.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、焼結性粉末成形体の脱
脂方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for degreasing a sinterable powder compact.

【0002】[0002]

【従来の技術】従来の成形用組成物および焼結体の製造
方法として金属粉末および/またはセラミック粉末と熱
可塑樹脂及びワックス等からなる有機バインダーの混合
物を射出成形し、成形体を加熱することにより有機バイ
ンダーを分解除去させた後、焼結する製造方法が知られ
ている(特開昭58−223662号、平2−5470
3号各号公報など)。上記の射出成形法は、三次元複雑
形状および高精度、大量生産、後加工の必要のないニア
ネットシェイプの成形が可能であるという特徴を持って
おり、近年実用化に至っている。従来、焼結性粉末成形
体を、加熱することにより有機バインダーを分解除去さ
せる脱脂方法としては、通常の大気雰囲気下で行う、
窒素ガス等の不活性ガス雰囲気下で行う、減圧下で
行う、等の方法が一般に知られている。
2. Description of the Related Art As a conventional method for producing a molding composition and a sintered body, a mixture of metal powder and / or ceramic powder and an organic binder composed of thermoplastic resin and wax is injection-molded and the molded body is heated. A production method is known in which the organic binder is decomposed and removed by the method described above, and then sintered (JP-A-58-223662, JP-A-2-5470).
No. 3, etc.) The above-mentioned injection molding method is characterized by being capable of molding a three-dimensional complex shape, high precision, mass production, and near net shape without the need for post-processing, and has been put to practical use in recent years. Conventionally, as a degreasing method for decomposing and removing the organic binder by heating the sinterable powder compact, it is carried out in a normal atmospheric atmosphere,
Methods such as performing in an atmosphere of an inert gas such as nitrogen gas or under reduced pressure are generally known.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、従来の
方法では脱脂時間に通常24時間以上の長時間と、脱脂
温度に通常400℃以上の高温を必要とするため、生産
性、コストまた焼結部品の各種性能面に於て多大の支障
をきたしていたのが実状である。
However, in the conventional method, the degreasing time usually requires a long time of 24 hours or more and the degreasing temperature usually requires a high temperature of 400 ° C. or more. The actual situation was that it had caused a great deal of trouble in terms of various performances.

【0004】[0004]

【課題を解決するための手段】本発明者らは上記の事情
に鑑み、上記問題点を解消できる脱脂方法を鋭意検討し
た結果、有機バインダーの分解除去を酸素富化空気下で
行う事により、低温短時間で脱脂可能となるばかりでな
く懸念された焼結性粉末の酸化等の問題を有しない事を
見いだし本発明に到達した。
In view of the above circumstances, the inventors of the present invention have made extensive studies as to a degreasing method capable of solving the above problems, and as a result, by decomposing and removing the organic binder under oxygen-enriched air, The present invention has been accomplished by finding that not only degreasing can be carried out at a low temperature in a short time, but also there is no concern about oxidation of the sinterable powder.

【0005】すなわち本発明は、金属粉末および/また
はセラミック粉末からなる焼結性粉末と有機バインダー
との混合物からなる組成物を成形して得た成形体を加熱
し、該成形体から有機バインダーを分解除去する脱脂方
法に於て、有機バインダーの分解除去を酸素富化空気下
で行う事を特徴とする焼結性粉末成形体の脱脂方法であ
る。
That is, according to the present invention, a molded body obtained by molding a composition composed of a mixture of a sinterable powder composed of metal powder and / or ceramic powder and an organic binder is heated to convert the organic binder from the molded body. In the degreasing method of decomposing and removing, the degreasing method of a sinterable powder compact is characterized in that the organic binder is decomposed and removed under oxygen-enriched air.

【0006】本発明の方法において使用する焼結性粉末
の内金属粉末としては、鉄(カーボニル鉄、アトマイズ
鉄、還元鉄など)、ニッケル(カーボニルニッケルな
ど)、コバルト、アルミニウム、銅、チタン、モリブデ
ン、ジルコニウム、クロム、鉛、マンガン、タングステ
ン、亜鉛、錫、ベリリウム、ゲルマニウム、マグネシウ
ムなどの金属粉およびこれらの金属を2種あるいはそれ
以上含む合金粉(例えば、ステンレス粉、鉄−ニッケル
合金、高速度鋼粉、超合金、磁性材料、青銅、モネルメ
タル、鉄−シリカ合金、鉄−ボロン合金、超硬合金な
ど)があり、これらのうち2種またはそれ以上を必要に
応じ適宜混合して使用することができる。これらの他
に、シリコン粉、ボロン粉など非金属粉も含めることが
できる。
The metal powder of the sinterable powder used in the method of the present invention includes iron (carbonyl iron, atomized iron, reduced iron, etc.), nickel (carbonyl nickel, etc.), cobalt, aluminum, copper, titanium, molybdenum. , Zirconium, chromium, lead, manganese, tungsten, zinc, tin, beryllium, germanium, magnesium and other metal powders and alloy powders containing two or more of these metals (for example, stainless powder, iron-nickel alloy, high speed) Steel powder, superalloys, magnetic materials, bronze, monel metal, iron-silica alloys, iron-boron alloys, cemented carbides, etc.), and two or more of these may be used in appropriate mixture if necessary. You can In addition to these, non-metal powders such as silicon powder and boron powder may be included.

【0007】セラミック粉末としては、酸化物(酸化ア
ルミニウム、酸化ケイ素、酸化ジルコニウム、酸化ベリ
リウム、酸化マグネシウム、酸化チタンなど)、ケイ酸
塩(ムライト、コーデュライトなど)、チタン酸塩(チ
タン酸バリウムなど)、炭化物(炭化ケイ素、炭化ホウ
素、炭化アルミニウム、炭化タングステン、炭化チタ
ン、炭化ジルコニウム、炭化ハフニウム、炭化クロム、
炭化バナジウム、炭素など)、窒化物(窒化ケイ素、窒
化アルミニウム、窒化ホウ素、窒化チタンなど)、ケイ
化物(2ケイ化モリブデンなど)、硫化物(硫化カドミ
ウム、硫化亜鉛など)などおよびこれら2種以上の混合
物があげられる。
Ceramic powders include oxides (aluminum oxide, silicon oxide, zirconium oxide, beryllium oxide, magnesium oxide, titanium oxide, etc.), silicates (mullite, cordurite, etc.), titanates (barium titanate, etc.). ), Carbides (silicon carbide, boron carbide, aluminum carbide, tungsten carbide, titanium carbide, zirconium carbide, hafnium carbide, chromium carbide,
Vanadium carbide, carbon, etc., nitrides (silicon nitride, aluminum nitride, boron nitride, titanium nitride, etc.), silicides (molybdenum disilicide, etc.), sulfides (cadmium sulfide, zinc sulfide, etc.), etc. and two or more of these A mixture of

【0008】これらの粉末は、単独であるいは2種以上
の異なった種類または異なった粒径、異なった形の混合
物として使用される。金属粉末とセラミック粉末の混合
物としても使用される。例えば、炭化タングステン−コ
バルト、アルミナ−アルミニウムなどである。これらの
混合物は、金属粉末とセラミック粉末のブレンドそして
合金も含める。また、これらの粉末(金属粉末および/
またはセラミック粉末)は、通常、数パーセントの不純
物および/または添加剤を含んでいる。例えば、焼結助
材、成形助剤などである。これらの粉末の平均粒径は、
例えば、金属粉末やセラミック粉末の場合0.01〜1
00ミクロンである。好ましくは、0.1〜50ミクロ
ンである。特に、直径0.01ミクロン以下では取扱が
困難で成形性が不十分である。100ミクロンを越える
粒子は焼結性が不十分である。
These powders are used alone or as a mixture of two or more different kinds or different particle sizes and different forms. It is also used as a mixture of metal powder and ceramic powder. For example, tungsten carbide-cobalt, alumina-aluminum and the like. These mixtures also include blends of metal and ceramic powders and alloys. Moreover, these powders (metal powder and / or
(Or ceramic powder) usually contains several percent of impurities and / or additives. For example, it is a sintering aid, a forming aid, or the like. The average particle size of these powders is
For example, 0.01 to 1 in the case of metal powder or ceramic powder
It is 00 microns. It is preferably 0.1 to 50 microns. In particular, if the diameter is 0.01 micron or less, handling is difficult and moldability is insufficient. Particles over 100 microns have poor sinterability.

【0009】本発明の方法において焼結性粉末の組成物
全体に占める量は、通常30〜70体積%、好ましく
は、40〜60体積%、さらに好ましくは、50〜60
体積%である。粉末量が、70体積%を越えると有機バ
インダーと粉末を均一に混練することが困難になりかつ
成形が困難になる。30体積%より少ないと脱脂中に成
形物が大きく変形してしまう。
In the method of the present invention, the amount of the sinterable powder in the entire composition is usually 30 to 70% by volume, preferably 40 to 60% by volume, more preferably 50 to 60% by volume.
% By volume. When the amount of powder exceeds 70% by volume, it becomes difficult to uniformly knead the organic binder and the powder, and molding becomes difficult. If it is less than 30% by volume, the molded product is largely deformed during degreasing.

【0010】本発明の方法において使用する有機バイン
ダーとしては、従来から当該分野で公知の熱可塑樹脂が
全て使用できる。該熱可塑樹脂は、アクリル系樹脂[ポ
リ(メタ)アクリル酸エステル(ポリメチルメタクリレ
ート、ブチルメタクリレート−メチルメタクリレート共
重合体など)]、オレフィン系樹脂[炭化水素モノマー
の共重合体(オレフィンとスチレンモノマーの共重合
体、ポリエチレン、ポリプロピレンなど)、オレフィン
共重合体[エチレン共重合体(エチレン−酢酸ビニル共
重合体など)、スチレン共重合体(スチレン−メチルメ
タクリレート共重合体など)]、ビニルエステル系また
はビニルアルコール系樹脂[ポリ酢酸ビニル、ポリビニ
ルアセタール(ポリビニルホルマール、ポリビニルブチ
ラールなど)]、ハロゲンを含む樹脂[ポリ塩化ビニル
など]、窒素を含む樹脂[ポリ(メタ)アクリロニトリ
ルなど]。ポリエステル系樹脂(ポリエチレンテレフタ
レート、ポリテトラメチレンテレフタレートなど)。ポ
リカーボネート(ポリエチレンカーボネート、ポリプロ
ピレンカーボネートなど)、ポリアミド(ナイロン6、
ナイロン66、ナイロン12など)、ポリイミド、アリ
ール酸樹脂(ポリアリールエーテル、ポリサルフォン、
ポリフェニレンサルファイドなど)。ポリアセタール
[トリオキサンからなるホモポリマー、トリオキサンと
一種あるいはそれ以上のコモノマー(エチレンオキサイ
ドなど)との共重合体など]。セルロース類(ニトロセ
ルロース、セルロースアセテート、エチルセルロースな
ど)およびこれら2種以上の熱可塑樹脂の組み合せがあ
げられる。これらのうち好ましいものは脱脂時に自重に
よる変形を起こしにくい理由から、熱変形温度が130
℃以上の樹脂である。例えば、ポリアセタール、ポリフ
ェニレンオキサイド、ポリサルフォン、ポリカーボネー
ト、ポリエーテルそしてポリアミドがあげられる。特に
ポリアセタールは溶融粘度が低いため成形性が良く、熱
分解性が良好なため脱脂性も良い。又脱脂時に於ける自
重による変形もほとんど無い等の特長があり好ましく用
いられる。
As the organic binder used in the method of the present invention, all thermoplastic resins conventionally known in the art can be used. The thermoplastic resin is an acrylic resin [poly (meth) acrylic acid ester (polymethylmethacrylate, butylmethacrylate-methylmethacrylate copolymer, etc.)], an olefin resin [hydrocarbon monomer copolymer (olefin and styrene monomer). Copolymer, polyethylene, polypropylene, etc.), olefin copolymer [ethylene copolymer (ethylene-vinyl acetate copolymer, etc.), styrene copolymer (styrene-methyl methacrylate copolymer, etc.)], vinyl ester-based Alternatively, vinyl alcohol resins [polyvinyl acetate, polyvinyl acetal (polyvinyl formal, polyvinyl butyral, etc.)], halogen-containing resins [polyvinyl chloride, etc.], nitrogen-containing resins [poly (meth) acrylonitrile, etc.]. Polyester resin (polyethylene terephthalate, polytetramethylene terephthalate, etc.). Polycarbonate (polyethylene carbonate, polypropylene carbonate, etc.), polyamide (nylon 6,
Nylon 66, nylon 12, etc.), polyimide, aryl acid resin (polyaryl ether, polysulfone,
Such as polyphenylene sulfide). Polyacetal [a homopolymer composed of trioxane, a copolymer of trioxane and one or more comonomers (such as ethylene oxide)]. Examples thereof include celluloses (nitrocellulose, cellulose acetate, ethyl cellulose, etc.) and combinations of two or more of these thermoplastic resins. Among these, the preferable one is that the heat deformation temperature is 130 because it does not easily deform due to its own weight during degreasing.
It is a resin above ℃. Examples thereof include polyacetal, polyphenylene oxide, polysulfone, polycarbonate, polyether and polyamide. In particular, polyacetal has a low melt viscosity and thus has good moldability, and since it has good thermal decomposability, it also has good degreasing properties. Moreover, it is preferably used because it has almost no deformation due to its own weight during degreasing.

【0011】本発明の方法において使用する組成物は、
随意に他の成分を含有してもよい。例えば、可塑剤、滑
剤、界面活性剤、各種カップリング剤(シランカップリ
ング剤など)など当該分野で公知の物は全て使用可能で
ある。
The composition used in the method of the invention is
Other ingredients may optionally be included. For example, plasticizers, lubricants, surfactants, various coupling agents (silane coupling agents, etc.), and other materials known in the art can be used.

【0012】滑剤としては、ポリエーテル[ポリエチレ
ングリコール(以下PEGと略す)、ポリエチレンオキ
サイド等]、脂肪族炭化水素(流動パラフィン、ステア
リン酸など)、ワックス類(モンタンワックスなど)な
どがあげられる。とくに熱可塑樹脂としてポリアセター
ルを使用する場合は、相溶性の観点から、分子量が1,
000〜10万のPEGを使用するのが望ましい。PE
Gは射出成形時の流動性をさらに増し、脱脂中の変形防
止効果を高め、脱脂速度を早める役目を果たしている。
Examples of the lubricant include polyether [polyethylene glycol (hereinafter abbreviated as PEG), polyethylene oxide and the like], aliphatic hydrocarbon (liquid paraffin, stearic acid and the like), waxes (montane wax and the like) and the like. In particular, when polyacetal is used as the thermoplastic resin, from the viewpoint of compatibility, the molecular weight is 1,
It is desirable to use 000-100,000 PEGs. PE
G further serves to increase the fluidity during injection molding, enhance the deformation preventing effect during degreasing, and accelerate the degreasing speed.

【0013】可塑剤としては、フタル酸エステル(ジブ
チル、ジオクチル、ブチルベンジルフタレートなど)、
脂肪族二塩基酸エステルおよびポリオキシアルキレン安
息香酸などである。界面活性剤としては、アニオン系界
面活性剤(ドデシルベンゼン硫酸エステルなど)、ノニ
オン系界面活性剤(ポリオキシエチレンアルキルフェニ
ルエ−テルなど)、カチオン系界面活性剤(ラウリルト
リメチルアンモニウム塩化物など)、両性界面活性剤
(ステアリルジメチルカルボキシメチル−ベタインな
ど)などである。
As the plasticizer, phthalic acid esters (dibutyl, dioctyl, butylbenzyl phthalate, etc.),
Examples include aliphatic dibasic acid esters and polyoxyalkylene benzoic acid. As the surfactant, anionic surfactants (dodecylbenzene sulfate, etc.), nonionic surfactants (polyoxyethylene alkylphenyl ether, etc.), cationic surfactants (lauryl trimethyl ammonium chloride, etc.), Examples include amphoteric surfactants (such as stearyldimethylcarboxymethyl-betaine).

【0014】有機バインダー中に占める熱可塑樹脂成分
の量は、通常5〜90重量%、好ましくは10〜80重
量%である。90重量%より多いと混練物の流動性が不
十分であり、成形が困難になる。5重量%よりも少ない
と、成形体の強度が不十分でハンドリングが困難にな
る。
The amount of the thermoplastic resin component in the organic binder is usually 5 to 90% by weight, preferably 10 to 80% by weight. If it is more than 90% by weight, the fluidity of the kneaded product is insufficient and molding becomes difficult. If it is less than 5% by weight, the strength of the molded product is insufficient and handling becomes difficult.

【0015】本発明の方法に於て組成物は、成分の混合
および/または混練によって調製される。混合は、V型
ミキサー、ヘンシェルミキサー、ボールミルなどの混合
装置で行われる。混練は、バンバリーミキサー、プラス
トミル、ニーダー、加圧式ニーダー、ロールミル、スク
リュー式連続混練機などのよく知られた混練機を用いて
溶融させて行う。混練温度は、通常50〜400℃、好
ましくは、100〜250℃、温度コントロールは定
温、昇温、降温などで行う。混練時間は、通常10分〜
3時間で好ましくは20分〜2時間である。混練は、空
気中あるいは不活性ガス中で行われる。混練の方法とし
て、全部を一度に仕込混練する方法、一部を混練し、つ
いで残部を加えて混練する方法などがあげられるが特に
限定されるものではない。
In the method of the present invention, the composition is prepared by mixing and / or kneading the components. Mixing is performed with a mixing device such as a V-type mixer, a Henschel mixer, or a ball mill. The kneading is performed by melting using a well-known kneading machine such as a Banbury mixer, a plastomill, a kneader, a pressure kneader, a roll mill and a screw type continuous kneader. The kneading temperature is usually 50 to 400 ° C., preferably 100 to 250 ° C., and the temperature control is performed by constant temperature, temperature increase, temperature decrease, or the like. Kneading time is usually 10 minutes ~
It is preferably from 3 minutes to 20 minutes to 2 hours. The kneading is performed in air or an inert gas. Examples of the kneading method include, but are not particularly limited to, a method of kneading and kneading the whole material at once, a method of kneading a part thereof and then adding the rest, and the like.

【0016】本発明の方法に於て組成物は次いで射出成
形、押出成形、プレス成形などによりシート状または複
雑形状物を成形し、脱脂し、焼結し、必要により加工し
て成形品を得る。これらのうち射出成形が好ましい。射
出成形は、プランジャー式、スクリュー式などの通常の
射出成形機を用いることができる。成形条件は、金型形
状や組成物の組成により異なるが通常、成形圧力は10
〜20,000Kg/cm2、好ましくは100〜3,
000Kg/cm2である。成形温度は、通常20〜4
00℃、好ましくは50〜250℃である。加熱により
熱分解しやすい組成物においては、減圧下あるいは非酸
化雰囲気(窒素、アルゴンなどの不活性ガス雰囲気)で
成形する事も可能である。
In the method of the present invention, the composition is then molded into a sheet or complex shape by injection molding, extrusion molding, press molding, etc., degreased, sintered, and optionally processed to obtain a molded article. . Of these, injection molding is preferred. For injection molding, a normal injection molding machine such as a plunger type or a screw type can be used. Molding conditions differ depending on the shape of the mold and the composition of the composition, but the molding pressure is usually 10
~ 20,000 Kg / cm 2 , preferably 100-3.
It is 000 Kg / cm 2 . Molding temperature is usually 20-4
The temperature is 00 ° C, preferably 50 to 250 ° C. A composition which is easily thermally decomposed by heating can be molded under reduced pressure or in a non-oxidizing atmosphere (inert gas atmosphere such as nitrogen or argon).

【0017】成形が終了すれば、不要となった有機バイ
ンダーを除去する脱脂工程にはいる。脱脂の方法として
は、加熱脱脂、有機溶剤または水抽出脱脂、超臨界ガス
脱脂、光分解脱脂等が実用化されているが、生産性、コ
ストなどの点で加熱脱脂法が広く一般に利用されてい
る。加熱脱脂法での脱脂条件は、脱脂圧力として、大気
圧、減圧、及び加圧条件が、脱脂雰囲気として大気雰囲
気及び不活性ガス雰囲気(窒素など)が使用されるが、
圧力として減圧、加圧条件で脱脂を行うには特殊、高価
の脱脂炉が必要となり、不活性ガス雰囲気で脱脂を行う
場合には、高温、長時間を必要とするなどの問題があ
り、結局コスト、生産性の観点で大気圧力、大気雰囲気
下で脱脂を行うのが最も一般的である。しかしながら、
この方法においても上述したような問題が残されてい
た。
When the molding is completed, a degreasing step for removing the unnecessary organic binder is started. As the degreasing method, heating degreasing, organic solvent or water extraction degreasing, supercritical gas degreasing, photolytic degreasing, etc. have been put to practical use, but the heating degreasing method is widely used in terms of productivity, cost, etc. There is. The degreasing conditions in the thermal degreasing method include atmospheric pressure, reduced pressure, and pressurizing conditions as the degreasing pressure, and an air atmosphere and an inert gas atmosphere (such as nitrogen) are used as the degreasing atmosphere.
A special and expensive degreasing furnace is required to perform degreasing under reduced pressure and pressure conditions as pressure, and when performing degreasing in an inert gas atmosphere, there are problems such as high temperature and long time. From the viewpoint of cost and productivity, it is most common to perform degreasing under atmospheric pressure and atmosphere. However,
Even in this method, the above-mentioned problems remain.

【0018】本発明者らは、大気圧力、大気雰囲気下脱
脂の特徴を残した上で、如何にして低温かつ短時間で脱
脂が行えるか種々検討の結果、酸素富化空気下で脱脂を
行えば上記の問題が解決できるばかりでなく、焼結部品
性能にも好結果を与えることを見いだした。通常、酸素
富化空気を使用すれば、焼結性粉末の不必要な酸化を引
き起こすことが懸念されたが、バインダ−の分解が低温
度かつ短時間で行えるため、予想に反し通常の大気雰囲
気下で行うよりも酸化が抑制されることが判明した。有
機バインダーの分解が低温度かつ短時間で行える理由と
しては、有機バインダーの酸化熱分解が酸素富化空気に
より促進されるためであり、これにより焼結性粉末が酸
化性雰囲気下に短時間しか曝されないため、結果的に焼
結性粉末の酸化が抑制されるという二次的な好結果につ
ながったものと考えられる。
The present inventors have conducted various studies on how to perform degreasing at low temperature and in a short time while keeping the characteristics of degreasing under atmospheric pressure and atmosphere, and as a result, conducted degreasing under oxygen-enriched air. It was found that not only the above problems could be solved, but also the performance of sintered parts could be improved. Normally, it was feared that the use of oxygen-enriched air would cause unnecessary oxidation of the sinterable powder, but since the binder can be decomposed at a low temperature and in a short time, unexpectedly, it would be a normal atmospheric atmosphere. It was found that the oxidation was suppressed more than that performed below. The reason why the decomposition of the organic binder can be performed at low temperature and in a short time is that the oxidative thermal decomposition of the organic binder is promoted by the oxygen-enriched air. It is considered that this was connected to the secondary good result that the oxidation of the sinterable powder was suppressed because it was not exposed.

【0019】本発明の方法に於て使用する酸素富化空気
としては通常の大気中酸素濃度21体積%を超えるもの
であれば特に制限はないが、好ましくは、酸素濃度25
〜50体積%である。酸素濃度が25体積%以下であれ
ば、脱脂時間の短縮化、脱脂最高温度の低温化にさほど
大きな効果は認められない。酸素濃度が50体積%以上
では、工業生産性、焼結部品性能の面で問題が生じる場
合がある。これらの脱脂操作は、通常使用される加熱脱
脂炉に、酸素ボンベ、酸素富化装置等を付設して、該脱
脂炉内にある一定濃度の酸素富化空気を送風、循環させ
ることにより容易に実施することが出来る。
The oxygen-enriched air used in the method of the present invention is not particularly limited as long as it has a normal atmospheric oxygen concentration of more than 21% by volume, but an oxygen concentration of 25 is preferable.
˜50% by volume. When the oxygen concentration is 25% by volume or less, no significant effect is observed in shortening the degreasing time and lowering the maximum degreasing temperature. When the oxygen concentration is 50% by volume or more, problems may occur in terms of industrial productivity and performance of sintered parts. These degreasing operations can be easily performed by attaching an oxygen cylinder, an oxygen enrichment device, etc. to a commonly used heating degreasing furnace, and blowing and circulating oxygen-enriched air having a constant concentration in the degreasing furnace. Can be implemented.

【0020】脱脂条件は形状や組成物の組成脱脂時の雰
囲気等により大きく異なる為、一般的な定量化は困難で
あるが、本発明の酸素富化空気を使用すれば脱脂最高温
度を低下できるのみならず、脱脂時の昇温速度も速める
ことが出来るためトータルとしての脱脂サイクルが大幅
に低下できる。尚、本発明の酸素富化空気を使用する方
法によれば従来の方法に比べ脱脂体のクラックは生じに
くいが、より健全な脱脂体を得る為には各種セッターや
冶具等を用いて、成形体全面に酸素富化空気を十分通風
させる様、設置時に工夫することが必要である。
Since the degreasing conditions vary greatly depending on the shape and the atmosphere during composition degreasing of the composition, general quantification is difficult, but the maximum degreasing temperature can be lowered by using the oxygen-enriched air of the present invention. Not only that, the temperature rising rate at the time of degreasing can be increased, so that the total degreasing cycle can be significantly reduced. Incidentally, according to the method of using the oxygen-enriched air of the present invention, cracking of the degreased body is less likely to occur as compared with the conventional method, but in order to obtain a more sound degreased body, various setters or jigs are used for molding. It is necessary to devise it at the time of installation so that oxygen-enriched air can be sufficiently ventilated over the entire body.

【0021】脱脂体を焼結することにより最終品が得ら
れる。焼結は、通常、酸化性、還元性または不活性ガス
雰囲気下で減圧、常圧または加圧下で、脱脂体を通常
0.1〜1,000℃/hr、好ましくは10〜800
℃/hrの昇温速度で、通常600〜2,500℃、好
ましくは600〜2,200℃、さらに好ましくは80
0〜2,000℃まで昇温し、その温度で通常10分〜
10時間、好ましくは30分〜3時間保持することによ
って行われる。真空中で焼結する場合は、真空度は10
-2Torr以上、好ましくは10-3Torr以上であ
る。
The final product is obtained by sintering the degreased body. Sintering is usually performed under reduced pressure, normal pressure or increased pressure in an oxidizing, reducing or inert gas atmosphere, and the degreased body is usually 0.1 to 1,000 ° C./hr, preferably 10 to 800.
C./hr at a temperature raising rate of usually 600 to 2,500.degree. C., preferably 600 to 2,200.degree. C., more preferably 80.
The temperature is raised to 0 to 2,000 ° C, and at that temperature usually 10 minutes to
It is carried out by holding for 10 hours, preferably 30 minutes to 3 hours. When sintering in vacuum, the degree of vacuum is 10
It is −2 Torr or more, preferably 10 −3 Torr or more.

【0022】[0022]

【実施例】以下、実施例および比較例により本発明をさ
らに説明するが、本発明はこれらに限定されるものでは
ない。実施例および比較例中の部は重量部である。
The present invention will be further described below with reference to Examples and Comparative Examples, but the present invention is not limited to these. Parts in the examples and comparative examples are parts by weight.

【0023】 成形体1の作製 ステンレス粉 (大平洋金属製 PF−20) 100.0部 ポリアセタール (三菱瓦斯化学製 F40−03) 5.0部 PEG1000 (三洋化成工業製 PEG1000) 5.0部 を、加圧ニーダーを用い、仕込み時200℃、混練開始
後170℃まで徐々に温度を下げ約60分間混練を行っ
た。ついで、混練した組成物を射出成形機を用いて成形
温度165℃、射出圧力900kg/cm2の条件で金
型内に射出成形し成形体(100mm×10mm×4m
m)を得た。 成形体2の作製 バインダーをEVA4.0部、ポリブチルメタクリレー
ト3.0部、パラフィンワックス4.0部、ジブチルフ
タレート1.5部に替えた以外は、成形体1の作製と同
様の方法で成形体2を得た。 成形体3の作製 WC/Co粉 (東邦金属製 ) 100.0部 ポリアセタール (三菱瓦斯化学製 F40−03) 5.0部 PEG1000 (三洋化成工業製 PEG1000) 3.0部 イオネットYB400(三洋化成工業製) 3.0部 を使用し、成形体1の作製と同様の方法で成形体3を得
た。
Preparation of Molded Body 1 Stainless powder (PF-20 made by Taiheiyo Metal Co., Ltd.) 100.0 parts Polyacetal (F40-03 made by Mitsubishi Gas Chemical Co., Ltd.) 5.0 parts PEG1000 (PEG1000 made by Sanyo Chemical Industries) 5.0 parts Using a pressure kneader, the temperature was gradually lowered to 200 ° C. at the time of charging and 170 ° C. after the start of kneading, and kneading was performed for about 60 minutes. Then, the kneaded composition was injection-molded into a mold under the conditions of a molding temperature of 165 ° C. and an injection pressure of 900 kg / cm 2 by using an injection molding machine (100 mm × 10 mm × 4 m).
m) was obtained. Manufacture of molded product 2 Molded by the same method as in the manufacture of molded product 1, except that the binder was changed to 4.0 parts of EVA, 3.0 parts of polybutyl methacrylate, 4.0 parts of paraffin wax, and 1.5 parts of dibutyl phthalate. I got body 2. Manufacture of molded body 3 WC / Co powder (manufactured by Toho Metal Co., Ltd.) 100.0 parts Polyacetal (F40-03 manufactured by Mitsubishi Gas Chemical Co., Ltd.) 5.0 parts PEG1000 (PEG1000 manufactured by Sanyo Chemical Industries) 3.0 parts Ionet YB400 (Sanyo Chemical Co., Ltd.) Molded product) was used to obtain a molded product 3 in the same manner as in the production of the molded product 1.

【0024】実施例1〜3、比較例1〜5 成形体1〜3をそれぞれ下記の条件で脱脂した。 成形体1 酸素濃度37%の酸素富化空気雰囲気下 (実施例1) 成形体1 通常の大気雰囲気下 (比較例1) 成形体1 窒素雰囲気下 (比較例2) 成形体2 酸素濃度40%の酸素富化空気雰囲気下 (実施例2) 成形体2 通常の大気雰囲気下 (比較例3) 成形体2 窒素雰囲気下 (比較例4) 成形体3 酸素濃度37%の酸素富化空気雰囲気下 (実施例3) 成形体3 通常の大気雰囲気下 (比較例5) (使用設備) 鵬製作所製循風加熱脱脂炉 (脱脂条件) 脱脂最高温度:脱脂率を95%到達とするのに必要な加
熱最高温度 脱脂率;(成形体重量−脱脂体重量)/成形体中のバイ
ンダー重量×100(%) 脱脂昇温速度:脱脂欠陥を生じさせない加熱昇温速度の
最高値 次いで、焼結炉中、真空雰囲気下(10-3Torr以
上)、実施例1〜2、比較例1〜4は1300℃×2h
rsの条件で、実施例3、比較例5は1700℃×2h
rsの条件で焼結実施した。焼結密度を表1にまとめて
示す。尚、表中に現れる語句の定義は以下の通りであ
る。 脱脂時間 :(脱脂最高温度−脱脂開始温度)/脱脂
昇温速度 焼結密度 :焼結体密度/原料粉末の真密度×100
(%)
Examples 1 to 3 and Comparative Examples 1 to 5 Molded bodies 1 to 3 were degreased under the following conditions. Molded article 1 Under oxygen-enriched air atmosphere with oxygen concentration of 37% (Example 1) Molded article 1 Under normal atmospheric atmosphere (Comparative example 1) Molded article 1 Under nitrogen atmosphere (Comparative example 2) Molded article 2 Oxygen concentration 40% Under an oxygen-enriched air atmosphere of (Example 2) Molded body 2 Under normal air atmosphere (Comparative example 3) Molded body 2 Under nitrogen atmosphere (Comparative example 4) Molded body 3 Under oxygen-enriched air atmosphere of 37% oxygen concentration (Example 3) Molded article 3 Under normal atmosphere (Comparative example 5) (Facilities used) Air-circulating heating degreasing furnace manufactured by Peng Seisakusho (Degreasing condition) Maximum degreasing temperature: Necessary for reaching a degreasing rate of 95% Maximum heating temperature Degreasing rate: (Molded body weight-Degreased body weight) / Binder weight in molded body x 100 (%) Degreasing heating rate: Maximum heating heating rate that does not cause degreasing defects Next, in sintering furnace under vacuum atmosphere (10 -3 Torr or more), example 1 2, Comparative Examples 1 to 4 1300 ° C. × 2h
Example 3 and Comparative Example 5 were 1700 ° C. × 2 h under the condition of rs.
Sintering was carried out under the condition of rs. The sintered densities are summarized in Table 1. The definitions of terms appearing in the table are as follows. Degreasing time: (Maximum degreasing temperature-Degreasing start temperature) / Degreasing heating rate Sintering density: Sintered body density / True density of raw material powder × 100
(%)

【0025】[0025]

【表1】 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− 脱脂最 脱脂昇 脱脂時間 焼結密度 高温度 温速度 (℃) (℃/hr) (hr) (%) −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− 実施例1 185 15 5 97.5 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− 実施例2 320 12 20 97.0 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− 実施例3 180 15 5 99.6 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− 比較例1 250 10 15 94.0 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− 比較例2 450 7 50 94.4 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− 比較例3 400 10 32 93.2 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− 比較例4 550 8 59 95.0 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− 比較例5 250 8 17 99.0 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−[Table 1] ------------------ Degreasing, Degreasing, Degreasing time, High sintering density Temperature Temperature rate (° C) (° C / hr) (hr) (%) -------------------------------------------------------------------------------------------------------------------------- --- Example 1 185 15 5 97.5 --------------------------------------- 2 320 12 20 97.0 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− Example 3 180 15 599 . 6 ------------------------------------------- Comparative Example 1 250 10 15 94.0 --- −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− Comparative Example 2 45 7 50 94.4 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− Comparative Example 3 400 10 32 93.2 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− Comparative Example 4 550 8 59 95.0 −−−−− −−−−−−−−−−−−−−−−−−−−−−−−−−−−−− Comparative Example 5 250 8 17 99.0 −−−−−−−−−−− −−−−−−−−−−−−−−−−−−−−−−−−−−

【0026】本発明の方法によれば、脱脂率が95%か
つ脱脂欠陥の全く無い脱脂体を得る為には、実施例1で
は脱脂最高温度 185℃、脱脂昇温速度 15℃/h
r、脱脂時間 5.7hrsの条件で可能であり、比較
例1(通常の大気雰囲気)の250℃、10℃/hr、
15hrs、比較例2(窒素雰囲気)の450℃、7℃
/hr、50hrsと比較して、低温度、短時間で脱脂
できることが判る。本実施例の場合、脱脂体の外部、内
部とも割れ、膨れ、ポア等は無く、自重による変形も全
く認められなかった。また、脱脂体表面も殆ど酸化され
てなかった。ついで、該脱脂体を焼結実施したところ、
本実施例でかなり高い相対密度を達成できた。この理由
としては、酸素による有機バインダーの加熱酸化分解
が促進された為脱脂速度が速くなり、脱脂時間の短縮
化、脱脂最高温度の低温化が可能となる。この結果、金
属粉末の酸化が抑制され焼結が進みやすくなる。有機
バインダーの分解が促進されバインダーはほぼ完全に分
解されるため、焼結時不必要なカーボンが残存しない。
等が原因と推定される。こうした結果から本発明の方法
によれば、脱脂時間の短縮化、脱脂最高温度の低温化が
可能となるばかりでなく、焼結密度がアップするなど各
種焼結部品性能の向上にも多大の効果があることが判明
した。また、実施例2と比較例3〜4との比較、実施例
3と比較例5との比較に於いても同様の効果が認められ
た。
According to the method of the present invention, in order to obtain a degreased body having a degreasing rate of 95% and no degreasing defects at all, in Example 1, the degreasing maximum temperature is 185 ° C. and the degreasing temperature rising rate is 15 ° C./h.
r, degreasing time of 5.7 hrs is possible, and Comparative Example 1 (normal air atmosphere) is 250 ° C., 10 ° C./hr,
15 hours, Comparative Example 2 (nitrogen atmosphere) 450 ℃, 7 ℃
/ Hr and 50 hrs, it can be seen that degreasing can be performed at low temperature in a short time. In the case of this example, there was no cracking, swelling, pores or the like inside or outside the degreased body, and no deformation due to its own weight was observed. Also, the surface of the degreased body was hardly oxidized. Then, when the degreased body was sintered,
A fairly high relative density could be achieved in this example. The reason for this is that the oxidative decomposition by heating of the organic binder is promoted by oxygen, so that the degreasing rate becomes faster, the degreasing time can be shortened, and the maximum degreasing temperature can be lowered. As a result, the oxidation of the metal powder is suppressed, and the sintering easily proceeds. Since the decomposition of the organic binder is promoted and the binder is decomposed almost completely, unnecessary carbon does not remain during sintering.
It is presumed to be the cause. From these results, according to the method of the present invention, not only the degreasing time can be shortened, the degreasing maximum temperature can be lowered, but also the sintering density can be improved, which is a great effect in improving the performance of various sintered parts. Turned out to be. Further, similar effects were observed in the comparison between Example 2 and Comparative Examples 3 to 4 and the comparison between Example 3 and Comparative Example 5.

【0027】[0027]

【発明の効果】本発明の酸素富化空気を使用する脱脂方
法によれば以下のような効果を奏する。 酸素富化空気により有機バインダーの加熱酸化分解が
促進されるため、脱脂時間及び脱脂最高温度の低減化が
可能となり、生産性の向上ひいてはコストの低減化につ
ながる。 大気圧下、低温短時間脱脂可能なため、簡便な仕様の
脱脂炉が使用可能となる。 金属粉末の不要な酸化を抑制することができる。 有機バインダーの分解が高効率で行われるため、残存
炭素量が大幅に低減できる。この結果、例えば密度、硬
度、強度、耐蝕性、磁性、組織等各種焼結部品特性に優
れた焼結部品が得られる。 この為、本発明の方法によれば焼結部品の生産性の向
上、コストの低減化を可能ならしめるのみならず、各種
性能面に於て優位性の高い焼結部品を提供可能となる。
The degreasing method using oxygen-enriched air of the present invention has the following effects. Since the oxygen-enriched air accelerates the thermal oxidative decomposition of the organic binder, it is possible to reduce the degreasing time and the maximum degreasing temperature, which leads to an improvement in productivity and a reduction in cost. Since degreasing can be performed under atmospheric pressure at low temperature for a short time, a degreasing furnace with simple specifications can be used. Unwanted oxidation of the metal powder can be suppressed. Since the decomposition of the organic binder is performed with high efficiency, the amount of residual carbon can be significantly reduced. As a result, it is possible to obtain a sintered part having various characteristics such as density, hardness, strength, corrosion resistance, magnetism and structure. Therefore, according to the method of the present invention, not only the productivity of the sintered part can be improved and the cost can be reduced, but also the sintered part having high superiority in various performances can be provided.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 金属粉末および/またはセラミック粉末
からなる焼結性粉末と有機バインダーとの混合物からな
る組成物を成形して得た成形体を加熱し、該成形体から
有機バインダーを分解除去する脱脂方法に於て、有機バ
インダーの分解除去を酸素富化空気下で行う事を特徴と
する焼結性粉末成形体の脱脂方法。
1. A molded body obtained by molding a composition comprising a mixture of a sinterable powder composed of metal powder and / or ceramic powder and an organic binder is heated to decompose and remove the organic binder from the molded body. A method for degreasing a sinterable powder compact, which comprises decomposing and removing an organic binder under oxygen-enriched air.
【請求項2】 酸素富化空気が、酸素濃度25〜50体
積%である請求項1記載の脱脂方法。
2. The degreasing method according to claim 1, wherein the oxygen-enriched air has an oxygen concentration of 25 to 50% by volume.
JP35846792A 1992-12-25 1992-12-25 Method for degreasing sinterable powder compact Pending JPH06192706A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP35846792A JPH06192706A (en) 1992-12-25 1992-12-25 Method for degreasing sinterable powder compact

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP35846792A JPH06192706A (en) 1992-12-25 1992-12-25 Method for degreasing sinterable powder compact

Publications (1)

Publication Number Publication Date
JPH06192706A true JPH06192706A (en) 1994-07-12

Family

ID=18459465

Family Applications (1)

Application Number Title Priority Date Filing Date
JP35846792A Pending JPH06192706A (en) 1992-12-25 1992-12-25 Method for degreasing sinterable powder compact

Country Status (1)

Country Link
JP (1) JPH06192706A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0917676A (en) * 1995-06-26 1997-01-17 Sumitomo Special Metals Co Ltd Manufacture of sintered rare earth permanent magnet
US5877270A (en) * 1994-03-14 1999-03-02 Kabushiki Kaisha Komatsu Seisakusho Water solvent extraction degreasing method and molded products produced therewith
WO2008077776A2 (en) * 2006-12-21 2008-07-03 Basf Se Method for thermally debinding a molded metallic and/or ceramic body which is produced by injection molding, extrusion or compression using a thermoplastic material
JP2013524006A (en) * 2010-04-01 2013-06-17 テヒニーシェ ウニヴェルジテート ウィーン Method for producing molded product of aluminum alloy
CN113333752A (en) * 2020-03-03 2021-09-03 湖南省民鑫新材料股份有限公司 Titanium and titanium alloy injection molding feed product and preparation method thereof
WO2022215473A1 (en) * 2021-04-07 2022-10-13 旭化成株式会社 Molded body, method for producing molded body and method for producing sintered body

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5877270A (en) * 1994-03-14 1999-03-02 Kabushiki Kaisha Komatsu Seisakusho Water solvent extraction degreasing method and molded products produced therewith
JPH0917676A (en) * 1995-06-26 1997-01-17 Sumitomo Special Metals Co Ltd Manufacture of sintered rare earth permanent magnet
WO2008077776A2 (en) * 2006-12-21 2008-07-03 Basf Se Method for thermally debinding a molded metallic and/or ceramic body which is produced by injection molding, extrusion or compression using a thermoplastic material
WO2008077776A3 (en) * 2006-12-21 2008-08-28 Basf Se Method for thermally debinding a molded metallic and/or ceramic body which is produced by injection molding, extrusion or compression using a thermoplastic material
JP2013524006A (en) * 2010-04-01 2013-06-17 テヒニーシェ ウニヴェルジテート ウィーン Method for producing molded product of aluminum alloy
CN113333752A (en) * 2020-03-03 2021-09-03 湖南省民鑫新材料股份有限公司 Titanium and titanium alloy injection molding feed product and preparation method thereof
WO2022215473A1 (en) * 2021-04-07 2022-10-13 旭化成株式会社 Molded body, method for producing molded body and method for producing sintered body

Similar Documents

Publication Publication Date Title
US20080075619A1 (en) Method for making molybdenum parts using metal injection molding
JPH06192706A (en) Method for degreasing sinterable powder compact
US8674018B2 (en) Binder and process for producing metallic or ceramic moldings in powder injection molding
US9073121B2 (en) Method for producing sintered compact
JP2001271101A (en) Method for producing sintered body and sintered body
JP2012512962A (en) Method for manufacturing cemented carbide products
CN110560692A (en) Porous Ti-Al-based alloy material, preparation method and application thereof
JP2677675B2 (en) Method for producing sintered product consisting of powder molding binder and metal powder or ceramic powder
JP2001158925A (en) Method for producing metallic sintered body and metallic sintered body
JP4206476B2 (en) Method for producing aluminum sintered material
WO1994020242A1 (en) Process for manufacturing powder injection molded parts
JPH0313503A (en) Method for degreasing molding for powder metallurgy, binder and supercritical fluid
JP2003252676A (en) Injection molding composition
JPH11315304A (en) Manufacture of sintered body
JPH0543304A (en) Production of molded article
JPH0820803A (en) Production of sintered compact
JP2729860B2 (en) Method of manufacturing cemented carbide powder for injection molding and sintered cemented carbide
JPH11315305A (en) Manufacture of sintered body
JPH0641601B2 (en) Molding composition
JPS62250102A (en) Manufacture of sintered hard alloy or cermet alloy article
JPH11181501A (en) Production of metal powder and sintered body
JPS6335459A (en) Method of dewaxing formed body of sinterable substance-containing mixture
JPH06287055A (en) Production of sintered article of ceramic
JPH11131103A (en) Composition for powder injection molding and production of powder injection molded goods
JPS5926653B2 (en) How to form cemented carbide