JPH06192656A - Rare earth oxysulfide phosphor and image display tube using same - Google Patents

Rare earth oxysulfide phosphor and image display tube using same

Info

Publication number
JPH06192656A
JPH06192656A JP34470592A JP34470592A JPH06192656A JP H06192656 A JPH06192656 A JP H06192656A JP 34470592 A JP34470592 A JP 34470592A JP 34470592 A JP34470592 A JP 34470592A JP H06192656 A JPH06192656 A JP H06192656A
Authority
JP
Japan
Prior art keywords
phosphor
rare earth
earth oxysulfide
same
image display
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP34470592A
Other languages
Japanese (ja)
Inventor
Tetsuya Hayashi
林  哲也
Masahiko Yoshino
正彦 吉野
Takashi Hase
堯 長谷
Yasuo Oguri
康生 小栗
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kasei Optonix Ltd
Original Assignee
Kasei Optonix Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kasei Optonix Ltd filed Critical Kasei Optonix Ltd
Priority to JP34470592A priority Critical patent/JPH06192656A/en
Publication of JPH06192656A publication Critical patent/JPH06192656A/en
Pending legal-status Critical Current

Links

Landscapes

  • Luminescent Compositions (AREA)

Abstract

PURPOSE:To provide a 3mum or smaller particulate phosphor having high luminance and a highly elaborate cathode-ray tube using the same. CONSTITUTION:The phosphor is represented by the general formula: (Ln1-x-yInxLn'y)2O2S (wherein Ln is at least one element selected from among y, Gd, La and Lu; Ln' is at least one element selected from among Eu, Tb, Sm, Tm, Er and Pr; and x and y are rare-earth oxysulfide phosphor in the ranges: 0.005<=x<=0.07 and 0.0001<=y<=0.2, respectively) and the CR tube is produced by using the same.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、希土類酸硫化物蛍光体
及びこれを用いた映像表示管に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a rare earth oxysulfide phosphor and an image display tube using the same.

【0002】[0002]

【従来の技術】希土類酸硫化物蛍光体、例えばY2 2
S:Euはカラー陰極線管用赤色蛍光体、Gd2 2
Tbは投射管用緑色蛍光体として広く用いられている。
この種の蛍光体は、希土類酸化物原料のLn2 3 及び
Ln’2 3 を一旦鉱酸に溶解し、しゅう酸(HOOC
−COOH)と反応させてしゅう酸塩として共沈させ、
これを加熱分解してLn2 3 ・Ln’2 3 混晶を生
成し、硫化剤と融剤を加えて焼成する方法が知られてい
る。焼成温度は900〜1250℃程度であり、融剤は
上記の反応を促進させ、粒子の成長を促す役目を果して
いる。
2. Description of the Related Art Rare earth oxysulfide phosphors such as Y 2 O 2
S: Eu is a red phosphor for a color cathode ray tube, Gd 2 O 2 :
Tb is widely used as a green phosphor for projection tubes.
This type of phosphor is prepared by dissolving Ln 2 O 3 and Ln ′ 2 O 3 which are rare earth oxide raw materials in a mineral acid and then adding oxalic acid (HOOC).
-COOH) to coprecipitate as oxalate,
There is known a method in which this is decomposed by heating to produce a Ln 2 O 3 · Ln ′ 2 O 3 mixed crystal, and a sulphating agent and a fluxing agent are added and fired. The firing temperature is about 900 to 1250 ° C., and the flux plays the role of promoting the above reaction and promoting the growth of particles.

【0003】そして、蛍光体はその用途に応じて粒子径
を変化させる場合があるが、従来は上記のように、焼成
温度及び融剤の種類と添加量を変化させることにより対
応してきた。
The particle size of the phosphor may be changed depending on its application, but conventionally, the above has been dealt with by changing the firing temperature and the kind and addition amount of the flux.

【0004】[0004]

【発明が解決しようとする課題】近年、陰極線管、蛍光
表示管等の映像表示管の高精細化が進み、従来より小さ
なドットパターンあるいは細いストライプパターンで蛍
光体粒子を陰極線管に塗布する必要が出てきた。従来の
蛍光体を用いて小さなドットパターンあるいは細いスト
ライプパターンを形成すると、蛍光体粒子が大きいため
に粒子と粒子の間の空間が大きくなり、絵素(ドットパ
ターン、ストライプ)の膜充填度が低下し、かつ、エッ
ジの凹凸も大きくなり、形状も悪くなる。これらのこと
は、レベルの高い高精細化を進める上で大きな障害とな
っている。
In recent years, the definition of image display tubes such as cathode ray tubes and fluorescent display tubes has become higher and higher, and it is necessary to apply phosphor particles to the cathode ray tube in a dot pattern or a thin stripe pattern smaller than before. It came out. When a small dot pattern or a thin stripe pattern is formed using a conventional phosphor, the space between the particles becomes large because the phosphor particles are large, and the film filling degree of the picture element (dot pattern, stripe) decreases. In addition, the unevenness of the edge becomes large and the shape becomes poor. These are major obstacles in promoting high-definition high definition.

【0005】特に、超高精細陰極線管においては、平均
粒子径3μm以下の蛍光体を使用する必要があるが、従
来技術では強制粉砕、分級等により平均粒子径4μm程
度の蛍光体を得るのが限度であった。従来は、比較的大
きな粒径の蛍光体を得るための添加物は知られている
(特公昭51−35555号公報、特公昭54−461
82号公報、特公昭57−192484号公報)。しか
し、小さな粒径を得るための添加物は知られておらず、
焼成温度等を変更して比較的小さな粒径の蛍光体を得よ
うとすると、通常の蛍光体に比べて結晶成長が不十分で
あるため、輝度が低く、かつ、粉体特性としての分散性
が悪くなり、上記の目的に沿った緻密で高輝度の蛍光体
膜を形成することはできなかった。
Particularly, in an ultra-high-definition cathode ray tube, it is necessary to use a phosphor having an average particle diameter of 3 μm or less, but in the prior art, a phosphor having an average particle diameter of about 4 μm can be obtained by forced pulverization, classification or the like. It was the limit. Conventionally, additives for obtaining a phosphor having a relatively large particle size have been known (Japanese Patent Publication No. 51-35555 and Japanese Patent Publication No. 54-461).
82, Japanese Patent Publication No. 57-192484). However, no additive is known for obtaining small particle sizes,
If you try to obtain a phosphor with a relatively small particle size by changing the firing temperature, etc., the crystal growth is insufficient compared to ordinary phosphors, resulting in low brightness and dispersibility as a powder property. However, it was not possible to form a dense and high-luminance phosphor film for the above purpose.

【0006】また、印刷塗布用、ビューファインダー用
などの用途においては、小さな粒子(2μmオーダー)
が必要とされているが、上記のように、これを満足する
製法は未だ確立しておらず、強制粉砕、分級等による輝
度劣化、低い収率に甘んじ、小粒子の蛍光体をやむをえ
ず使用していた。尚、従来希土類酸硫化物は、様々な目
的のため種々の元素を微量乃至少量添加することが知ら
れている。特にインジウム(In)に関しては、ユーロ
ピウム付活イットリウム酸硫化物に200ppm以下と
言う極めて微量のインジウムを添加することにより、高
輝度で優れた電流輝度飽和特性をこの蛍光体に付与し得
るとの提案が知られている。
Small particles (2 μm order) are used in applications such as print coating and viewfinder applications.
However, as mentioned above, a manufacturing method that satisfies this has not yet been established, and brightness reduction due to forced crushing, classification, etc., low yield, and unavoidable use of small particle phosphors Was. It is known that rare earth oxysulfides are added with various elements in a trace amount or a small amount for various purposes. In particular, regarding indium (In), it is proposed that by adding an extremely small amount of indium of 200 ppm or less to europium-activated yttrium oxysulfide, it is possible to impart high luminance and excellent current luminance saturation characteristics to this phosphor. It has been known.

【0007】そこで、本発明は、上記の問題点を解消
し、高輝度を有する3μ以下の小粒子の希土類酸硫化物
蛍光体を提供しようとするものである。
Therefore, the present invention is intended to solve the above problems and to provide a rare earth oxysulfide phosphor having a small particle size of 3 μm or less and having high brightness.

【0008】[0008]

【課題を解決するための手段】本発明は、一般式(Ln
1-x-y Inx Ln’y 2 2 Sで表され、Lnは、
Y,Gd,La及びLuから選択される少なくとも1種
の元素であり、Ln’は、Eu,Tb,Sm,Tm,E
r及びPrから選択される少なくとも1種の元素であ
り、x,yは、0.005≦x≦0.07及び0.00
01≦y≦0.2の範囲であることを特徴とする希土類
酸硫化物蛍光体、及び、Eu又はTbを主付活剤として
含み、平均粒子径が3μm以下である、上記の希土類酸
硫化物蛍光体を蛍光膜に含有することを特徴とする映像
表示管である。
The present invention is based on the general formula (Ln
1-xy In x Ln ' y ) 2 O 2 S, and Ln is
At least one element selected from Y, Gd, La, and Lu, and Ln ′ is Eu, Tb, Sm, Tm, E
It is at least one element selected from r and Pr, and x and y are 0.005 ≦ x ≦ 0.07 and 0.00
The rare earth oxysulfide phosphor having a range of 01 ≦ y ≦ 0.2, and the rare earth oxysulfide described above, which contains Eu or Tb as a main activator and has an average particle diameter of 3 μm or less. An image display tube characterized by containing a fluorescent substance in a fluorescent film.

【0009】[0009]

【作用】希土類酸化物に硫化剤と融剤とを混合して加熱
合成して希土類酸硫化物蛍光体を製造するときには、蛍
光体の粒子成長は硫化剤と融剤と焼成温度の影響を受
け、粒径制御は主に融剤の種類と量及び焼成温度の選択
によっていた。しかし、これらの方法では、4μmを上
回る粒径制御は可能であるが、4μm以下の小粒径の蛍
光体を得ることはできなかった。
[Function] When a rare earth oxysulfide phosphor is manufactured by mixing a rare earth oxide with a sulfidizing agent and a flux, and heating and synthesizing the same, the particle growth of the phosphor is affected by the sulfiding agent, the flux, and the firing temperature. The particle size was controlled mainly by selecting the kind and amount of the flux and the firing temperature. However, although these methods can control the particle size of more than 4 μm, it was not possible to obtain a phosphor having a small particle size of 4 μm or less.

【0010】そこで、本発明者等は、従来からの粒径制
御の考え方を変え、Y,Gd,La,Lu等の酸硫化物
結晶母体に対してInを少量添加すると、結晶形成に際
して粒子成長を抑制する効果があることを見出した。即
ち、本発明は、希土類酸硫化物蛍光体組成中にInを
0.5〜7原子%添加することにより、従来不可能であ
った粒径3μm以下の小さな希土類酸硫化物蛍光体を製
造できることを見出した。
Therefore, the present inventors have changed the conventional way of controlling the grain size and added In in a small amount to the oxysulfide crystal matrix such as Y, Gd, La, and Lu to grow grains during crystal formation. It has been found that there is an effect of suppressing. That is, according to the present invention, it is possible to produce a small rare earth oxysulfide phosphor having a particle diameter of 3 μm or less, which has been impossible in the past, by adding 0.5 to 7 atomic% of In to the composition of the rare earth oxysulfide phosphor. Found.

【0011】特に、希土類酸硫化物蛍光体の平均粒子径
を3μm以下に安定して保持するためには、上記一般式
のx値を0.8〜5原子%の範囲とすることが好まし
い。なお、この上限を越えてInを添加すると、単粒子
の粒子径が3μm以下の微細粒子が得られる場合もある
が、結晶成長が不十分等の理由により、再凝集を生じて
凝集体の実質上の平均粒子径は4μm以上となるため、
品質上高精細ブラウン管に適用することができなかっ
た。なお、上記のIn置換は、母体結晶の粒子径の制御
に効果があり、付活剤の種類にほとんど影響されず、上
記の効果が奏されることを確認している。
In particular, in order to stably maintain the average particle size of the rare earth oxysulfide phosphor at 3 μm or less, it is preferable that the x value in the above general formula be in the range of 0.8 to 5 atom%. If In is added in excess of this upper limit, fine particles having a single particle size of 3 μm or less may be obtained, but due to insufficient crystal growth or the like, re-aggregation occurs and substantial agglomerates are formed. Since the average particle diameter above is 4 μm or more,
Due to its quality, it could not be applied to high definition cathode ray tubes. It has been confirmed that the above In substitution is effective in controlling the particle size of the host crystal, and is almost unaffected by the type of activator, and the above effect is exhibited.

【0012】なお、原料としては酸化インジウムの代わ
りに硫酸インジウム、硫化インジウム、硝酸インジウ
ム、塩化インジウム、臭化インジウム、ヨウ化インジウ
ム等のインジウム化合物を使用することも可能である。
また、酸化インジウムの添加により、従来の無添加の蛍
光体と比較すると、多少色調の変化はあるものの、付活
剤の量を制御することにより充分に調整可能であり、実
用上の問題は無く、高精細用ブラウン管等の映像表示管
に適用することのできるものである。
As the raw material, indium compounds such as indium sulfate, indium sulfide, indium nitrate, indium chloride, indium bromide and indium iodide can be used instead of indium oxide.
In addition, the addition of indium oxide causes a slight change in color tone as compared with the conventional non-added phosphor, but it can be sufficiently adjusted by controlling the amount of the activator, and there is no practical problem. The present invention can be applied to image display tubes such as high definition cathode ray tubes.

【0013】[0013]

【実施例】 (実施例1〜7,比較例1)Y2 3 :10.0g,E
2 3 :0.592g,In2 3 :0.168g,
Li2 CO3 :3.84g,S:5.00gからなる化
合物をよく混合してアルミナルツボに入れて1100℃
で1時間焼成した。得られた焼成物を水中で解し、洗浄
を繰り返し、さらに残留アルカリ分を酸で中和し、その
後細いメッシュで水篩し、脱水濾過、120℃12時間
の乾燥の後、粉体を得た。
Examples (Examples 1 to 7, Comparative Example 1) Y 2 O 3 : 10.0 g, E
u 2 O 3 : 0.592 g, In 2 O 3 : 0.168 g,
A compound consisting of Li 2 CO 3 : 3.84 g and S: 5.00 g was mixed well and put in an alumina crucible at 1100 ° C.
It was baked for 1 hour. The fired product obtained is thawed in water and washed repeatedly, and the residual alkali content is further neutralized with an acid, followed by sieving with a fine mesh, dehydration filtration and drying at 120 ° C for 12 hours to obtain a powder. It was

【0014】得られた粉体は、式(Y0.948 In0.014
Eu0.038 2 2 Sで表わされる赤色発光蛍光体であ
った(実施例1)。また比較のために上記の原料組織か
らIn2 3 を除き、調整の上同様の条件で(Y0.962
Eu0.038 2 2 Sの赤色発光蛍光体(比較例1)を
得た。又、各原素の種類と混合量を変化させ、同様の製
造方法にて、下記表1に示す蛍光体をそれぞれ得た(実
施例2〜7)。
The obtained powder has the formula (Y 0.948 In 0.014
It was a red-emitting phosphor represented by Eu 0.038 ) 2 O 2 S (Example 1). Further, for comparison, In 2 O 3 was removed from the above raw material structure and the same conditions (Y 0.962
A red light emitting phosphor of Eu 0.038 ) 2 O 2 S (Comparative Example 1) was obtained. Further, the phosphors shown in Table 1 below were obtained by the same manufacturing method by changing the type and mixing amount of each element (Examples 2 to 7).

【0015】(実施例2〜7)これらの蛍光体の粒径を
コールターカウンター粒度測定機で測定した結果を表1
に示す。
(Examples 2 to 7) The results of measuring the particle size of these phosphors with a Coulter counter particle size analyzer are shown in Table 1.
Shown in.

【0016】[0016]

【表1】 [Table 1]

【0017】これらの蛍光体の特性を比較すると表1の
通り、特に、蛍光体を高精細パターンのブラウン管に適
用して塗布特性を調べると、実施例1〜7の蛍光体は比
較例1の蛍光体よりも粒径が小さいために、緻密な蛍光
体膜を形成することができた。
The characteristics of these phosphors are compared with each other as shown in Table 1. In particular, when the phosphors are applied to a cathode ray tube having a high definition pattern and the coating characteristics are examined, the phosphors of Examples 1 to 7 are the same as those of Comparative Example 1. Since the particle size was smaller than that of the phosphor, a dense phosphor film could be formed.

【0018】[0018]

【発明の効果】本発明は、上記の構成を採用することに
より、3μm以下の小粒子の希土類酸硫化物蛍光体を提
供することが可能になり、高精細ブラウン管等の映像表
示管に適した蛍光膜の形成を容易にした。
EFFECTS OF THE INVENTION The present invention makes it possible to provide a rare-earth oxysulfide phosphor having a small particle size of 3 μm or less by adopting the above-mentioned constitution, which is suitable for a video display tube such as a high-definition Braun tube. It facilitated the formation of the fluorescent film.

フロントページの続き (72)発明者 小栗 康生 神奈川県小田原市成田1060番地 化成オプ トニクス株式会社小田原工場内Front Page Continuation (72) Inventor Yasuo Oguri 1060 Narita, Odawara, Kanagawa Kasei Optonix Co., Ltd. Odawara Plant

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 一般式(Ln1-x-y Inx Ln’y 2
2 Sで表され、Lnは、Y,Gd,La及びLuから
選択される少なくとも1種の元素であり、Ln’は、E
u,Tb,Sm,Tm,Er及びPrから選択される少
なくとも1種の元素であり、x,yは、0.005≦x
≦0.07及び0.0001≦y≦0.2の範囲である
ことを特徴とする希土類酸硫化物蛍光体。
1. A general formula (Ln 1-xy In x Ln ' y ) 2
It is represented by O 2 S, Ln is at least one element selected from Y, Gd, La and Lu, and Ln ′ is E
at least one element selected from u, Tb, Sm, Tm, Er and Pr, and x and y are 0.005 ≦ x
A rare earth oxysulfide phosphor characterized by having a range of ≦ 0.07 and 0.0001 ≦ y ≦ 0.2.
【請求項2】 Eu又はTbを主付活剤として含み、平
均粒子径が3μm以下である、請求項1記載の希土類酸
硫化物蛍光体を蛍光膜に含有することを特徴とする映像
表示管。
2. A video display tube containing a rare earth oxysulfide phosphor according to claim 1, which contains Eu or Tb as a main activator and has an average particle diameter of 3 μm or less. .
JP34470592A 1992-12-24 1992-12-24 Rare earth oxysulfide phosphor and image display tube using same Pending JPH06192656A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP34470592A JPH06192656A (en) 1992-12-24 1992-12-24 Rare earth oxysulfide phosphor and image display tube using same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP34470592A JPH06192656A (en) 1992-12-24 1992-12-24 Rare earth oxysulfide phosphor and image display tube using same

Publications (1)

Publication Number Publication Date
JPH06192656A true JPH06192656A (en) 1994-07-12

Family

ID=18371346

Family Applications (1)

Application Number Title Priority Date Filing Date
JP34470592A Pending JPH06192656A (en) 1992-12-24 1992-12-24 Rare earth oxysulfide phosphor and image display tube using same

Country Status (1)

Country Link
JP (1) JPH06192656A (en)

Similar Documents

Publication Publication Date Title
KR100342044B1 (en) Green Emitting Phosphor Composition and Cathod-Ray Tube manufactured using the same
JP2000073053A (en) Phosphor and cathode-ray tube using the same
JP2003013059A (en) Color cathode ray tube and red phosphor to be used therein
US5387836A (en) Rare earth oxysulfide phosphor and high resolution cathode ray tube employing it
US3870650A (en) Europium-activated rare earth oxide phosphors
US5217647A (en) Method for preparing rare earth oxysulfide phosphor
JP2000319650A (en) Green-emitting phosphor composition and cathode ray tube provided with fluorescent film produced therefrom
JP2002231151A (en) Image display device
JPH06192656A (en) Rare earth oxysulfide phosphor and image display tube using same
JP3263991B2 (en) Blue light emitting phosphor
JP3226344B2 (en) Rare earth oxysulfide phosphor and high definition cathode ray tube using the same
JP2840677B2 (en) Method for producing yttrium oxysulfide phosphor
EP0426106B1 (en) Method for preparing a phosphor
KR100744897B1 (en) Mixed flux for yttrium tantalate x-ray phosphors
EP0078538B1 (en) Blue emitting phosphor exhibiting long afterglow and electron excited display device using the same
JPH0629421B2 (en) Blue light emitting phosphor and blue light emitting cathode ray tube for color projection type image device using the same
JPH09235547A (en) Production of rare earth oxide fluorescent material and rare earth oxysulfide fluorescent material
RU2064482C1 (en) Method to produce cathodoluminophor based on yttrium and europium oxysulfide
JPH0841453A (en) Production of rare earth oxide-sulfide fluorescence body
JPS60147490A (en) Fluorescent substance of sulfide
JP2637102B2 (en) Phosphor
KR100325859B1 (en) Green emitting phosphor coated with metallic salts and method for manufacturing the same
JPS6047583A (en) Color projection type video device
JPH03143986A (en) Synthesis of zns phosphor
JPH05171142A (en) Green-light emitting fluorescent material