TWI669330B - Shot material composition for metal injection molding,molded article and preparing method thereof - Google Patents
Shot material composition for metal injection molding,molded article and preparing method thereof Download PDFInfo
- Publication number
- TWI669330B TWI669330B TW107117486A TW107117486A TWI669330B TW I669330 B TWI669330 B TW I669330B TW 107117486 A TW107117486 A TW 107117486A TW 107117486 A TW107117486 A TW 107117486A TW I669330 B TWI669330 B TW I669330B
- Authority
- TW
- Taiwan
- Prior art keywords
- unsubstituted
- substituted
- metal powder
- patent application
- injection molding
- Prior art date
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F1/00—Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
- B22F1/10—Metallic powder containing lubricating or binding agents; Metallic powder containing organic material
- B22F1/102—Metallic powder coated with organic material
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F3/00—Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
- B22F3/10—Sintering only
- B22F3/1017—Multiple heating or additional steps
- B22F3/1021—Removal of binder or filler
- B22F3/1025—Removal of binder or filler not by heating only
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F3/00—Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
- B22F3/22—Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces for producing castings from a slip
- B22F3/225—Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces for producing castings from a slip by injection molding
Landscapes
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Mechanical Engineering (AREA)
- Powder Metallurgy (AREA)
- Injection Moulding Of Plastics Or The Like (AREA)
Abstract
本發明係提供一種金屬射出成型射料組合物,其包含含有銅、鈷或其組合的金屬粉末、作為射料組合物的載體的結合劑、以及塗佈於金屬粉末上作為鈍化層並具有如下結構式(1)所示的矽烷,
Description
本發明係關於一種金屬射出成型射料組合物、成型體及其製備方法,特別是關於一種能夠使用硝酸作為催化劑來進行酸脫之金屬射出成型射料組合物、成型體及其製備方法。 The invention relates to a metal injection molding injection composition, a molded body, and a preparation method thereof, and particularly to a metal injection molding injection composition, a molded body, and a preparation method thereof that can use nitric acid as a catalyst for acid removal.
金屬射出成型(Metal Injection Molding,MIM)係為一種結合粉末冶金和射出成型的技術。由於MIM製程適用於製造形狀複雜、高精密度和高性能材質的零件,因此被廣泛應用於製造汽車零件、電子零件、醫療組件、機械工業、日用品等領域。 Metal Injection Molding (MIM) is a technology that combines powder metallurgy and injection molding. Because the MIM process is suitable for manufacturing parts with complex shapes, high precision and high performance materials, it is widely used in the manufacturing of automotive parts, electronic parts, medical components, machinery industry, daily necessities and other fields.
MIM製程主要包含利用混合、混煉、加熱及造粒等製程將金屬粉末與結合劑並獲得射出成型之射料組合物,並藉由像是射出成型機等的模具射出成型為生胚,而後經脫脂(debinding)以去除結合劑,再將溫度提升進行燒結而獲得射出成型體。其中,由於脫脂步驟係用於確保後續燒結之產品品質,因此脫脂步驟係為MIM的關鍵步驟之一。 The MIM process mainly includes mixing, kneading, heating, and granulating processes to obtain metal powder and a binder to obtain an injection molding composition, and injection molding into a green embryo by a mold such as an injection molding machine, and then After debinding to remove the binding agent, the temperature is raised and sintered to obtain an injection molded body. Among them, since the degreasing step is used to ensure the quality of the subsequent sintered product, the degreasing step is one of the key steps of MIM.
目前工業上利用之脫脂步驟可大致分為熱脫脂(thermal debinding)法及觸媒脫脂(catalytic debinding)法。熱脫脂法係利用加熱升溫的方式使結合劑 裂解,並利用惰性介質去除裂解後的結合劑,熱脫脂法具有製程簡單之優點,然而,其受到升溫速率、持溫時間等條件之限制。觸媒脫脂法,亦稱酸脫脂法,則應用以聚縮醛(polyacetal)作為結合劑之情況,藉由導入強酸氣體,進行使聚縮醛分解為甲醛之觸媒反應。酸脫脂法具有產品之品質優良且進行催化反應所需時間較短之優點,然而,當金屬粉末包含銅及/或鈷時,硝酸會造成金屬粉末氧化並產硝酸鹽,而大幅降低脫脂效率。因此,仍須提供一種於金屬粉末包含銅及/或鈷時,仍能藉由酸脫脂法進行快速脫脂之射料組合物。 The degreasing steps currently used in industry can be roughly divided into thermal debinding (thermal debinding) method and catalytic debinding (catalytic debinding) method. The thermal degreasing method uses the method of heating to make the binding agent Cracking, and using an inert medium to remove the cracked binder, thermal degreasing method has the advantage of simple process, however, it is limited by conditions such as heating rate and holding time. The catalyst degreasing method, also known as the acid degreasing method, uses the case where polyacetal is used as a binding agent, and a strong acid gas is introduced to carry out a catalyst reaction that decomposes polyacetal into formaldehyde. The acid degreasing method has the advantages of excellent product quality and a shorter time for carrying out the catalytic reaction. However, when the metal powder contains copper and / or cobalt, nitric acid causes the metal powder to oxidize and produce nitrate, which greatly reduces the degreasing efficiency. Therefore, there is still a need to provide a shot composition that can be quickly degreased by the acid degreasing method when the metal powder contains copper and / or cobalt.
鑒於上述問題,本發明之目的為提供一種金屬射出成型射料組合物、成型體及其製備方法,利用塗佈於金屬粉末上以作為鈍化層之矽烷,克服在MIM領域中無法使用酸脫脂法來製備包含鈷及/銅之合金,進而改善上述習知技術所產生的問題。 In view of the above problems, the object of the present invention is to provide a metal injection molding injection composition, a molded body and a preparation method thereof, using silane coated on the metal powder as a passivation layer to overcome the inability to use acid degreasing method in the MIM field To prepare alloys containing cobalt and / or copper to further improve the problems caused by the above-mentioned conventional techniques.
根據本發明之目的,提供一種金屬射出成型射料組合物,其包含:包含銅、鈷或其組合的金屬粉末、作為射料組合物的載體的結合劑、以及塗佈於金屬粉末上作為鈍化層,且其結構如下結構式(1)所示的矽烷,
較佳地,金屬粉末與矽烷之重量比為100:1至400:1。 Preferably, the weight ratio of metal powder to silane is 100: 1 to 400: 1.
較佳地,Y選自經取代或未取代的長碳鏈烷基。 Preferably, Y is selected from substituted or unsubstituted long carbon chain alkyl.
較佳地,結合劑包含聚甲醛、聚烯及蠟中的至少一種。 Preferably, the binder contains at least one of polyoxymethylene, polyene and wax.
根據本發明之目的,另提供一種成型體之製備方法,其包含:將上述之射料組合物進行混煉;射出成型為生胚;將生胚進行脫脂,脫脂包含利用催化劑在第一溫度進行酸脫脂以及在第二溫度進行熱脫脂;以及燒結並獲得成型體。 According to the purpose of the present invention, there is also provided a method for preparing a molded body, which comprises: mixing the above-mentioned shot composition; injection molding into a green embryo; degreasing the green embryo, degreasing includes using a catalyst at a first temperature Acid degreasing and thermal degreasing at a second temperature; and sintering and obtaining a molded body.
較佳地,催化劑為硝酸。 Preferably, the catalyst is nitric acid.
較佳地,第一溫度為100℃至130℃之間。 Preferably, the first temperature is between 100 ° C and 130 ° C.
較佳地,第二溫度為550℃至850℃之間。 Preferably, the second temperature is between 550 ° C and 850 ° C.
根據本發明之目的,另提供一種成型體,係由上述之方法製得。 According to the purpose of the present invention, there is also provided a molded body produced by the above method.
本發明之金屬射出成型射料組合物、成型體及其製備方法具有下述優點: The metal injection molding injection composition, molded body and preparation method thereof of the present invention have the following advantages:
(1)本發明之矽烷係為一種雙功能的塗佈物,可具有形成鈍化層,使混煉造粒後之金屬射出成型射料組合物在後續酸脫脂製程中能不與硝酸反應,以使射料組合物中含有的鈷及/或銅能免於氧化問題的通能,並同時具有藉 由調節射料組合物之極性,而使金屬粉末與結合劑之間之互溶性提升,以提高分散性之功能。 (1) The silane system of the present invention is a dual-function coating, which may have a passivation layer, so that the metal injection molding composition after mixing and granulation can not react with nitric acid in the subsequent acid degreasing process, The cobalt and / or copper contained in the shot composition can avoid the oxidation energy, and also has the borrowing By adjusting the polarity of the shot composition, the mutual solubility between the metal powder and the binding agent is increased to improve the dispersibility function.
(2)由於本發明之金屬射出成型射料組合物之矽烷係於混煉造粒過程中加入,因此使用本發明之射料組合物,不須大幅度改變原有金屬射出成型製程,僅需將原用之射料組合物替換為本發明之射料組合物即可進行應用,因此能夠在幾乎不提升成本之條件下,使用能夠快速反應之酸脫脂法進行脫脂,故能提升產率並降低生產成本。 (2) Since the silane of the metal injection molding injection composition of the present invention is added during the mixing and granulation process, the use of the injection composition of the present invention does not need to significantly change the original metal injection molding process, only It can be used by replacing the original shot composition with the shot composition of the present invention, so it can be degreased using an acid degreasing method that can react quickly without increasing the cost, so it can increase the yield and reduce manufacturing cost.
S10~S40‧‧‧步驟 S10 ~ S40‧‧‧Step
第1圖係為本發明之成型體之製備方法的流程示意圖。 FIG. 1 is a schematic flow chart of the method for preparing a molded body of the present invention.
為使上述目的、技術特徵及實際實施後之效益更易於使本領域具通常知識者所理解,將於下文中以實施例搭配圖式更詳細地說明。 In order to make the above purpose, technical features and benefits after actual implementation easier for those with ordinary knowledge in the art to understand, it will be described in more detail in the following with examples and drawings.
參照第1圖,其係為本發明之成型體之製備方法的流程示意圖。 Refer to FIG. 1, which is a schematic flow chart of the method for preparing a molded body of the present invention.
步驟S10中,將射料組合物進行混練。混煉製程可包含混合、造粒等所屬技術領域中具有通常知識者為習知的製程。 In step S10, the shot composition is kneaded. The kneading process may include a process known to those with ordinary knowledge in the technical field such as mixing and granulation.
其中,射料組合物可包含金屬粉末、結合劑及矽烷。金屬粉末可包含銅及/或鈷,亦即金屬粉末可為任何包含銅及/鈷之合金粉末。結合劑係作為射料組合物的載體,結合劑可包含聚縮醛、聚烯及蠟中的至少一種。較佳地,結合劑可為聚甲醛(polyoxymethylene,POM)及/或聚乙烯(Polyethylene,PE)。 The shot composition may include metal powder, binder and silane. The metal powder may include copper and / or cobalt, that is, the metal powder may be any alloy powder including copper and / or cobalt. The binder is used as a carrier for the shot composition. The binder may include at least one of polyacetal, polyene, and wax. Preferably, the binding agent may be polyoxymethylene (POM) and / or polyethylene (PE).
矽烷可塗佈於金屬粉末上以作為鈍化層,且其結構如下結構式(1)所示,
其中,雜烷基係指包含S、P、O、N之烷基。雜環烷基係指包含S、P、O、N之環烷基。雜環烯基係指包含S、P、O、N之環烯基。雜芳基係指包含S、P、O、N之芳基。 Among them, the heteroalkyl group refers to an alkyl group including S, P, O, and N. Heterocycloalkyl refers to cycloalkyl containing S, P, O, N. Heterocyclenyl refers to a cycloalkenyl group containing S, P, O, N. Heteroaryl refers to an aryl group containing S, P, O, N.
在一實施例中,所述矽烷之Y為經取代或未取代的長碳鏈烷基。在一實施例中,將本發明所選用之矽烷溶於溶劑中進行稀釋,以增加分散性,而利於後續塗佈製程。由於高級醇之沸點過高,因此溶劑可為低級醇。所述低級醇包含但不限於無水乙醇、異丙醇等。所述塗佈方式包含但不限於噴塗(spray coating)。所述塗佈方式可為所屬技術領域中具有通常知識者為習知的任何方式。由於利用低級醇進行稀釋,再接續塗佈製程,因此可藉由加熱之方式,提 供熱能以產生脫水反應,並同時藉由提升溫度之方式移除用以增加分散性之低級醇。其中,加熱時間可為0.5至2hr。較佳地,加熱溫度可為大於100℃之溫度,以達去除包含水氣之脫水反應的副產物以及溶劑之目的。此外,由於加熱溫度可為大於100℃,因此即使是具有較高碳數之矽烷,亦能產生脫水反應。 In one embodiment, Y of the silane is a substituted or unsubstituted long carbon chain alkyl. In one embodiment, the silane selected in the present invention is dissolved in a solvent for dilution to increase the dispersibility and facilitate the subsequent coating process. Since the boiling point of the higher alcohol is too high, the solvent may be a lower alcohol. The lower alcohol includes but is not limited to absolute ethanol, isopropanol and the like. The coating method includes but is not limited to spray coating. The coating method may be any method known to those having ordinary knowledge in the technical field. Since the lower alcohol is used for dilution and then the coating process is continued, it can be improved by heating Heating energy is used to produce dehydration reaction, and at the same time, lower alcohol used to increase dispersibility is removed by raising the temperature. Among them, the heating time may be 0.5 to 2 hr. Preferably, the heating temperature may be a temperature greater than 100 ° C. for the purpose of removing by-products and solvents of the dehydration reaction including water vapor. In addition, since the heating temperature can be greater than 100 ° C, even silanes with a higher carbon number can also produce dehydration reactions.
在一實施例中,矽烷可包含但不限於如下化學式所示之矽烷:H2NC3H6-Si(OC2H5)3、H2NC2H4NHC3H6-Si(OCH3)3、H2NC2H4NHC3H6-Si(OH)3、C6H5-CH2-NHC2H4NHC3H6-Si(OCH3)3、H2C=CH(CH3)C(O)OC3H6-Si(OCH3)3、H2C=CH-C6H4-CH2-NHC2H4NHC3H6-Si(OCH3)3、H2C=CH-Si-(OC2H4OCH3)3、ClC3H6-Si(OCH3)3、CH2(O)CHCH2OC3H6-Si(OCH3)3、H2C=CH-Si(OC2H5)3、CH2(O)CHCH2OC3H6-Si(CH3)(OC2H5)2、C6H5-Si(OCH3)3、HS(CH2)3Si(OCH3)3、H2C=CH-Si(OCH3)3、CH3-Si(OCH3)3、C6H13-Si(OCH3)3、C8H17Si(OC2H5)3、C8H17Si(OCH3)3、C3H7Si(OCH3)3、C3H7Si(OC2H5)3、(CH3)3C-Si(OCH3)3、(CH3)3C-Si(OC2H5)3、((CH3)3Si)2NH、Si(OC2H5)4、(CH3O)3SiCH=CH2、(C2H5O)3SiCH=CH2、(C2H5O)4Si、(CH3O)3SiCH3、(C2H5O)3SiCH3、(C2H5O)2Si(CH3)2、(CH3)3SiNHSi(CH3)3、(CH3O)3SiC6H13、(C2H5O)3SiC6H13、(CH3O)3SiC10H21、(C2H5O)3SiCH=CH2、(CH3OC2H4O)3SiCH=CH2、(CH3O3)SiCH=CH2、(CH3CO2)3SiCH=CH2、(CH3O)3SiC3H6N=C=O、(CH3O)2Si(CH3)2、(C2H5O)Si(CH3)3、(CH3O)3SiC16H33、bis-triethoxysilylpropyldisulfidosilane(TESPD)或bis-triethoxysilylpropyltetrasulfidosilane(TESPT)。 In an embodiment, the silane may include but is not limited to silanes represented by the following chemical formulas: H 2 NC 3 H 6 -Si (OC 2 H 5 ) 3 , H 2 NC 2 H 4 NHC 3 H 6 -Si (OCH 3 ) 3 , H 2 NC 2 H 4 NHC 3 H 6 -Si (OH) 3 , C 6 H 5 -CH 2 -NHC 2 H 4 NHC 3 H 6 -Si (OCH 3 ) 3 , H 2 C = CH ( CH 3 ) C (O) OC 3 H 6 -Si (OCH 3 ) 3 , H 2 C = CH-C 6 H 4 -CH 2 -NHC 2 H 4 NHC 3 H 6 -Si (OCH 3 ) 3 , H 2 C = CH-Si- (OC 2 H 4 OCH 3 ) 3 , ClC 3 H 6 -Si (OCH 3 ) 3 , CH 2 (O) CHCH 2 OC 3 H 6 -Si (OCH 3 ) 3 , H 2 C = CH-Si (OC 2 H 5 ) 3 , CH 2 (O) CHCH 2 OC 3 H 6 -Si (CH 3 ) (OC 2 H 5 ) 2 , C 6 H 5 -Si (OCH 3 ) 3 , HS (CH 2 ) 3 Si (OCH 3 ) 3 , H 2 C = CH-Si (OCH 3 ) 3 , CH 3 -Si (OCH 3 ) 3 , C 6 H 13 -Si (OCH 3 ) 3 , C 8 H 17 Si (OC 2 H 5 ) 3 , C 8 H 17 Si (OCH 3 ) 3 , C 3 H 7 Si (OCH 3 ) 3 , C 3 H 7 Si (OC 2 H 5 ) 3 , (CH 3 ) 3 C-Si (OCH 3 ) 3 , (CH 3 ) 3 C-Si (OC 2 H 5 ) 3 , ((CH 3 ) 3 Si) 2 NH, Si (OC 2 H 5 ) 4 , (CH 3 O ) 3 SiCH = CH 2 , (C 2 H 5 O) 3 SiCH = CH 2 , (C 2 H 5 O) 4 Si, (CH 3 O) 3 SiCH 3 , (C 2 H 5 O) 3 SiCH 3 , (C 2 H 5 O) 2 Si (CH 3 ) 2 , (CH 3 ) 3 SiNHSi (CH 3 ) 3 , (CH 3 O) 3 SiC 6 H 13 , (C 2 H 5 O) 3 SiC 6 H 13 、 (CH 3 O) 3 SiC 10 H 21 、 (C 2 H 5 O ) 3 SiCH = CH 2 、 (CH 3 OC 2 H 4 O) 3 SiCH = CH 2 、 (CH 3 O 3 ) SiCH = CH 2 、 (CH 3 CO 2 ) 3 SiCH = CH 2 、 (CH 3 O) 3 SiC 3 H 6 N = C = O, (CH 3 O) 2 Si (CH 3 ) 2 , (C 2 H 5 O) Si (CH 3 ) 3 , (CH 3 O) 3 SiC 16 H 33 , bis -triethoxysilylpropyldisulfidosilane (TESPD) or bis-triethoxysilylpropyltetrasulfidosilane (TESPT).
在一實施例中,矽烷可包含但不限於如下結構式所示之矽烷:
由於金屬粉末之表面積大,因此於正常操作下,金屬粉末之表面會吸附水分子,而矽烷上的OR可與水分子在加熱條件下進行脫水反應,從而有效地塗佈並鍵結於金屬粉末上。 Due to the large surface area of the metal powder, under normal operation, the surface of the metal powder will adsorb water molecules, and the OR on the silane can be dehydrated with the water molecules under heating conditions, thereby effectively coating and bonding to the metal powder on.
在一實施例中,脫水反應之流程可係如下反應式(1)所示。 In one embodiment, the flow of the dehydration reaction may be as shown in the following reaction formula (1).
步驟S20,射出成型為生胚。射出成型製程可包含所屬技術領域中具有通常知識者為習知的製程。射出成型的模具可為球體、正多面體、不規則多面體等、含有曲面的不規則多面體等。 In step S20, injection molding is performed into a green embryo. The injection molding process may include a process known to those skilled in the art. The mold for injection molding may be a sphere, a regular polyhedron, an irregular polyhedron, etc., an irregular polyhedron containing a curved surface, and the like.
步驟S30,將生胚進行脫脂。脫脂包含利用催化劑在第一溫度進行酸脫脂以及在第二溫度進行熱脫脂。催化劑可為所屬技屬領域中具有通常知識者為習知的任何酸催化劑。較佳地,催化劑可為硝酸或草酸。更佳地,催化劑可為硝酸。第二溫度可大於第一溫度,以藉由溫度提升使脫脂步驟完整進行。較佳地,第一溫度可為100℃至130℃之間;更佳地,第一溫度可為110℃至120℃之間。較佳地,第二溫度可為550℃至850℃之間;更佳地,第二溫度可為600℃至800℃之間。 In step S30, the green embryo is degreased. Degreasing involves acid degreasing at a first temperature and thermal degreasing at a second temperature using a catalyst. The catalyst may be any acid catalyst known to those of ordinary skill in the art. Preferably, the catalyst may be nitric acid or oxalic acid. More preferably, the catalyst may be nitric acid. The second temperature may be greater than the first temperature to complete the degreasing step by increasing the temperature. Preferably, the first temperature may be between 100 ° C and 130 ° C; more preferably, the first temperature may be between 110 ° C and 120 ° C. Preferably, the second temperature may be between 550 ° C and 850 ° C; more preferably, the second temperature may be between 600 ° C and 800 ° C.
步驟S40,燒結並獲得成型體。燒結製程可為所屬技屬領域中具有通常知識者為習知的任何製程。 Step S40, sintering and obtaining a molded body. The sintering process may be any process known to those skilled in the art.
在實例一中,進行金屬射出成型射料組合物之比較,選用銅鈷合金作為金屬粉末,其中銅含量可為88至94%或者鈷含量可為88至94%。選用硝酸作為催化劑,並為了搭配硝酸而選用POM作為結合劑,所述結合劑的組成為60至80wt%POM、2至5wt%高密度聚乙烯(HDPE)、2至5wt%經順丁烯二酸酐改質的線性低密度聚乙烯(maleic anhydride modified low-density polyethylene,OREVAC® 18302N,密度為0.912g/cm3)、2至6wt%硬脂酸(SA,Stearic Acid)、4至20wt%褐媒蠟(Montan wax)及1至5wt%乙烯-醋酸乙烯共聚物(ethylene vinyl acetate copolymer,EVA)。同時,為了搭配硝酸,亦選用矽烷作為雙功能塗佈物,所述矽烷除了用作銅鈷合金之鈍化層外,由於極性相似之物質具有較佳之互溶性,因此具有長碳鏈之矽烷與POM之互溶性較佳,且分散性隨之提高,其結果較佳。 In Example 1, a comparison of the metal injection molding shot composition is made, and a copper-cobalt alloy is selected as the metal powder, wherein the copper content may be 88 to 94% or the cobalt content may be 88 to 94%. Nitric acid is used as a catalyst, and POM is used as a binding agent for nitric acid. The composition of the binding agent is 60 to 80 wt% POM, 2 to 5 wt% high-density polyethylene (HDPE), and 2 to 5 wt% via maleic acid. Maleic anhydride modified low-density polyethylene (OREVAC ® 18302N, density 0.912g / cm 3 ), 2 to 6wt% stearic acid (SA, Stearic Acid), 4 to 20wt% brown Montan wax and 1 to 5 wt% ethylene-vinyl acetate copolymer (EVA). At the same time, in order to match nitric acid, silane is also used as a dual-function coating. In addition to being used as a passivation layer of copper-cobalt alloys, silanes with long carbon chains and POM have better miscibility due to their similar mutual solubility. The mutual solubility is better, and the dispersibility is improved accordingly, the result is better.
在實例二中,接續上述,其餘條件與實例一相同,針對含有不同量的矽烷之金屬粉末進行比較。金屬粉末與矽烷之重量比為100:1至400:1。然而,當金屬粉末含量過低時,金屬粉末係為限量試劑,矽烷則為過量試劑,多餘之矽烷造成成本之浪費;反之,當金屬粉末含量過高時,部分金屬粉末無法完全被矽烷包覆,因此於後續脫脂製程中,仍會出現傳統酸脫製程無法使用含鈷及/或銅合金之氧化問題。 In Example 2, following the above, the remaining conditions are the same as in Example 1, and comparison is made for metal powders containing different amounts of silane. The weight ratio of metal powder to silane is 100: 1 to 400: 1. However, when the metal powder content is too low, the metal powder is a limited amount of reagents, and silane is an excessive reagent, and excess silane causes a waste of cost; conversely, when the metal powder content is too high, part of the metal powder cannot be completely coated with silane Therefore, in the subsequent degreasing process, the oxidation problem of cobalt and / or copper alloy cannot be used in the conventional acid degreasing process.
接續上述,其餘條件與實例一及實例二相同,進行不同MIM製程之比較。其中,選用之混煉造粒製程、金屬射出成型製以及燒結製程可為所屬技術領域中具有通常知識者為習知的任何製程。 Following the above, the remaining conditions are the same as in Example 1 and Example 2, and the comparison of different MIM processes is performed. Among them, the selected mixing granulation process, metal injection molding process and sintering process can be any process known to those skilled in the art.
其中,將生胚進行脫脂,首先利用濃度為70至90wt%之硝酸進行酸脫脂。其中,氮氣流速為400至1000nL/hr,溫度為120至170℃,脫脂速率為0.5至2.5mm/hr,酸脫脂持續時間為0.5至6hr。酸脫脂之主要目的為快速除去POM。硝酸濃度越高,酸脫脂效率越快。惰性氣體置換速率越高,酸脫脂產生之中間產物的濃度越低,因此生胚反應表面的硝酸濃度越高,因此當氮氣流速越高時,酸脫脂效率越高。 Among them, to degrease the raw embryos, first of all, acid degreasing is performed using nitric acid with a concentration of 70 to 90 wt%. Among them, the nitrogen flow rate is 400 to 1000 nL / hr, the temperature is 120 to 170 ° C., the degreasing rate is 0.5 to 2.5 mm / hr, and the acid degreasing duration is 0.5 to 6 hr. The main purpose of acid degreasing is to remove POM quickly. The higher the nitric acid concentration, the faster the acid degreasing efficiency. The higher the inert gas displacement rate, the lower the concentration of the intermediate product produced by acid degreasing, so the higher the nitric acid concentration on the surface of the embryo reaction, so the higher the nitrogen degreasing efficiency, the higher the acid degreasing efficiency.
其中,接續進行熱脫脂。其中,熱脫脂溫度係為600至800℃,熱脫脂持續時間為0.5至16hr。熱脫脂之主要目的為除去作為保護功能之矽烷,以利後續燒結製程。同時,經酸脫脂後之生胚容易產生結合劑之殘留情況,亦可藉由熱脫脂加以去除乾淨。 Among them, the thermal degreasing is continued. Among them, the thermal degreasing temperature is 600 to 800 ° C., and the thermal degreasing duration is 0.5 to 16 hr. The main purpose of thermal degreasing is to remove the silane as a protective function to facilitate the subsequent sintering process. At the same time, the green embryos after acid degreasing are likely to produce binder residues, which can also be removed by heat degreasing.
綜上所述,本發明之金屬射出成型射料組合物、成型體及其製備方法除了可依照不同的使用需求,調整金屬射出成型射料組合物的成分,更重要的是,本發明之包金屬射出成型射料組合物能夠克服在MIM領域中無法使用 酸脫脂法來製備包含鈷及/銅之合金之問題,且能於不大幅轉變原有之製程的條件下,加快生產速率以達到降低成本之目的。 In summary, in addition to the metal injection molding composition, molded body and preparation method of the invention, the composition of the metal injection molding injection composition can be adjusted according to different usage requirements, and more importantly, the package of the invention Metal injection molding injection composition can overcome the unusable in the field of MIM The problem of preparing an alloy containing cobalt and / or copper by acid degreasing method, and can accelerate the production rate without significantly changing the original process to achieve the purpose of reducing costs.
以上所述僅為舉例性,而非為限制性者。任何未脫離本發明之精神與範疇,而對其進行之等效修改或變更,均應包含於申請專利範圍中。 The above is only exemplary, and not restrictive. Any equivalent modifications or changes made without departing from the spirit and scope of the present invention should be included in the scope of the patent application.
Claims (9)
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW107117486A TWI669330B (en) | 2018-05-23 | 2018-05-23 | Shot material composition for metal injection molding,molded article and preparing method thereof |
CN201810679858.3A CN110523969A (en) | 2018-05-23 | 2018-06-27 | Metal injection molding shot composition, molded body and preparation method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW107117486A TWI669330B (en) | 2018-05-23 | 2018-05-23 | Shot material composition for metal injection molding,molded article and preparing method thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
TWI669330B true TWI669330B (en) | 2019-08-21 |
TW202003663A TW202003663A (en) | 2020-01-16 |
Family
ID=68316616
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW107117486A TWI669330B (en) | 2018-05-23 | 2018-05-23 | Shot material composition for metal injection molding,molded article and preparing method thereof |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN110523969A (en) |
TW (1) | TWI669330B (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112760555A (en) * | 2019-10-21 | 2021-05-07 | 晟铭电子科技股份有限公司 | Method for producing molded body having nitrided layer, and molded body produced thereby |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114406262B (en) * | 2020-10-28 | 2024-02-13 | 汉达精密电子(昆山)有限公司 | Powder injection molding method and molded article thereof |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5950063A (en) * | 1995-09-07 | 1999-09-07 | Thermat Precision Technology, Inc. | Method of powder injection molding |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
AT509613B1 (en) * | 2010-04-01 | 2017-05-15 | Univ Wien Tech | METHOD FOR PRODUCING MOLDINGS FROM ALUMINUM ALLOYS |
CN104001924B (en) * | 2014-03-20 | 2016-02-24 | 建德市易通金属粉材有限公司 | A kind of metal injection moulding ferrous alloy premix |
TWI580746B (en) * | 2016-04-27 | 2017-05-01 | 晟銘電子科技股份有限公司 | Binder for injection molding |
CN106670451B (en) * | 2016-12-28 | 2018-11-27 | 江苏精研科技股份有限公司 | Powder injection forming copper alloy feeding |
CN106552942A (en) * | 2017-02-06 | 2017-04-05 | 深圳市卡德姆科技有限公司 | A kind of method of the modeling based binder and injection moulding copper and copper alloy parts for copper and copper alloy injection moulding |
-
2018
- 2018-05-23 TW TW107117486A patent/TWI669330B/en active
- 2018-06-27 CN CN201810679858.3A patent/CN110523969A/en active Pending
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5950063A (en) * | 1995-09-07 | 1999-09-07 | Thermat Precision Technology, Inc. | Method of powder injection molding |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112760555A (en) * | 2019-10-21 | 2021-05-07 | 晟铭电子科技股份有限公司 | Method for producing molded body having nitrided layer, and molded body produced thereby |
Also Published As
Publication number | Publication date |
---|---|
TW202003663A (en) | 2020-01-16 |
CN110523969A (en) | 2019-12-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP7318982B2 (en) | Thermoplastic binders for use in binder jetting additive manufacturing | |
JP3142828B2 (en) | Binder system for powder injection molding | |
KR101886263B1 (en) | Copper nanoparticles and production method for same, copper nanoparticle fluid dispersion, copper nanoink, copper nanoparticle preservation method, and copper nanoparticle sintering method | |
TWI669330B (en) | Shot material composition for metal injection molding,molded article and preparing method thereof | |
RU2575935C2 (en) | Catalytic composition for synthesis of carbon nanotubes | |
KR20080013787A (en) | Manufacturing method of silver nanoparticles and silver nano colloids, and silver ink composition containing the silver nanoparticles | |
JP2013503260A (en) | Method for controlling the morphology of metal nanowires | |
US20110319252A1 (en) | Composite powders | |
JP2009062611A (en) | Metal fine particle material, dispersion liquid of metal fine particle material, conductive ink containing the dispersion liquid, and their manufacturing methods | |
JPH04329801A (en) | Production of sintered parts | |
CN108817401B (en) | Preparation method of 1.4435 stainless steel injection molding feed and method for preparing product | |
CN118106491A (en) | Powder injection molding silicon carbide copper composite material and preparation method thereof | |
KR101911692B1 (en) | Method for Preparing Metal Nano Particle Complex, Ink Composition Comprising Metal Nano Particle Complex and Printing Method using the Same | |
KR20230100358A (en) | Metal powder injection molding manufacturing method for manufacturing a camera housing having a thin film shape | |
TWI628238B (en) | Improved powder injection molding feedstock, product manufactured from the same, and manufacturing method of the product | |
JPWO2005089986A1 (en) | Noble metal nanoparticles and production method thereof | |
LU501913B1 (en) | Low-cost stainless steel indirect additive manufacturing method | |
JPH01215907A (en) | Manufacture of metal sintered compact | |
CN114406256B (en) | Method for preparing three-dimensional structure hard alloy by adopting photo-curing 3D printing | |
CN115215661B (en) | Photo-curing 3D printing silicon carbide ceramic component and near-net forming preparation method thereof | |
CN109534955B (en) | Preparation method of magnesium ethoxide micron particles with uniform appearance and controllable size | |
US20110315046A1 (en) | Method for fabricating composite powders | |
JPH02129062A (en) | Production of sintered ferrite | |
TWI591051B (en) | Conductive ink and method for manufacturing conductive layer | |
JPS6395105A (en) | Production of silicon carbide |