JP2013524006A - Method for producing molded product of aluminum alloy - Google Patents

Method for producing molded product of aluminum alloy Download PDF

Info

Publication number
JP2013524006A
JP2013524006A JP2013501556A JP2013501556A JP2013524006A JP 2013524006 A JP2013524006 A JP 2013524006A JP 2013501556 A JP2013501556 A JP 2013501556A JP 2013501556 A JP2013501556 A JP 2013501556A JP 2013524006 A JP2013524006 A JP 2013524006A
Authority
JP
Japan
Prior art keywords
degreasing
binder
sintering
thermal
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013501556A
Other languages
Japanese (ja)
Other versions
JP2013524006A5 (en
JP5956419B2 (en
Inventor
ダニンガー、ハーベルト
ギール、クリスチャン
ザラツコフ、ブラニスラフ
ターマット、ヨハン
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BASF SE
Original Assignee
BASF SE
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BASF SE filed Critical BASF SE
Publication of JP2013524006A publication Critical patent/JP2013524006A/en
Publication of JP2013524006A5 publication Critical patent/JP2013524006A5/ja
Application granted granted Critical
Publication of JP5956419B2 publication Critical patent/JP5956419B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/22Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces for producing castings from a slip
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/20Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces by extruding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/10Sintering only
    • B22F3/1017Multiple heating or additional steps
    • B22F3/1021Removal of binder or filler
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/10Sintering only
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/12Both compacting and sintering
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/22Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces for producing castings from a slip
    • B22F3/225Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces for producing castings from a slip by injection molding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/24After-treatment of workpieces or articles
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/0408Light metal alloys
    • C22C1/0416Aluminium-based alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/06Alloys based on aluminium with magnesium as the next major constituent

Abstract

本発明は、アルミニウム合金をベースとする成形品を金属射出成形によって製造する方法に関し、該方法は、a)金属粉末および/または1以上の金属合金粉末の形態の所望の合金に含まれる金属を、バインダと混合することにより供給原料を製造し、b)前記供給原料を射出成形することによりグリーン体を製造し、c)触媒脱脂および/または溶剤脱脂および/または熱脱脂によってグリーン体から少なくとも部分的にバインダを除去することによりブラウン体を製造し、d)前記少なくとも部分的に脱脂されたブラウン体を焼結して所望の成形品を得る各ステップを備え、その特徴が、ステップc)において、任意にその前に1以上の脱脂ステップを行った後に、少なくとも酸素を0.5体積%含む大気内で熱脱脂を行って(残留している)前記バインダを除去することで、前記バインダを完全に除去し、その後に、このようにして得られた、完全に脱脂されたブラウン体を焼結することである。
【選択図】図1
The present invention relates to a method for producing a molded article based on an aluminum alloy by metal injection molding, the method comprising: a) a metal contained in a desired alloy in the form of a metal powder and / or one or more metal alloy powders. Producing a feedstock by mixing with a binder, b) producing a green body by injection molding the feedstock, and c) at least partly from the green body by catalytic degreasing and / or solvent degreasing and / or thermal degreasing. A step of producing a brown body by removing the binder, and d) sintering the at least partially degreased brown body to obtain a desired molded product, characterized in step c) , Optionally after one or more degreasing steps, followed by thermal degreasing in an atmosphere containing at least 0.5% oxygen by volume (residual That) By removing the binder, the binder is completely removed, thereafter, thus obtained, it is to sinter fully defatted brown body.
[Selection] Figure 1

Description

金属射出成形技術は近年急成長を遂げ、小型複雑部品を製造する確立した技術となっており、全世界での年間売上高は約10億ユーロにのぼる。プラスチックの射出成形に適用される成形技術と粉末工学において用いられる各種材料との組合せは、多くの材料に興味深い新市場を開いている。   Metal injection molding technology has grown rapidly in recent years and has become a well-established technology for producing small complex parts, with annual worldwide sales of around 1 billion euros. The combination of molding technology applied to plastic injection molding and various materials used in powder engineering opens an interesting new market for many materials.

製造方法は基本的に以下の処理ステップを備えている。最初に、金属粉末と、少なくとも2つの完全に混合されたポリマー成分を含むプラスチック成分とからなる、射出可能な粒状体の形で供給原料が製造される。その後、この供給原料は、プラスチックの射出成形機械によって成形され、成形品が得られる。これらのいわゆる「グリーン体」は通常、プラスチックのバインダを約40体積%含んでおり、バインダの大半は、その後のいわゆる脱脂(または「脱バインダ」)ステップで除去される。残りのバインダ成分(いわゆる「バックボーン」)は残存して、脱脂後の製品の残留強度を保証する。脱脂は、様々な方法で(例えば、熱的に、溶剤を用いて、触媒的に、等)、達成されうる。選択された処理は、粒状体に用いられるプラスチックのバインダに対して注意深く適合される。脱脂後、製品(いわゆる「ブラウン体」)は、焼結処置が施され、その最初のステップで、残留する「バックボーン」バインダは、通常、熱的に除去され、その後に、製品は、焼結され、縮小して、ほとんど緻密な金属部品を形成する。この技術は、現在、高および低合金鋼、貴金属、硬質金属のほか、セラミックにも適用されている。   The manufacturing method basically includes the following processing steps. Initially, a feedstock is produced in the form of injectable granules consisting of a metal powder and a plastic component comprising at least two fully mixed polymer components. The feedstock is then molded by a plastic injection molding machine to obtain a molded product. These so-called “green bodies” typically contain about 40% by volume of a plastic binder, with most of the binder being removed in a subsequent so-called degreasing (or “debinding”) step. The remaining binder components (so-called “backbone”) remain to ensure the residual strength of the product after degreasing. Degreasing can be accomplished in a variety of ways (eg, thermally, using a solvent, catalytically, etc.). The chosen process is carefully adapted to the plastic binder used for the granulate. After degreasing, the product (so-called “brown body”) is subjected to a sintering treatment, and in its first step, the remaining “backbone” binder is usually thermally removed, after which the product is sintered. And shrink to form an almost dense metal part. This technology is currently applied to high and low alloy steels, precious metals, hard metals as well as ceramics.

アルミニウム材料の金属射出成形は、この技術に関する特許は存在するが、工業上まだ充分に確立されていない。これは、アルミニウム合金の焼結機構が上記の材料のそれとは完全に異なっているという事実のためである。アルミニウム粉末の表面の非還元性の酸化物は、焼結に対する大きな障害となっている。この理由のために、刊行物は、無酸素大気について記載するのみである。   Metal injection molding of aluminum materials is patented for this technology, but is not yet well established in the industry. This is due to the fact that the sintering mechanism of the aluminum alloy is completely different from that of the above materials. The non-reducing oxide on the surface of the aluminum powder is a major obstacle to sintering. For this reason, the publication only describes an oxygen-free atmosphere.

アルミニウムの上述の処理に伴う特別な困難さは、アルミニウムの融点(660℃)が相対的に低いことに関係している。アルミニウムの融点は、スズなどの合金化要素がそこに付加されるとさらに低くなる。この結果として、プラスチック成分の脱脂を非常に低温で行わなければならず、適切な処理時間枠を、プラスチック成分の完全な除去を保証するためにはしばしば短すぎるものとしてしまう、という問題が生じる。プラスチック成分が完全に除去されないと、有機残留成分と金属成分との望ましくない反応が起こりうる。そのことが、焼結処理を妨げ、そのため、その方法によって取得可能な機械特性を損なう。   The particular difficulty associated with the above treatment of aluminum is related to the relatively low melting point of aluminum (660 ° C.). The melting point of aluminum is even lower when alloying elements such as tin are added thereto. This results in the problem that the degreasing of the plastic component has to be carried out at a very low temperature and that the appropriate processing time frame is often too short to ensure complete removal of the plastic component. If the plastic component is not completely removed, an undesirable reaction between the organic residual component and the metal component can occur. That hinders the sintering process and thus impairs the mechanical properties obtainable by the method.

Powder Metallurgy 51, 78-83 (2008)においてLiuらは、スズ(合金化金属として)およびマグネシウムのブロックを加える方法について記載している。マグネシウムは、「犠牲金属」として(即ち、酸素および湿気のトラップとして)機能するものである。   Liu et al. In Powder Metallurgy 51, 78-83 (2008) describe a method of adding a block of tin (as alloying metal) and magnesium. Magnesium functions as a “sacrificial metal” (ie, as a trap for oxygen and moisture).

この背景に対して、本発明の目的は、簡単で再現性のある方法で、良好な機械特性を有するアルミニウム材料の成形品を製造する金属射出成形法の開発にある。   Against this background, the object of the present invention is to develop a metal injection molding process for producing molded articles of aluminum material having good mechanical properties in a simple and reproducible manner.

発明の開示
本発明者らはこの目的を、金属射出成形によるアルミニウム合金をベースとする成形品の製造方法を提供することにより達成した。この方法は、以下のステップを含んでいる。
a)金属粉末および/または1以上の金属合金粉末の形態の所望の合金に含まれる金属を、バインダと混合させることにより供給原料を製造し、
b)前記供給原料を射出成形することによりグリーン体を製造し、
c)触媒脱脂および/または溶剤脱脂および/または熱脱脂によってグリーン体から少なくとも部分的にバインダを除去することによりブラウン体を製造し、
d)前記少なくとも部分的に脱脂されたブラウン体を焼結して所望の成形品を得る。
ここで本発明の方法は、ステップc)で、任意にその前に1以上の脱脂ステップが行われた後に、(残留)バインダを除去するために熱脱脂が少なくとも酸素を0.5体積%含む大気内で行われ、バインダが完全に除去され、その後に、このようにして得られた、完全に脱脂されたブラウン体を焼結することを特徴としている。
DISCLOSURE OF THE INVENTION The present inventors have achieved this object by providing a method for producing a molded article based on an aluminum alloy by metal injection molding. This method includes the following steps.
a) producing a feedstock by mixing the metal contained in the desired alloy in the form of metal powder and / or one or more metal alloy powders with a binder;
b) producing a green body by injection molding the feedstock;
c) producing a brown body by at least partially removing the binder from the green body by catalytic degreasing and / or solvent degreasing and / or thermal degreasing;
d) Sintering the at least partially degreased brown body to obtain the desired molded product.
Here, the method of the present invention is that in step c), after one or more degreasing steps have been performed before, the thermal degreasing contains at least 0.5% by volume of oxygen in order to remove the (residual) binder. It is carried out in the atmosphere and is characterized in that the binder is completely removed and then the fully degreased brown body thus obtained is sintered.

本方法は、アルミニウム合金の高純度の成形品を産生する。ステップc)においてバインダを完全に除去するため、合金化金属とプラスチック材料との望ましくない反応が生じないためである。大気中に存在する酸素のため、比較的低い温度であっても、バインダの完全な除去が達成される。酸素の存在は完全に防ぐべきとする現在の教示に反して、本発明者らは、少量の酸素(少なくとも0.5体積%)はアルミニウムの酸化を大幅には増加させず、より早い、完全な脱脂に寄与することを見出した。粉末混合物の組成および温度条件に応じて、例えば20〜100体積%の酸素含有量が適用される。これは、純Oガスを使用することさえ可能であることを意味している。 The method produces a high purity molded product of aluminum alloy. This is because the binder is completely removed in step c), so that no undesirable reaction between the alloyed metal and the plastic material occurs. Due to the oxygen present in the atmosphere, complete removal of the binder is achieved even at relatively low temperatures. Contrary to the current teaching that the presence of oxygen should be completely prevented, we have found that a small amount of oxygen (at least 0.5% by volume) does not significantly increase the oxidation of aluminum and is faster, more complete It was found that it contributes to degreasing. Depending on the composition of the powder mixture and the temperature conditions, for example, an oxygen content of 20 to 100% by volume is applied. This means that it is even possible to use pure O 2 gas.

アルミニウム合金は、アルミニウムに加えて1以上の他の金属を含み、該金属としては、いかなる特定の制限も受けるものではない。合金の相手は、好ましくは、マグネシウム、銅、シリコンおよびマンガンからなる群から選択され、所望の特性を有する成形品を得るために、特に、0.5〜25重量%の割合で含まれることが好ましい。際立って低い融点を有しており、時には、溶融を開始する温度を下げる焼結補助剤として機能しうる、ビスマス、スズ、鉛、インジウム、もしくは亜鉛などの金属、またはウッドメタルなどの合金は、本発明では必要ない。しかし、必要であれば、それぞれの合金の焼結体を得るために、合金化の相手として添加されてもよい。特に、アルミニウムを有する合金の形態で他の金属を(つまり、いわゆるマスター合金粉末として)用いることが有利である。   Aluminum alloys include one or more other metals in addition to aluminum, which are not subject to any particular limitations. The alloy partner is preferably selected from the group consisting of magnesium, copper, silicon and manganese and may be included in particular in a proportion of 0.5 to 25% by weight in order to obtain a shaped product with the desired properties. preferable. Metals such as bismuth, tin, lead, indium, or zinc, or alloys such as wood metal, which have a markedly low melting point and can sometimes function as sintering aids that lower the temperature at which melting begins, It is not necessary in the present invention. However, if necessary, it may be added as an alloying partner in order to obtain a sintered body of each alloy. In particular, it is advantageous to use other metals in the form of alloys with aluminum (ie as so-called master alloy powders).

本発明によれば、低温で除去可能であると知られているバインダを使用することが好ましく、特にポリアセタールをベースとしたバインダ、例えば、ポリ(オキシメチレン)(POM)バインダが好ましく、それらは、例えば、BASFが、EP413231、WO94/25205および特にEP446708において開示しており、商標Catamold(登録商標)として市販されている。バインダは、高いパーセンテージでポリアセタールを含んでおり、ポリアセタールを好ましくは50〜95%、さらに好ましくは、80〜90%含有し、低温度で酸素の存在中で迅速かつ完全な除去を促進することが望ましい。あるいは、ワックスおよびポリマーをベースとするバインダ系が用いられてもよく、主成分であるワックスがその前に行われる溶剤脱脂によって除去される(つまり、本発明に従って酸素の存在中で熱脱脂が行われる前)。   According to the invention, it is preferred to use binders that are known to be removable at low temperatures, in particular binders based on polyacetal, such as poly (oxymethylene) (POM) binders, which are For example, BASF is disclosed in EP413231, WO94 / 25205 and in particular EP446708 and is marketed under the trademark Catamold®. The binder contains a high percentage of polyacetal and preferably contains 50-95%, more preferably 80-90% polyacetal, which facilitates rapid and complete removal in the presence of oxygen at low temperatures. desirable. Alternatively, a binder system based on wax and polymer may be used, and the wax as the main component is removed by solvent degreasing prior to it (ie, thermal degreasing is performed in the presence of oxygen according to the present invention). Before it is called).

本発明の方法のステップc)での脱脂は、バインダが完全に除去される酸素の存在中での1つの熱脱脂ステップを備えても良い。代替的に、1以上の先行する脱脂ステップが行われてバインダの大部分を除去し、その後に、本発明の熱脱脂ステップを行い、酸素の存在中で残りのバインダを除去するようにしてもよい。先行する脱脂ステップもまた、熱脱脂ステップ(酸素の非存在下または同様に酸素の存在下)であってもよい。これは、脱脂のための様々な処理パラメータ(例えば、異なる温度で、または異なる大気中(例えば、酸素の有無、空気または純酸素、等)で)を用いて複数のステップの熱脱脂処理を行うことも可能であることを意味している。   Degreasing in step c) of the inventive method may comprise one thermal degreasing step in the presence of oxygen from which the binder is completely removed. Alternatively, one or more preceding degreasing steps may be performed to remove most of the binder, followed by the thermal degreasing step of the present invention to remove the remaining binder in the presence of oxygen. Good. The preceding degreasing step may also be a thermal degreasing step (in the absence of oxygen or likewise in the presence of oxygen). It performs a multi-step thermal degreasing process using various processing parameters for degreasing (eg, at different temperatures or in different atmospheres (eg, presence of oxygen, air or pure oxygen, etc.)). It also means that it is possible.

本発明の好ましい実施形態では、ステップc)において酸素の存在中で残りのバインダを除去する熱脱脂の前に触媒脱脂および/または溶剤脱脂が行われる。これらの先行する脱脂ステップにおいて、バインダの大部分は既にその組成から除去されるため、「バックボーン」成分だけが残っていて続く熱脱脂によって除去される。   In a preferred embodiment of the invention, catalyst degreasing and / or solvent degreasing is performed in step c) prior to thermal degreasing to remove the remaining binder in the presence of oxygen. In these previous degreasing steps, most of the binder is already removed from its composition, so that only the “backbone” component remains and is removed by subsequent thermal degreasing.

触媒脱脂は、硝酸、シュウ酸、ギ酸および酢酸から選択される少なくとも1つの酸の存在下で行われることが好ましく、これらの酸によって、合金成分との望ましくない副反応に繋がることなく、酸分解によって望ましいポリアセタールバインダの完全な除去が加速される。溶剤脱脂の場合、バインダの大部分は、適切な溶剤または混合溶剤(例えば、アセトン、n−ヘプタン、水など)を用いる抽出によって除去される。本発明に従って、昇華されたシュウ酸を用いて触媒脱脂を適用することが特に好ましい。   The catalytic degreasing is preferably carried out in the presence of at least one acid selected from nitric acid, oxalic acid, formic acid and acetic acid, and these acids cause acid decomposition without leading to undesirable side reactions with the alloy components. Accelerates complete removal of the desired polyacetal binder. In the case of solvent degreasing, most of the binder is removed by extraction with a suitable solvent or mixed solvent (eg, acetone, n-heptane, water, etc.). It is particularly preferred to apply catalytic degreasing using sublimated oxalic acid according to the invention.

前述したように、ステップc)における残留バインダを除去するための熱脱脂処理は、特に粉末混合物に含まれるアルミニウムの酸化反応を避けるために比較的低温で行われる。本明細書において比較的低温とは、アルミニウムの融点よりも大幅に低い温度であり、好ましくは、500℃以下、さらに好ましくは、100〜420℃の間の温度である。各粉末混合物について最適化された温度プロフィールを設定することが特に好ましく、加熱速度を、5K/分以下、さらに好ましくは、1〜2K/分以下にすることが特に望まれる。このように、脱脂される混合物は徐々に均一的に加熱される。   As described above, the thermal degreasing treatment for removing the residual binder in step c) is carried out at a relatively low temperature in order to avoid the oxidation reaction of aluminum contained in the powder mixture. In this specification, the relatively low temperature is a temperature that is significantly lower than the melting point of aluminum, preferably 500 ° C. or less, and more preferably 100 to 420 ° C. It is particularly preferred to set an optimized temperature profile for each powder mixture, and it is particularly desirable to have a heating rate of 5 K / min or less, more preferably 1-2 K / min or less. In this way, the mixture to be defatted is gradually and uniformly heated.

本発明の方法の焼結ステップd)は、バインダが、事前に完全に除去されていなければならないことを除いて、特に制限されるものではない。しかし、以下にさらに詳細に記載されるように、液相を形成した状態で焼結ステップを行うことが望ましい。   The sintering step d) of the method of the present invention is not particularly limited, except that the binder must be completely removed beforehand. However, as described in more detail below, it is desirable to perform the sintering step with the liquid phase formed.

粉末冶金圧縮成形法によるアルミニウム合金の成形品の製造の既知の技術は、圧縮処理によって母体中のアルミナ被覆アルミニウム粒子の表面に機械的に傷をつけ、その傷が冶金反応を可能とする、という理論的仮定に基づいている。しかし、射出成形によって得られた(完全に)脱脂されたブラウン体は、事実上は、金属粉末の充填層であり、金属の酸化物膜はいかなる機械的な負荷を施されず、そのためこの既知のメカニズムに依存しない。このことは、粉末粒子間の金属−金属の直接接触がないことを意味している。それにもかかわらず、焼結条件を適切に選択することによって、本発明の方法は、焼結体の圧縮が顕在化する所要の縮小を達成することに成功し、従って、可能な最大の程度まで圧縮された成形部品を得ることに成功している。   A known technique for producing aluminum alloy moldings by powder metallurgy compression molding is that the surface of the alumina-coated aluminum particles in the matrix is mechanically scratched by the compression treatment, and the scratches enable a metallurgical reaction. Based on theoretical assumptions. However, the (completely) defatted brown body obtained by injection molding is in effect a packed layer of metal powder, and the metal oxide film is not subjected to any mechanical load, so this known It does not depend on the mechanism. This means that there is no direct metal-metal contact between the powder particles. Nevertheless, by properly selecting the sintering conditions, the method of the present invention has succeeded in achieving the required reduction in which the compaction of the sintered body becomes apparent and, thus, to the maximum extent possible. It has succeeded in obtaining compressed molded parts.

それゆえに、本発明に従って、ステップd)において、完全に脱脂されたブラウン体が、液相を形成している間に焼結される実施形態が好ましい。いかなる理論に縛られることも望まないが、本発明者らは、液相(部分的には中間物であるが、主には静止している、つまり、固体Al相と熱力学的平衡状態にある)が、金属粉末粒子の酸化物膜における微細な裂け目、微細な孔、または同様の「開口」を介して、および、酸化物膜の下のクリープによって、粉末混合物内で金属間の所要の接触を確立し、こうして、完全に脱脂されたブラウン体からの高圧縮焼結体の形成を促進すると考えている。ステップd)における焼結は、各アルミニウム合金の固相線と液相線の温度の間の温度で行われることが特に好ましく、それにより、焼結処理の間のあらゆる時点で、合金化金属の一部(適切な温度プロフィールを選択することによって制御されうる)が液体状態にあり、寸法の安定化の喪失を効果的に防ぐ。   Therefore, according to the present invention, an embodiment is preferred in which in step d) the fully defatted brown body is sintered while forming a liquid phase. Without wishing to be bound by any theory, we have the liquid phase (partially intermediate, but mainly stationary, i.e. in a thermodynamic equilibrium with the solid Al phase. Is) between the metals in the powder mixture through fine crevices, fine pores or similar “openings” in the oxide film of the metal powder particles and by creep under the oxide film. It is believed that contact is established and thus promotes the formation of a high compression sintered body from a completely defatted brown body. It is particularly preferred that the sintering in step d) is performed at a temperature between the solidus and liquidus temperatures of each aluminum alloy, so that at any point during the sintering process the alloyed metal Some (which can be controlled by selecting an appropriate temperature profile) are in the liquid state, effectively preventing loss of dimensional stabilization.

本発明の方法の個々のステップにおける各大気の組成は、ステップc)の熱脱脂のために酸素が存在することを除いて、いかなる特定の制限も受けるものではなく、当業者は、各ステップの各粉末混合物に最適な大気を選択することができ、真空も選択肢である。しかし、焼結ステップd)は、極端に乾燥した、窒素含有大気(つまり純窒素)内で、標準圧または減圧下(「分圧焼結」)で、または、窒素と純不活性ガス(ヘリウム、アルゴン)の、好ましくは、−40℃より下の露点を有する、混合気中で、行われることが好ましい。窒素の存在が、生じている金属融解物との粉末粒子の濡れ性を著しく促進するためである。   The composition of each atmosphere in the individual steps of the method of the present invention is not subject to any particular limitation except that oxygen is present due to the thermal degreasing of step c), and the skilled person The optimum atmosphere for each powder mixture can be selected, and vacuum is also an option. However, the sintering step d) can be carried out in an extremely dry, nitrogen-containing atmosphere (ie pure nitrogen), at normal or reduced pressure (“partial pressure sintering”), or with nitrogen and pure inert gas (helium). Argon), preferably in an air-fuel mixture having a dew point below -40 ° C. This is because the presence of nitrogen significantly promotes the wettability of the powder particles with the resulting metal melt.

焼結ステップの後には、任意に、仕上げられた成形部品が所望の形状を維持するのに適した追加の処理が行われてもよい。例えば、それは、成形品の所望の最終的な密度を達成するために既知の熱間等方圧加圧(HIP)法を適用することも可能である。この方法では、焼結ステップの後に依然として存在している残留孔が、外部気体圧力と高温の影響下で密封される。   After the sintering step, optionally, additional processing may be performed that is suitable for the finished molded part to maintain the desired shape. For example, it is possible to apply the known hot isostatic pressing (HIP) method to achieve the desired final density of the molded article. In this method, residual holes still present after the sintering step are sealed under the influence of external gas pressure and high temperature.

図面の簡単な説明
図1は、実施例9における、グリーン体(上)およびそれから得られる焼結体(下)の写真である。 図2は、実施例10における、グリーン体(左)およびそれから得られる焼結体(右)の写真である。
Brief Description of Drawings
FIG. 1 is a photograph of a green body (top) and a sintered body (bottom) obtained therefrom in Example 9. FIG. 2 is a photograph of a green body (left) and a sintered body (right) obtained therefrom in Example 10.

以下、非限定的な特定の例示的実施形態を参照して、本発明をさらに詳細に説明する。   The invention will now be described in more detail with reference to specific, non-limiting exemplary embodiments.

実施例
以下の実施例において製造された供給原料のすべては、190℃に加熱された実験室のコンパウンダ内で均質化された。引張試験用の棒または中空シリンダは、それぞれ、後述するように本発明の方法を適用し、ISO2740に従って射出成形されることによりこれらの供給原料から形成された。PIM装置付き油圧射出成形機(Battenfeld HM 600/130)が、グリーン体の製造に用いられた。
EXAMPLES All of the feedstocks produced in the following examples were homogenized in a laboratory compound heated to 190 ° C. Tensile test bars or hollow cylinders were each formed from these feedstocks by injection molding according to ISO 2740, applying the method of the invention as described below. A hydraulic injection molding machine with a PIM device (Battenfeld HM 600/130) was used for the production of green bodies.

最初のステップで、供給原料を最初に、射出成形機のじょうごに充填した。グリーン体を製造する射出成形処理は、次のステップを含んでいた。回転スクリューを内部に有する加熱された射出シリンダを用いて、前処理装填材料がプラスチック化され、予め設定されたパラメータ(例えば、回転速度、投入容量、背圧など)に従って、一回分が投入される。その後、予め投入された量を適切に予熱された機器内に射出した。その中で使用される供給原料とバインダに依存して、射出シリンダ内のプラスチック化温度は120〜220℃の間の範囲であり、その機器内の温度は25〜140℃の間であった。充分に長い冷却時間の後、射出成形機器が開かれ、グリーン体が取扱装置を用いてその機器から排出され取り出された。   In the first step, the feedstock was first filled into the funnel of the injection molding machine. The injection molding process for producing the green body included the following steps. Using a heated injection cylinder with a rotating screw inside, the pretreatment charge material is plasticized and charged in one dose according to preset parameters (eg rotation speed, loading capacity, back pressure, etc.) . Thereafter, the pre-charged amount was injected into the appropriately preheated equipment. Depending on the feedstock and binder used therein, the plasticization temperature in the injection cylinder ranged between 120-220 ° C, and the temperature in the equipment was between 25-140 ° C. After a sufficiently long cooling time, the injection molding equipment was opened and the green body was discharged and removed from the equipment using a handling device.

実施例1−引張試験棒:溶媒脱脂/熱脱脂
商業的に入手可能な金属粉末混合物(Alumix(登録商標)231(Ecka社製))(アルミニウムの他、シリコン14重量%、銅2.5重量%、マグネシウム0.6重量%を含む)を、ワックス/熱可塑性物質からなる溶剤バインダと完全に混合し、供給原料を得た。
Example 1 Tensile Test Bar: Solvent Degreasing / Heat Degreasing A commercially available metal powder mixture (Alumix® 231 (Ecka)) (14% by weight silicon, 2.5% copper in addition to aluminum) %, Containing 0.6 wt% magnesium) with a solvent binder consisting of wax / thermoplastic material to obtain a feedstock.

引張試験棒の脱脂と焼結
最初、60lのオーブン内で、45℃、12時間、アセトンを用いた溶剤抽出により供給原料を脱脂した。
このようにして得られたブラウン体は、残留バインダを約14.5重量%含んでおり、次に、この残留バインダを、純酸素を含む大気中での本発明に従う熱脱脂により、150〜320℃で1時間、その後320〜420℃で1.5時間の範囲の温度プロフィールを適用して、除去した。こうして完全に脱脂されたブラウン体は、その後、純窒素(露点:−50℃)中、560℃、1時間以内で焼結された。
結果
長さの収縮:11.6%
棒直径の収縮:12.25%
焼結密度:2.36g/cm
Degreasing and sintering of tensile test bars First, the feedstock was degreased by solvent extraction with acetone in a 60 liter oven at 45 ° C. for 12 hours.
The brown body thus obtained contains about 14.5% by weight of residual binder, and this residual binder is then subjected to thermal degreasing according to the present invention in an atmosphere containing pure oxygen to 150-320%. A temperature profile in the range of 1 hour at 0C and then 1.5 hours at 320-420C was applied and removed. The brown body thus completely defatted was then sintered in pure nitrogen (dew point: −50 ° C.) at 560 ° C. within 1 hour.
Result length shrinkage: 11.6%
Rod diameter shrinkage: 12.25%
Sintering density: 2.36 g / cm 3

実施例2−引張試験棒:一回の熱脱脂Example 2 Tensile Test Bar: One Thermal Degreasing

引張試験棒の脱脂と焼結
完全な熱脱脂が、40lのオーブン内で、以下の脱脂プロフィールに従って、純酸素の200l/時の存在中で行われた。
−2K/分の加熱速度で130℃まで加熱
−温度を4時間130℃に維持
−2K/分の加熱速度で200℃に加熱
−温度を5時間200℃に維持
−2K/分の加熱速度で420℃まで加熱
−温度を4時間420℃に維持
熱脱脂期間に失われた重量は24.2%であった。
その後、棒は、純窒素中1時間で焼結された。オーブン温度は665℃に設定され、オーブン内の温度は約630℃であった。
結果
長さの収縮:12.27%
棒直径の収縮:14.52%
焼結密度:2.46g/cm
Degreasing and sintering of tensile test bars Complete thermal degreasing was performed in a 40 l oven in the presence of 200 l / h of pure oxygen according to the following degreasing profile.
Heating up to 130 ° C at a heating rate of -2K / min-Maintaining the temperature at 130 ° C for 4 hours-Heating at 200 ° C at a heating rate of 2K / min-Maintaining the temperature at 200 ° C for 5 hours-At a heating rate of 2K / min Heat to 420 ° C.-Maintain temperature at 420 ° C. for 4 hours Weight lost during thermal degreasing period was 24.2%.
The rod was then sintered in pure nitrogen for 1 hour. The oven temperature was set to 665 ° C and the temperature in the oven was about 630 ° C.
Result length shrinkage: 12.27%
Rod diameter shrinkage: 14.52%
Sintering density: 2.46 g / cm 3

実施例3−引張試験棒:二回の熱脱脂Example 3 Tensile Test Bar: Twice Thermal Degreasing

引張試験棒の脱脂と焼結
最初に、第1の熱脱脂が、50lのオーブン内で、空気(500l/時)中、180℃、14時間、行われた。重量損失は27.0%であった。
その後、第2の熱脱脂が、純窒素中で1時間以内、420℃までの温度で行われ、その後、再度、665℃に設定されたオーブン温度で1時間焼結された。
結果
長さの収縮:9.5%
棒直径の収縮:11.4%
焼結密度:2.13g/cm
Degreasing and sintering of tensile test bars Initially, a first thermal degreasing was performed in a 50 l oven in air (500 l / hr) at 180 ° C. for 14 hours. The weight loss was 27.0%.
Then, the second thermal degreasing was performed in pure nitrogen within 1 hour at a temperature up to 420 ° C., and then sintered again at an oven temperature set at 665 ° C. for 1 hour.
Result length shrinkage: 9.5%
Rod diameter shrinkage: 11.4%
Sintering density: 2.13 g / cm 3

実施例4−引張試験棒:触媒/熱脱脂Example 4 Tensile Test Bar: Catalyst / Heat Degreasing

引張試験棒の脱脂と焼結
最初に、触媒脱脂が、50lのオーブン内で、窒素(500l/時)中2体積%のHNO(工業グレード)を用いて、140℃、10時間、行われた。重量損失は22.1%であった。その後、ビーズ状の外部成長が表面上に観察された。それは、HNOとのMgの反応によって形成されたと考えられた。
その後、熱脱脂が、実施例3に記載のように、純窒素中で1時間以内、420℃までの温度で行われ、その後、再度、665℃に設定されたオーブン温度で1時間焼結された。
結果
長さの収縮:10.7%
棒直径の収縮:14.65%
焼結密度:2.36g/cm
Degreasing and sintering of tensile test bars First, catalytic degreasing was performed in a 50 l oven using 2 vol% HNO 3 (industrial grade) in nitrogen (500 l / hr) at 140 ° C. for 10 hours. It was. The weight loss was 22.1%. Subsequently, beaded outgrowth was observed on the surface. It was thought that it was formed by the reaction of Mg with HNO 3 .
Thereafter, thermal degreasing is performed in pure nitrogen within 1 hour at a temperature up to 420 ° C. as described in Example 3 and then again sintered at an oven temperature set at 665 ° C. for 1 hour. It was.
Result length shrinkage: 10.7%
Rod diameter shrinkage: 14.65%
Sintering density: 2.36 g / cm 3

実施例5−引張試験棒:触媒/熱脱脂Example 5 Tensile Test Bar: Catalyst / Heat Degreasing

引張試験棒の脱脂と焼結
最初に、実施例4に従う触媒脱脂が、140℃、24時間、HNOのかわりに昇華皿に80gの無水シュウ酸を載せて、行われた。重量損失は23.0%であった。シュウ酸を用いたとき、表面上に外部成長は現れなかった。その後、熱脱脂と焼結がまた、実施例4に従って行われた。
結果
長さの収縮:14.28%
棒直径の収縮:15.68%
焼結密度:2.42g/cm
Degreasing and sintering of tensile test bars First, catalytic degreasing according to Example 4 was carried out at 140 ° C. for 24 hours with 80 g of oxalic acid anhydride placed on a sublimation dish instead of HNO 3 . The weight loss was 23.0%. When oxalic acid was used, no external growth appeared on the surface. Thereafter, thermal degreasing and sintering was also performed according to Example 4.
Resulting length shrinkage: 14.28%
Rod diameter shrinkage: 15.68%
Sintering density: 2.42 g / cm 3

実施例6−引張試験棒:触媒/熱脱脂Example 6 Tensile Test Bar: Catalyst / Heat Degreasing

引張試験棒の脱脂と焼結
最初に、触媒脱脂が実施例5に従って行われた。重量損失は25.2%であった。その後、熱脱脂と焼結が実施例4に従って行われた。オーブン温度は560℃に設定された。
結果
長さの収縮:11.2%
棒直径の収縮:13.2%
焼結密度:2.45g/cm
Degreasing and sintering of tensile test bars Initially, catalytic degreasing was performed according to Example 5. The weight loss was 25.2%. Thereafter, thermal degreasing and sintering were performed according to Example 4. The oven temperature was set at 560 ° C.
Result length shrinkage: 11.2%
Rod diameter shrinkage: 13.2%
Sintering density: 2.45 g / cm 3

実施例7−引張試験棒:触媒/熱脱脂Example 7 Tensile Test Bar: Catalyst / Heat Degreasing

引張試験棒の脱脂と焼結
最初に、触媒脱脂が実施例5に従って行われた。重量損失は23.2%であった。その後、熱脱脂と焼結が実施例4に従って行われた。
結果
長さの収縮:12.6%
棒直径の収縮:13.25%
焼結密度:2.56g/cm
Degreasing and sintering of tensile test bars Initially, catalytic degreasing was performed according to Example 5. The weight loss was 23.2%. Thereafter, thermal degreasing and sintering were performed according to Example 4.
Result length shrinkage: 12.6%
Rod diameter shrinkage: 13.25%
Sintering density: 2.56 g / cm 3

実施例8−中空シリンダ:触媒/熱脱脂Example 8-Hollow cylinder: catalyst / thermal degreasing

中空シリンダの脱脂と焼結
最初に、触媒脱脂が、実施例5に従って行われた。重量損失は23.7%であった。その後、熱脱脂と焼結が、実施例4に従って行われた。
結果
高さの収縮:17.24%
外径の収縮:14.48%
焼結密度:2.59g/cm
Degreasing and sintering of the hollow cylinder Initially, catalytic degreasing was performed according to Example 5. The weight loss was 23.7%. Thereafter, thermal degreasing and sintering were performed according to Example 4.
Resulting height shrinkage: 17.24%
Shrinkage of outer diameter: 14.48%
Sintering density: 2.59 g / cm 3

実施例9−引張試験棒:触媒/熱脱脂Example 9 Tensile Test Bar: Catalyst / Heat Degreasing

引張試験棒の脱脂と焼結
最初に、触媒脱脂が、実施例5に従って行われた。重量損失は25.7%であった。その後、熱脱脂と焼結が、実施例4に従って行われた。
結果
長さの収縮:13.57%
棒直径の収縮:19.55%
焼結密度:2.59g/cm
Degreasing and sintering of tensile test bars Initially, catalytic degreasing was performed according to Example 5. The weight loss was 25.7%. Thereafter, thermal degreasing and sintering were performed according to Example 4.
Result length shrinkage: 13.57%
Rod diameter shrinkage: 19.55%
Sintering density: 2.59 g / cm 3

実施例10−中空シリンダ:触媒/熱脱脂Example 10-Hollow cylinder: catalyst / thermal degreasing

中空シリンダの脱脂と焼結
最初に、触媒脱脂が、実施例5に従って行われた。重量損失は25.6%であった。その後、熱脱脂と焼結が、実施例4に従って行われた。
結果
高さの収縮:16.52%
外径の収縮:14.48%
焼結密度:2.56g/cm
Degreasing and sintering of the hollow cylinder Initially, catalytic degreasing was performed according to Example 5. The weight loss was 25.6%. Thereafter, thermal degreasing and sintering were performed according to Example 4.
Resulting height shrinkage: 16.52%
Shrinkage of outer diameter: 14.48%
Sintering density: 2.56 g / cm 3

本発明の方法は、このように、アルミニウム合金の焼結体を射出成形によって提供することができる。この焼結体は、輸送、建設、機械工学、包装産業、鉄鋼業、電子工学、家庭用器具などの分野を含む様々な分野において、例えば、電子機器のヒートシンクとして熱放散用に、またはエアコンディショニングシステムの部品として、実用化に適している。   Thus, the method of the present invention can provide a sintered body of an aluminum alloy by injection molding. This sintered body is used in various fields including fields such as transportation, construction, mechanical engineering, packaging industry, steel industry, electronics, and household appliances, for example, for heat dissipation as a heat sink for electronic equipment, or for air conditioning. Suitable for practical use as system components.

Claims (19)

アルミニウム合金をベースとする成形品を金属射出成形によって製造する方法であって、
a)金属粉末および/または1以上の金属合金粉末の形態の所望の合金に含まれる金属を、バインダと混合することにより供給原料を製造し、
b)前記供給原料を射出成形することによりグリーン体を製造し、
c)触媒脱脂および/または溶剤脱脂および/または熱脱脂によってグリーン体から少なくとも部分的にバインダを除去することによりブラウン体を製造し、
d)前記少なくとも部分的に脱脂されたブラウン体を焼結して所望の成形品を得る各ステップを備え、
その特徴が、ステップc)において、任意にその前に1以上の脱脂ステップを行った後に、少なくとも酸素を0.5体積%含む大気内で熱脱脂を行って(残留している)前記バインダを除去することで、前記バインダを完全に除去し、その後に、このようにして得られた、完全に脱脂されたブラウン体を焼結することである方法。
A method for producing a molded article based on an aluminum alloy by metal injection molding,
a) producing a feedstock by mixing the metal contained in the desired alloy in the form of metal powder and / or one or more metal alloy powders with a binder;
b) producing a green body by injection molding the feedstock;
c) producing a brown body by at least partially removing the binder from the green body by catalytic degreasing and / or solvent degreasing and / or thermal degreasing;
d) comprising each step of sintering the at least partially degreased brown body to obtain a desired molded article,
The feature is that in step c), after optionally performing one or more degreasing steps, thermal degreasing (residual) in the atmosphere containing at least 0.5% by volume of oxygen is performed. A method of removing the binder completely by removing, and thereafter sintering the completely degreased brown body thus obtained.
アルミニウムに加えて、前記アルミニウム合金が、マグネシウム、銅、シリコンおよびマンガンから選択される1以上の金属を含むことを特徴とする請求項1に記載の方法。   The method of claim 1, wherein in addition to aluminum, the aluminum alloy comprises one or more metals selected from magnesium, copper, silicon and manganese. アルミニウムに加えて、前記アルミニウム合金が1以上の金属を、それぞれ、0.5〜25重量%のパーセンテージで含むことを特徴とする請求項1または2に記載の方法。   3. A method according to claim 1 or 2, characterized in that, in addition to aluminum, the aluminum alloy contains one or more metals, each in a percentage of 0.5 to 25% by weight. 前記金属が、マスター合金粉末として用いられることを特徴とする請求項1から3のいずれか1項に記載の方法。   The method according to claim 1, wherein the metal is used as a master alloy powder. 前記バインダとして、ポリアセタールをベースとしたバインダ、例えば、ポリオキシメチレン(POM)バインダが用いられることを特徴とする先行する請求項のいずれか1項に記載の方法。   The method according to claim 1, wherein a polyacetal-based binder, for example a polyoxymethylene (POM) binder, is used as the binder. 前記バインダが、ポリアセタールを50〜95%含有することを特徴とする請求項5に記載の方法。   The method according to claim 5, wherein the binder contains 50 to 95% of polyacetal. 前記バインダが、ポリアセタールを80〜90%含有することを特徴とする請求項5に記載の方法。   The method according to claim 5, wherein the binder contains 80 to 90% of polyacetal. ステップc)は、酸素存在中での熱脱脂のみを含み、該熱脱脂は、1以上のステップで行われ、全バインダを除去することを特徴とする請求項1から7のいずれか1項に記載の方法。   8. Step c) comprises only thermal degreasing in the presence of oxygen, said thermal degreasing being carried out in one or more steps and removing all the binder. The method described. ステップc)は、前記バインダの大部分を除去するための溶剤脱脂を含み、その後、前記熱脱脂により残留するバインダを除去することを特徴とする請求項1から7のいずれか1項に記載の方法。   The step c) includes solvent degreasing to remove most of the binder, and then removes the remaining binder by the thermal degreasing. Method. ステップc)は、前記バインダの大部分を除去するための触媒脱脂を含み、その後、前記熱脱脂により残留するバインダを除去することを特徴とする請求項1から7のいずれか1項に記載の方法。   The step c) includes catalytic degreasing to remove most of the binder, and then removes the remaining binder by the thermal degreasing. Method. 前記触媒脱脂は、硝酸、シュウ酸、ギ酸および酢酸から選択される少なくとも1つの酸の存在中で行われることを特徴とする請求項10に記載の方法。   The method according to claim 10, wherein the catalytic degreasing is performed in the presence of at least one acid selected from nitric acid, oxalic acid, formic acid and acetic acid. 前記酸として、昇華されたシュウ酸が用いられることを特徴とする請求項11に記載の方法。   The method according to claim 11, wherein sublimed oxalic acid is used as the acid. あらゆる残留バインダを除去するための前記熱脱脂が、500℃より低い温度で行われることを特徴とする先行する請求項のいずれか1項に記載の方法。   A method according to any one of the preceding claims, characterized in that the thermal degreasing to remove any residual binder is performed at a temperature below 500 ° C. あらゆる残留バインダを除去するための前記熱脱脂が、100℃と420℃の間の範囲にある特定の温度プロフィールを適用して行われることを特徴とする請求項13に記載の方法。   14. The method of claim 13, wherein the thermal degreasing to remove any residual binder is performed by applying a specific temperature profile in the range between 100 <0> C and 420 <0> C. 前記残留バインダを除去するための前記熱脱脂の処理中の加熱速度が、5K/分を超えないことを特徴とする請求項13または14に記載の方法。   15. A method according to claim 13 or 14, wherein the heating rate during the thermal degreasing process to remove the residual binder does not exceed 5 K / min. 前記加熱速度が、1〜2K/分を超えないことを特徴とする請求項15に記載の方法。   The method according to claim 15, wherein the heating rate does not exceed 1-2 K / min. ステップd)において、前記完全に脱脂されたブラウン体が、液相を形成している間に焼結されることを特徴とする先行する請求項のいずれか1項に記載の方法。   A method according to any one of the preceding claims, characterized in that in step d) the fully defatted brown body is sintered while forming a liquid phase. 焼結は、各アルミニウム合金の固相線温度と液相線温度の間の温度で行われることを特徴とする請求項17に記載の方法。   The method according to claim 17, wherein the sintering is performed at a temperature between a solidus temperature and a liquidus temperature of each aluminum alloy. 前記熱脱脂ステップの後の前記焼結の温度に達するための加熱速度が、4〜20K/分の範囲であることを特徴とする先行する請求項のいずれか1項に記載の方法。   A method according to any one of the preceding claims, characterized in that the heating rate to reach the sintering temperature after the thermal degreasing step is in the range of 4-20 K / min.
JP2013501556A 2010-04-01 2011-03-31 Method for producing molded product of aluminum alloy Expired - Fee Related JP5956419B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
ATA534/2010 2010-04-01
ATA534/2010A AT509613B1 (en) 2010-04-01 2010-04-01 METHOD FOR PRODUCING MOLDINGS FROM ALUMINUM ALLOYS
PCT/AT2011/000157 WO2011120066A1 (en) 2010-04-01 2011-03-31 Method for producing shaped bodies from aluminium alloys

Publications (3)

Publication Number Publication Date
JP2013524006A true JP2013524006A (en) 2013-06-17
JP2013524006A5 JP2013524006A5 (en) 2015-11-19
JP5956419B2 JP5956419B2 (en) 2016-07-27

Family

ID=44170208

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013501556A Expired - Fee Related JP5956419B2 (en) 2010-04-01 2011-03-31 Method for producing molded product of aluminum alloy

Country Status (11)

Country Link
US (1) US20130101456A1 (en)
EP (1) EP2552630B1 (en)
JP (1) JP5956419B2 (en)
KR (1) KR20130079373A (en)
AT (1) AT509613B1 (en)
DK (1) DK2552630T3 (en)
ES (1) ES2639134T3 (en)
HU (1) HUE035814T2 (en)
PL (1) PL2552630T3 (en)
SG (1) SG184423A1 (en)
WO (1) WO2011120066A1 (en)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010149648A1 (en) 2009-06-25 2010-12-29 Basf Se Method for the continuous thermal debinding of a thermoplastic molding compound
CN104057089A (en) * 2013-03-20 2014-09-24 江苏天一超细金属粉末有限公司 Metal, ceramic powder and polymer mixture used for manufacturing metal and ceramic products and method for removing polymer from moldings by acid catalysis
CN104057090A (en) * 2013-03-20 2014-09-24 江苏天一超细金属粉末有限公司 Method for removing printing metal, ceramic product metal, ceramic powder and polymer mixed material and polymer from finished product
GB2513869B (en) * 2013-05-07 2015-12-30 Charles Grant Purnell Aluminium alloy products, and methods of making such alloy products
CN104227002A (en) * 2013-06-19 2014-12-24 东莞市事通达机电科技有限公司 Metallurgical injection molding process of aluminum powder
CN103769587A (en) * 2013-11-28 2014-05-07 王利民 Method and device for producing metal 3D printing method product
TWI669330B (en) * 2018-05-23 2019-08-21 晟銘電子科技股份有限公司 Shot material composition for metal injection molding,molded article and preparing method thereof
CN108889950A (en) * 2018-06-21 2018-11-27 深圳市富优驰科技有限公司 A kind of preparation method of hollow radiator and hollow radiator
US11219960B2 (en) 2019-05-29 2022-01-11 The Boeing Company Flash-removal tool
US10724932B1 (en) * 2019-05-29 2020-07-28 The Boeing Company Monolithic precursor test coupons for testing material properties of metal-injection-molded components
US11229951B2 (en) 2019-05-29 2022-01-25 The Boeing Company Monolithic precursor test coupons for testing material properties of metal-injection-molded components and methods and apparatuses for making such coupons
CN113878116A (en) * 2021-10-11 2022-01-04 深圳艾利佳材料科技有限公司 Sintering method of thin-wall strip part based on profiling jig
WO2023156610A1 (en) 2022-02-18 2023-08-24 Basf Se A process for the treatment of at least one three-dimensional green body

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06192706A (en) * 1992-12-25 1994-07-12 Sanyo Chem Ind Ltd Method for degreasing sinterable powder compact
JPH0820803A (en) * 1993-11-22 1996-01-23 Sanyo Chem Ind Ltd Production of sintered compact
JPH0881701A (en) * 1994-09-15 1996-03-26 Basf Ag Preparation of metal molding
JP2000017304A (en) * 1998-06-29 2000-01-18 Olympus Optical Co Ltd Production of inorganic powder sintered compact and inorganic powder sintered compact
JP2000063903A (en) * 1998-08-13 2000-02-29 Citizen Watch Co Ltd Manufacture of power injection-molded parts
JP2010500469A (en) * 2006-08-07 2010-01-07 ザ ユニバーシティー オブ クイーンズランド Metal injection molding method

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0329475B1 (en) * 1988-02-18 1994-01-26 Sanyo Chemical Industries Ltd. Mouldable composition
JP3128130B2 (en) * 1989-08-16 2001-01-29 ビーエーエスエフ アクチェンゲゼルシャフト Method for producing inorganic sintered compact
US5176740A (en) * 1989-12-29 1993-01-05 Showa Denko K.K. Aluminum-alloy powder, sintered aluminum-alloy, and method for producing the sintered aluminum-alloy
DE4007345A1 (en) 1990-03-08 1991-09-12 Basf Ag THERMOPLASTIC MEASURES FOR THE PRODUCTION OF METALLIC MOLDED BODIES
DE4314694C1 (en) 1993-05-04 1994-05-11 Basf Ag Prepn. of sinter mouldings from a mixt. of a sinterable powder and an oxymethylene binding agent - involving removal of binding agent by treatment with a gaseous acid which is solid at room temp.
CA2133387A1 (en) * 1993-10-01 1995-04-02 Basf K&F Corporation Process for improving the debinding rate of ceramic and metal injection molded products
US6376585B1 (en) * 2000-06-26 2002-04-23 Apex Advanced Technologies, Llc Binder system and method for particulate material with debind rate control additive
US7691174B2 (en) * 2004-03-08 2010-04-06 Battelle Memorial Institute Feedstock composition and method of using same for powder metallurgy forming a reactive metals
KR20080027171A (en) * 2006-09-22 2008-03-26 세이코 엡슨 가부시키가이샤 Method for producing sintered body and sintered body
WO2010149648A1 (en) * 2009-06-25 2010-12-29 Basf Se Method for the continuous thermal debinding of a thermoplastic molding compound

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06192706A (en) * 1992-12-25 1994-07-12 Sanyo Chem Ind Ltd Method for degreasing sinterable powder compact
JPH0820803A (en) * 1993-11-22 1996-01-23 Sanyo Chem Ind Ltd Production of sintered compact
JPH0881701A (en) * 1994-09-15 1996-03-26 Basf Ag Preparation of metal molding
JP2000017304A (en) * 1998-06-29 2000-01-18 Olympus Optical Co Ltd Production of inorganic powder sintered compact and inorganic powder sintered compact
JP2000063903A (en) * 1998-08-13 2000-02-29 Citizen Watch Co Ltd Manufacture of power injection-molded parts
JP2010500469A (en) * 2006-08-07 2010-01-07 ザ ユニバーシティー オブ クイーンズランド Metal injection molding method

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JPN6015010714; 加藤清隆、園田勉、渡津章、山田康雄、朝比奈正: 'MIM手法を利用した純アルミニウム焼結体の作製' 粉体および粉末冶金 Vol.51, No.7, 20040715, p.492-498, 社団法人粉体粉末冶金協会 *

Also Published As

Publication number Publication date
AT509613A1 (en) 2011-10-15
ES2639134T3 (en) 2017-10-25
WO2011120066A1 (en) 2011-10-06
HUE035814T2 (en) 2018-05-28
US20130101456A1 (en) 2013-04-25
EP2552630A1 (en) 2013-02-06
DK2552630T3 (en) 2017-09-25
EP2552630B1 (en) 2017-05-31
KR20130079373A (en) 2013-07-10
PL2552630T3 (en) 2018-05-30
SG184423A1 (en) 2012-10-30
JP5956419B2 (en) 2016-07-27
CN103038006A (en) 2013-04-10
AT509613B1 (en) 2017-05-15

Similar Documents

Publication Publication Date Title
JP5956419B2 (en) Method for producing molded product of aluminum alloy
US20100183471A1 (en) Metal injection moulding method
JP2013524006A5 (en)
JPH01129902A (en) Method for processing parts from granular material and feed raw material
US20060239851A1 (en) Method for the production of near net-shaped metallic and/or ceramic parts
WO2009029993A1 (en) Metal injection moulding method
US6761852B2 (en) Forming complex-shaped aluminum components
CN108838404B (en) Low-cost near-net forming method for titanium alloy
US20080075619A1 (en) Method for making molybdenum parts using metal injection molding
WO2016109431A1 (en) Manufacture of near-net shape titanium alloy articles from metal powders by sintering with atomic hydrogen
WO2013022531A1 (en) Manufacture of near-net shape titanium alloy articles from metal powders by sintering with presence of atomic hydrogen
JP6078055B2 (en) Production of metal or alloy objects
JPH1068004A (en) Compacting method for titanium alloy
US20050163646A1 (en) Method of forming articles from alloys of tin and/or titanium
KR101635792B1 (en) The preparing method of aluminum/silicon carbide metal matrix composites and the aluminum/silicon carbide metal matrix composites thereby
JP4045712B2 (en) Method for producing metal matrix composite material
WO2009029992A1 (en) Metal injection moulding method
US20240017323A1 (en) Process for producing shaped bodies by sintering
CN103038006B (en) For the method manufacturing aluminium alloy moulded products
KR101115225B1 (en) Feedstock composition and method of using same for powder metallurgy forming of reactive metals
JPH07300648A (en) High strength sintered w-base alloy and its production
JPH01312004A (en) Method of molding al composite material
JP2004052011A (en) Manufacturing method of composite metal and manufacturing method of composite material of composite metal-ceramic
JP2932763B2 (en) Method of manufacturing injection molded powder metallurgy products

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140212

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150324

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20150624

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150924

A524 Written submission of copy of amendment under article 19 pct

Free format text: JAPANESE INTERMEDIATE CODE: A524

Effective date: 20150924

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151215

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20160315

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160415

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160531

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160616

R150 Certificate of patent or registration of utility model

Ref document number: 5956419

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees