JPH06190562A - Power source for plasma arc - Google Patents

Power source for plasma arc

Info

Publication number
JPH06190562A
JPH06190562A JP35892592A JP35892592A JPH06190562A JP H06190562 A JPH06190562 A JP H06190562A JP 35892592 A JP35892592 A JP 35892592A JP 35892592 A JP35892592 A JP 35892592A JP H06190562 A JPH06190562 A JP H06190562A
Authority
JP
Japan
Prior art keywords
signal
power supply
output
multiplier
parallel operation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP35892592A
Other languages
Japanese (ja)
Other versions
JP2707037B2 (en
Inventor
Toshiichi Fujiyoshi
敏一 藤吉
Shigeru Okamoto
茂 岡本
Atsushi Kinoshita
敦史 木下
Haruo Moriguchi
晴雄 森口
Kunio Kano
国男 狩野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sansha Electric Manufacturing Co Ltd
Original Assignee
Sansha Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sansha Electric Manufacturing Co Ltd filed Critical Sansha Electric Manufacturing Co Ltd
Priority to JP35892592A priority Critical patent/JP2707037B2/en
Publication of JPH06190562A publication Critical patent/JPH06190562A/en
Application granted granted Critical
Publication of JP2707037B2 publication Critical patent/JP2707037B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Arc Welding Control (AREA)

Abstract

PURPOSE:To prevent disturbance of feedback control at the time of transferring from individual operation of a DC power unit to parallel operation of each DC power unit and to stabilize power feeding of arc starting. CONSTITUTION:The power source for the plasma arc is provided with a parallel operation command terminal 26 where a parallel operation command signal is supplied, an integrator 28 to form an integration signal of this terminal 26 signal and an inversion signal formed by inverting this signal, a first multiplier 30 to multiply a reference signal by the inversion signal of the load feeding quantity, an attenuator 29 to attenuate the reference signal to I/N, a second multiplier 31 to multiply the integration signal by an output signal of the attenuator 29 and an adder 32 to add an output signal of the first multiplier 30 and an output signal of the second multiplier 31. A specified output setting signal of the DC power unit is formed by an output signal of the adder 32 and a remaining output setting signal of the DC power unit is formed by the output signal of the second multiplier 31.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、N台の直流電源装置を
並列運転して定電流制御された直流電源を出力するプラ
ズマアーク用電源に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a plasma arc power source for operating N DC power source devices in parallel to output a constant current controlled DC power source.

【0002】[0002]

【従来の技術】従来、プラズマ溶断又はプラズマ溶接に
用いられるプラズマアーク用電源は、小型化,軽量化等
を図るため、いわゆるインバータ電源構成の直流電源装
置により形成される。この直流電源装置は、商用電源等
の入力の交流電源を整流,平滑して直流に変換し、この
直流をIGBT,MOSFET,バイポーラトランジス
タ等の半導体スイッチング素子構成の高周波インバータ
回路により高周波交流に変換し、この高周波交流を変圧
器を介して整流,平滑して直流の出力を形成し、この出
力を負荷のトーチ,母材に供給する。
2. Description of the Related Art Conventionally, a plasma arc power source used for plasma fusing or plasma welding is formed by a DC power source device having a so-called inverter power source structure in order to reduce the size and weight. This DC power supply device rectifies and smoothes an input AC power supply such as a commercial power supply, converts it into DC, and converts this DC into high-frequency AC by a high-frequency inverter circuit composed of semiconductor switching elements such as IGBT, MOSFET, and bipolar transistor. The high frequency AC is rectified and smoothed through a transformer to form a DC output, and this output is supplied to the torch and the base material of the load.

【0003】また、出力電流の検出信号と設定信号との
誤差信号により前記スイッチング回路の動作周波数をフ
ィードバック制御し、負荷給電を定電流制御する。とこ
ろで、前記スイッチング回路の半導体スイッチング素子
にあまり容量の大きなものがないため、大出力が要求さ
れるときは複数台(N台)の直流電源装置を並列運転す
る構成のプラズマアーク用電源が用いられる。
Further, the operating frequency of the switching circuit is feedback-controlled by the error signal between the detection signal of the output current and the setting signal to constant-current control the load power supply. By the way, since the semiconductor switching element of the switching circuit does not have a large capacity, a plasma arc power supply configured to operate a plurality of (N) DC power supply devices in parallel is used when a large output is required. .

【0004】この場合、各直流電源装置が常時並列運転
されて出力を均等に分担すれば、アークスタート時につ
ぎの不都合が生じる。すなわち、アークスタート時は、
まず、トーチのノズル電極と主電極との間に小電流のパ
イロットアークが発生し、つぎに、トーチが母材に近づ
くことにより、主電極と母材との間の大電流のプラズマ
アーク(主アーク)に移行する。
In this case, if the DC power supply devices are always operated in parallel so as to share the output evenly, the following problems will occur at the time of arc start. That is, at the time of arc start,
First, a small-current pilot arc is generated between the nozzle electrode of the torch and the main electrode, and then the torch approaches the base metal, which causes a high-current plasma arc (main arc) between the main electrode and the base metal. Arc).

【0005】このとき、パイロットアークでの各直流電
源装置の出力がパイロットアークの発生に必要な電流の
1/Nの極めて微小な電流出力に制御されると、パイロ
ットアーク発生前の無負荷電圧が低下してアークスター
トが困難になる。そこで、複数台の直流電源装置を並列
運転する構成の場合は、アークスタート時、まず、所定
の直流電源装置のみを単独運転してこの装置から負荷に
パイロットアークの発生に必要な出力を供給する。
At this time, if the output of each DC power supply device in the pilot arc is controlled to a very small current output of 1 / N of the current required to generate the pilot arc, the no-load voltage before the pilot arc is generated. It becomes lower and it becomes difficult to start the arc. Therefore, in the case of a configuration in which a plurality of DC power supply devices are operated in parallel, at the time of arc start, first, only a predetermined DC power supply device is operated independently to supply the output necessary for generating a pilot arc to the load from this device. .

【0006】この場合は、所定の直流電源装置の出力電
流がN台の並列運転の場合のN倍になり、その出力電圧
に基づく無負荷電圧でパイロットアークが確実に発生す
る。そして、パイロットアークからプラズマアークに移
行すると、単独運転から各直流電源装置の並列運転に切
換える。
In this case, the output current of the predetermined DC power supply device is N times as large as that in the case of parallel operation of N units, and the pilot arc is reliably generated at the no-load voltage based on the output voltage. When the pilot arc is changed to the plasma arc, the individual operation is switched to the parallel operation of the DC power supply devices.

【0007】[0007]

【発明が解決しようとする課題】前記従来の複数台の直
流電源装置を並列運転する構成のプラズマアーク用電源
の場合、所定の直流電源装置の単独運転から各直流電源
装置の並列運転に切換わるときに、各直流電源装置のフ
ィードバック制御の目標値がステップ変化するため、単
独運転されていた直流電源装置は負荷が急変動してフィ
ードバック制御に外乱が生じた状態になり、その出力が
大きく乱れて再び安定するまでに時間を要し、しかも、
残りの直流電源装置も運転開始からフィードバック制御
が安定するまでに時間がかかる。
In the case of a plasma arc power supply having a configuration in which a plurality of conventional DC power supply devices are operated in parallel, a predetermined DC power supply device is switched from independent operation to parallel operation of each DC power supply device. At this time, since the target value of the feedback control of each DC power supply unit changes in steps, the DC power supply unit that was operating independently becomes a state where the load fluctuates rapidly and the feedback control is disturbed, and its output is greatly disturbed. It takes time to stabilize again, and
It takes time from the start of operation of the remaining DC power supply devices until the feedback control becomes stable.

【0008】そのため、アークスタート時の負荷給電を
安定化してパイロットアークからプラズマアークに安定
に移行できない問題点がある。本発明は、単独運転から
並列運転への移行による出力変動を防止し、アークスタ
ート時の給電を安定化することを目的とする。
Therefore, there is a problem that the load power supply at the time of arc start cannot be stabilized and the pilot arc cannot be stably transferred to the plasma arc. It is an object of the present invention to prevent output fluctuation due to a shift from independent operation to parallel operation, and stabilize power supply at arc start.

【0009】[0009]

【課題を解決するための手段】前記の目的を達成するた
めに、本発明のプラズマアーク用電源においては、並列
運転指令信号が供給される並列運転指令端子と、この端
子の信号の積分信号と該信号を反転した反転信号とを形
成する積分器と、負荷給電量の基準信号と前記反転信号
とを乗算する第1の乗算器と、前記基準信号を1/Nに
減衰する減衰器と、前記積分信号と減衰器の出力信号と
を乗算する第2の乗算器と、第1の乗算器の出力信号と
第2の乗算器の出力信号とを加算する加算器とを備え、
この加算器の出力信号により所定の直流電源装置の出力
設定信号を形成し、第2の乗算器の出力信号により残り
の直流電源装置の出力設定信号を形成する。
In order to achieve the above object, in the plasma arc power supply of the present invention, a parallel operation command terminal to which a parallel operation command signal is supplied, and an integrated signal of the signal of this terminal are provided. An integrator that forms an inverted signal obtained by inverting the signal, a first multiplier that multiplies the reference signal of the load power supply amount and the inverted signal, and an attenuator that attenuates the reference signal to 1 / N. A second multiplier for multiplying the integrated signal by the output signal of the attenuator; and an adder for adding the output signal of the first multiplier and the output signal of the second multiplier,
The output signal of this adder forms the output setting signal of the predetermined DC power supply device, and the output signal of the second multiplier forms the output setting signal of the remaining DC power supply devices.

【0010】[0010]

【作用】前記のように構成された本発明のプラズマアー
ク用電源の場合、所定の直流電源装置の単独運転から並
列運転に移行するときに、積分器は徐々に上昇する積分
信号とこの信号を反転した反転信号を形成し、第1の乗
算器は負荷給電量の基準信号のレベルから反転信号の特
性で減少変化する信号を形成する。
In the plasma arc power supply of the present invention configured as described above, when the predetermined DC power supply device shifts from the independent operation to the parallel operation, the integrator outputs an integral signal which gradually rises and this signal. An inverted signal which is inverted is formed, and the first multiplier forms a signal which decreases and changes from the level of the reference signal of the load power supply amount by the characteristic of the inverted signal.

【0011】また、第2の乗算器は積分信号の特性で負
荷給電量の基準信号の1/Nのレベルに上昇する信号を
残りのN−1台の直流電源装置の出力設定信号として形
成する。さらに、加算器は第1の乗算器の出力信号と、
第2の乗算器の出力信号とを加算し、基準信号のレベル
から反転信号の特性でその1/Nのレベルに低下する信
号を所定の直流電源装置の出力設定信号として形成す
る。
Further, the second multiplier forms a signal that rises to a level of 1 / N of the reference signal of the load power supply amount by the characteristic of the integrated signal as an output setting signal of the remaining N-1 DC power supply devices. . Further, the adder has an output signal of the first multiplier,
The output signal of the second multiplier is added, and a signal that drops from the level of the reference signal to the level of 1 / N due to the characteristics of the inverted signal is formed as the output setting signal of the predetermined DC power supply device.

【0012】そして、加算器の出力設定信号の変化に基
づき、所定の直流電源装置はフィードバック制御の急激
な変化を防止して出力電流が負荷給電量の基準信号に相
当する大きさからその1/Nに相当する大きさに滑らか
に減少し、残りのN−1台の直流電源装置は出力電流が
滑らかに負荷給電の基準信号の1/Nに相当する大きさ
に増加する。そのため、所定の直流電源装置の単独運転
から各直流電源装置の並列運転に移行するときに、各直
流電源装置の出力電流がフィードバック制御の乱れ等な
く滑らかに変化してすみやかに並列運転に移行し、プラ
ズマ溶断,プラズマ溶接が良好に行える。
Then, based on the change in the output setting signal of the adder, the predetermined DC power supply device prevents a sudden change in the feedback control, and the output current is reduced from the magnitude corresponding to the reference signal of the load power supply amount to 1 / The output current of the remaining N-1 DC power supply devices smoothly increases to a value corresponding to 1 / N of the reference signal for load power feeding. Therefore, when shifting from the independent operation of a predetermined DC power supply device to the parallel operation of each DC power supply device, the output current of each DC power supply device changes smoothly without disturbance of feedback control and immediately shifts to the parallel operation. Good for plasma fusing and plasma welding.

【0013】[0013]

【実施例】1実施例について、図1ないし図4を参照し
て説明する。図2は直流電源装置を2台設けたN=2の
場合の全体構成を示し、入力電源端子1a,1b,1c
の3相の交流電源はダイオード整流器構成の入力整流器
2,コンデンサ3により整流,平滑されて直流に変換さ
れ、この直流が2台の直流電源装置4,5の高周波イン
バータ6,7に供給される。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS One embodiment will be described with reference to FIGS. FIG. 2 shows an overall configuration in the case of N = 2 in which two DC power supply devices are provided.
The three-phase AC power supply is rectified and smoothed by the input rectifier 2 and the capacitor 3 having a diode rectifier structure and converted into DC, and this DC is supplied to the high frequency inverters 6 and 7 of the two DC power supply units 4 and 5. .

【0014】両高周波インバータ6,7はIGBT,M
OSFET,バイポーラトランジスタ等の複数の半導体
スイッチング素子Qのブリッジ回路により形成され、そ
れぞれの駆動回路8,9によりスイッチング周波数が制
御され、入力された直流を高周波交流に変換して変圧器
10,11の1次側に供給する。
Both high frequency inverters 6 and 7 are IGBT, M
It is formed by a bridge circuit of a plurality of semiconductor switching elements Q such as OSFETs and bipolar transistors, and the switching frequency is controlled by respective drive circuits 8 and 9, and the input direct current is converted into high frequency alternating current to transform the transformers 10 and 11. Supply to the primary side.

【0015】そして、変圧器10,11の2次側出力は
ダイオード整流器構成の出力整流器12,13及び平滑
リアクトル14,15により整流,平滑されて直流に変
換され、この直流は正,負の出力端子14p,14nか
ら負荷16に給電される。この負荷16は出力端子14
pに接続された母材17及びトーチ18からなり、この
トーチ18は主電極19が出力端子14nに接続され、
ノズル電極20がパイロット用の出力端子14p’に接
続される。
The secondary outputs of the transformers 10 and 11 are rectified and smoothed by the output rectifiers 12 and 13 of the diode rectifier and the smoothing reactors 14 and 15 to be converted into direct current, and the direct currents are positive and negative outputs. Power is supplied to the load 16 from the terminals 14p and 14n. This load 16 is output terminal 14
The torch 18 comprises a base material 17 and a torch 18 connected to p. The torch 18 has a main electrode 19 connected to an output terminal 14n,
The nozzle electrode 20 is connected to the pilot output terminal 14p '.

【0016】さらに、直流電源装置4,5の出力電流は
出力整流器12,13と出力端子14pとの間に設けら
れた電流検出器21,22により検出され、両検出器2
1,22は検出信号Sa,Sbを誤差増幅器23,24
に供給する。また、出力設定の基準電源25,並列運転
指令端子26が接続された運転信号発生回路27は、両
誤差増幅器23,24に直流電源装置4,5それぞれの
出力設定信号Sα,Sβを供給する。
Further, the output currents of the DC power supply units 4 and 5 are detected by the current detectors 21 and 22 provided between the output rectifiers 12 and 13 and the output terminal 14p.
Reference numerals 1 and 22 output the detection signals Sa and Sb to the error amplifiers 23 and 24.
Supply to. The operation signal generating circuit 27, to which the reference power supply 25 for output setting and the parallel operation command terminal 26 are connected, supplies the output setting signals Sα and Sβ of the DC power supply devices 4 and 5 to the error amplifiers 23 and 24, respectively.

【0017】そして、両誤差増幅器23,24は出力設
定信号Sα,Sβと検出信号Sa,Sbとの誤差信号を
出力制御信号として駆動回路8,9に供給し、両直流電
源装置4,5を出力設定信号α,βに基づく定電流出力
にフィードバック制御する。
The error amplifiers 23 and 24 supply error signals between the output setting signals Sα and Sβ and the detection signals Sa and Sb to the drive circuits 8 and 9 as output control signals, and the DC power supply devices 4 and 5 are connected to each other. Feedback control is performed on the constant current output based on the output setting signals α and β.

【0018】ところで、アークスタート時に直流電源装
置4を単独運転してノズル電極20,主電極19間にパ
イロットアークを発生するため、直流電源装置4は出力
端子14p,14p’間に開閉器28,限流抵抗29,
高周波発生装置30が直列に設けられ、開閉器28はア
ークスタートの起動により閉成され、パイロットアーク
から母材17,主電極19間のプラズマアークに移行す
るときに開放される。
By the way, when the arc is started, the DC power supply unit 4 is operated independently to generate a pilot arc between the nozzle electrode 20 and the main electrode 19, so that the DC power supply unit 4 has a switch 28 between the output terminals 14p and 14p '. Current limiting resistor 29,
The high frequency generator 30 is provided in series, the switch 28 is closed by the start of the arc start, and is opened when the pilot arc shifts to the plasma arc between the base material 17 and the main electrode 19.

【0019】また、運転信号発生回路27は図1に示す
ように積分器28,1/Nの減衰器29,第1,第2の
乗算器30,31及び加算器32により形成される。
The operation signal generating circuit 27 is formed by an integrator 28, a 1 / N attenuator 29, first and second multipliers 30 and 31, and an adder 32, as shown in FIG.

【0020】つぎに、運転信号発生回路27の動作につ
き、図3を参照して説明する。 まず、並列運転指令端
子26には直流電源装置4,5の並列運転時に論理1に
なる並列運転指令信号Kが供給され、直流電源装置4の
単独運転時は並列運転指令信号Kは論理0である。
Next, the operation of the operation signal generating circuit 27 will be described with reference to FIG. First, the parallel operation command signal K which is logic 1 is supplied to the parallel operation command terminal 26 when the DC power supply devices 4 and 5 are in parallel operation, and the parallel operation command signal K is logic 0 when the DC power supply device 4 is operated independently. is there.

【0021】そして、この並列運転指令信号Kが積分器
28に供給され、この積分器28は並列運転指令信号K
を積分して積分信号A及びこの信号Aを反転した反転信
号Bを形成し、積分信号Aを第2の乗算器31に供給し
て反転信号Bを第1の乗算器30に供給する。
The parallel operation command signal K is supplied to the integrator 28, and the integrator 28 outputs the parallel operation command signal K.
Are integrated to form an integrated signal A and an inverted signal B obtained by inverting the signal A, the integrated signal A is supplied to the second multiplier 31, and the inverted signal B is supplied to the first multiplier 30.

【0022】また、基準電源25のレベルrの基準信号
Rは第1の乗算器30に供給されるとともに減衰器29
に供給され、この減衰器29は並列運転時の直流電源装
置4,5の出力分担を均等にするため、基準信号Rを1
/2(=1/N)に減衰した信号Cを形成し、この信号
Cを第2の乗算器31に供給する。
The reference signal R of the level r of the reference power supply 25 is supplied to the first multiplier 30 and the attenuator 29.
The attenuator 29 supplies the reference signal R to 1 in order to equalize the output sharing of the DC power supply devices 4 and 5 during parallel operation.
A signal C attenuated to / 2 (= 1 / N) is formed, and the signal C is supplied to the second multiplier 31.

【0023】そして、第1の乗算器30は反転信号Bと
基準信号Rとをアナログ乗算し、並列運転の開始ts,
終了teから積分器28の立上り,立下りの積分時定数
に基づく開始,終了の過渡期間τs,τeにrから0,
0からrそれぞれにレベルが傾斜変化する信号Dを形成
する。
Then, the first multiplier 30 analog-multiplies the inverted signal B and the reference signal R to start parallel operation ts,
From the end te to the rising and falling of the integrator 28 based on the integration time constant of the start and end of the transient period τs, τe from r to 0,
A signal D whose level changes from 0 to r is formed.

【0024】また、第2の乗算器31は積分信号Aと信
号Cとをアナログ乗算し、過渡期間τs,τeに0から
r/2,r/2から0それぞれにレベルが傾斜変化する
出力設定信号Sβを形成する。さらに、加算器32は信
号Dと出力設定信号Sβとをアナログ加算し、過渡期間
τs,τeにrからr/2,r/2からrそれぞれにレ
ベルが傾斜変化する出力設定信号Sαを形成する。
The second multiplier 31 analog-multiplies the integrated signal A and the signal C to set the output so that the level changes from 0 to r / 2 and from r / 2 to 0 during the transient periods τs and τe. Form the signal Sβ. Further, the adder 32 analog-adds the signal D and the output setting signal Sβ to form the output setting signal Sα whose level changes from r to r / 2 and from r / 2 to r during the transient periods τs and τe. .

【0025】つぎに、直流電源装置4,5の出力電流及
び負荷16を流れる電流の実際の変化につき、図4を参
照して説明する。なお、図4において、ia,ibは直
流電源装置4,5の出力電流を示し、icは負荷16を
流れる電流(負荷電流)を示す。まず、負荷16を流れ
る電流icをI1 にする場合、基準信号RはI1 に対応
するレベルr1 に設定される。
Next, actual changes in the output currents of the DC power supply devices 4 and 5 and the current flowing through the load 16 will be described with reference to FIG. In FIG. 4, ia and ib represent the output currents of the DC power supply devices 4 and 5, and ic represents the current flowing through the load 16 (load current). First, when the current ic flowing through the load 16 is set to I 1 , the reference signal R is set to the level r 1 corresponding to I 1 .

【0026】そして、アークスタート前は出力設定信号
Sαがr1 ,出力設定信号Sβが0になるため、直流電
源装置4のみが動作し、その出力電流iaがI1 になる
ように高周波インバータ6が駆動される。しかし、アー
クスタート前は母材17,主電極19間のギャップが大
きく、負荷16に電流が流れず、いわゆる無負荷電圧が
負荷16に印加される。
Since the output setting signal Sα is r 1 and the output setting signal Sβ is 0 before the arc start, only the DC power supply device 4 operates and the high frequency inverter 6 so that its output current ia becomes I 1. Is driven. However, before the start of the arc, the gap between the base material 17 and the main electrode 19 is large, so that no current flows in the load 16 and a so-called no-load voltage is applied to the load 16.

【0027】つぎに、アークスタートするため、t1
開閉器28を閉成し、例えばトーチスイッチをオンして
高周波発生回路30を駆動し、この回路30の高周波電
圧をノズル電極20と主電極19との間に印加すると、
両電極20,19間にパイロットアークが発生し、出力
整流器12から電流検出器15,開閉器28,限流抵抗
29,高周波発生回路30,ノズル電極20,主電極1
9,直流リアクトル14を介して出力整流器12に戻る
ループにパイロットアーク電流Ip(<I1 )が流れ
る。
Next, in order to start the arc, the switch 28 is closed at t 1 , the torch switch is turned on to drive the high frequency generating circuit 30, and the high frequency voltage of this circuit 30 is applied to the nozzle electrode 20 and the main electrode. When applied between 19 and
A pilot arc is generated between the electrodes 20 and 19, and the output rectifier 12 to the current detector 15, the switch 28, the current limiting resistor 29, the high frequency generating circuit 30, the nozzle electrode 20, the main electrode 1
9. The pilot arc current Ip (<I 1 ) flows in the loop returning to the output rectifier 12 via the DC reactor 14.

【0028】つぎに、トーチ18を母材17に近づける
と、母材17,主電極19間のギャップ抵抗が減少し、
例えばt2 に母材17,主電極19間にプラズマアーク
(主アーク)が発生する。このとき、開閉器28が開放
されパイロットアーク電流Ipが消失する。
Next, when the torch 18 is brought close to the base material 17, the gap resistance between the base material 17 and the main electrode 19 decreases,
For example, at t 2 , a plasma arc (main arc) is generated between the base material 17 and the main electrode 19. At this time, the switch 28 is opened and the pilot arc current Ip disappears.

【0029】また、プラズマアークが発生すると、出力
整流器12から電流検出器21,母材17,主電極1
9,平滑リアクトル14を介して出力整流器12に戻る
ループにプラズマアーク電流I1 が流れる。この電流I
1 は出力設定信号Sαに基づくフィードバック制御によ
り、定電流に保持される。
When a plasma arc is generated, the output rectifier 12 to the current detector 21, the base material 17, the main electrode 1
9. The plasma arc current I 1 flows through the loop returning to the output rectifier 12 via the smoothing reactor 14. This current I
1 is held at a constant current by the feedback control based on the output setting signal Sα.

【0030】さらに、並列運転指令信号Kがt3 に立上
って並列運転が開始されると、t3〜t4 の過渡期間τ
sに、出力設定信号Sαはr1 からr1 /2に徐々に低
下し、出力設定信号Sβは0からr1 /2に徐々に上昇
する。
Further, when the parallel operation command signal K rises to t 3 and the parallel operation is started, the transient period τ from t 3 to t 4
to s, the output setting signal Sα is progressively lowered from r 1 to r 1/2, the output setting signal Sβ gradually increases to r 1/2 0.

【0031】そして、過渡期間τsがフィードバック制
御に急激な変化を与えない期間に設定されているため、
直流電源装置4は出力電流iaが安定かつすみやかにI
1 からI1 /2に低下し、直流電源装置5は出力電流i
bが安定かつすみやかに0からI1 /2に上昇する。
Since the transient period τs is set to a period in which the feedback control does not change suddenly,
The output current ia of the DC power supply device 4 is stable and promptly I
Decreased from 1 to I 1/2, a DC power supply device 5 is the output current i
b is stable and quickly rises from 0 to I 1/2 .

【0032】そして、出力設定信号Sα,Sβの変化に
基づき、直流電源装置4,5の出力電流ia,ibが対
称的に変化するため、直流電源装置4の単独運転から直
流電源装置4,5の並列運転に移行しても、負荷16を
流れる電流icは安定にI1に保持され、アークスター
トが安定化してプラズマアークが安定に持続し、母材1
7のプラズマ溶断,プラズマ溶接が良好に行える。
Since the output currents ia and ib of the DC power supply devices 4 and 5 change symmetrically based on the changes of the output setting signals Sα and Sβ, the DC power supply device 4 operates independently of the DC power supply devices 4 and 5. The current ic flowing through the load 16 is stably maintained at I 1 even after shifting to parallel operation of No. 1 , the arc start is stabilized, and the plasma arc is stably maintained.
7 Plasma fusing and plasma welding can be performed well.

【0033】また、溶断又は溶接の電流をI1 からI2
に変更するため、図4のt5 に基準電源25を可変して
基準信号RのレベルをI1 に対応するr1 からI2 に対
応するr2 に変更すると、積分器28の時定数に基づく
傾斜特性で出力設定信号Sα,Sβが共にr1 /2から
2 /2に上昇変化し、両直流電源装置4,5の出力電
流が安定かつすみやかにI1 /2からI2 /2に増加
し、負荷16を流れる電流がI1 からI2 に滑らかに変
化する。
Further, the electric current for fusing or welding is changed from I 1 to I 2.
4, the reference power supply 25 is changed at t 5 in FIG. 4 to change the level of the reference signal R from r 1 corresponding to I 1 to r 2 corresponding to I 2. based output setting signal Sα in slope characteristics, S [beta rise changes from r 1/2 in r 2/2 both output current stably and rapidly for both direct-current power supply 4, 5 I 1/2 from the I 2/2 , And the current flowing through the load 16 changes smoothly from I 1 to I 2 .

【0034】さらに、並列運転指令信号Kが論理0に立
下って並列運転の終了になると、出力設定信号Sα,S
βが過渡期間τeに徐々に上昇,低下し、再び直流電源
装置4の単独運転に戻る。
Further, when the parallel operation command signal K falls to logic 0 and the parallel operation ends, the output setting signals Sα, S
β gradually rises and falls during the transition period τe, and the DC power supply device 4 returns to the independent operation again.

【0035】ところで、直流電源装置がN台の場合は、
所定の1台が直流電源装置4と同一に構成されて残りの
N−1台が直流電源装置5と同一に構成される。また、
運転信号発生回路は図1の第2の乗算器31の出力設定
信号Sβを前記残りのN−1台の直流電源装置に供給す
る。
By the way, when the number of DC power supply devices is N,
One predetermined unit is configured the same as the DC power supply device 4, and the remaining N-1 units are configured the same as the DC power supply device 5. Also,
The operation signal generation circuit supplies the output setting signal Sβ of the second multiplier 31 of FIG. 1 to the remaining N−1 DC power supply devices.

【0036】なお、第2の乗算器を直流電源装置毎のN
−1個の乗算器により形成し、各乗算器の出力設定信号
をN−1台の直流電源装置それぞれに供給してもよい。
また、前記実施例において、直流電源装置4,5の容量
が異なるときは、減衰器29の減衰率を調整し、両電源
装置の出力分担の割合いを容量を考慮して設定すること
も可能である。
The second multiplier is connected to N for each DC power supply device.
It may be formed by −1 multipliers, and the output setting signal of each multiplier may be supplied to each of the N−1 DC power supply devices.
Further, in the above-mentioned embodiment, when the capacities of the DC power supply devices 4 and 5 are different, it is also possible to adjust the attenuation rate of the attenuator 29 and set the output sharing ratio of both power supply devices in consideration of the capacities. Is.

【0037】[0037]

【発明の効果】本発明は、以上説明したように構成され
ているため、以下に記載する効果を奏する。所定の直流
電源装置4の単独運転から各直流電源装置4,5の並列
運転に移行するときに、第1の乗算器30は負荷給電量
の基準信号Rのレベルから反転信号Bの特性で減少変化
する信号を形成し、各第2の乗算器31は積分信号Aの
特性で負荷給電量の基準信号Rの1/Nのレベルに上昇
する信号を残りのN−1台の直流電源装置の出力設定信
号として形成する。
Since the present invention is configured as described above, it has the following effects. When shifting from the independent operation of the predetermined DC power supply device 4 to the parallel operation of the DC power supply devices 4 and 5, the first multiplier 30 decreases from the level of the reference signal R of the load power supply amount by the characteristic of the inversion signal B. Each of the second multipliers 31 forms a changing signal, and each second multiplier 31 raises the signal which rises to the level of 1 / N of the reference signal R of the load power feeding amount by the characteristic of the integrated signal A of the remaining N-1 DC power supply devices. It is formed as an output setting signal.

【0038】さらに、加算器32は第1の乗算器30の
出力信号と第2の乗算器31の出力信号とを加算し、基
準信号Rのレベルから反転信号Bの特性でその1/Nの
レベルに低下する信号を所定の直流電源装置4の出力設
定信号として形成する。
Further, the adder 32 adds the output signal of the first multiplier 30 and the output signal of the second multiplier 31, and the characteristic of the inverted signal B from the level of the reference signal R is 1 / N thereof. The signal that drops to the level is formed as the output setting signal of the predetermined DC power supply device 4.

【0039】そして、加算器32の出力設定信号の変化
に基づき、所定の直流電源装置4はフィードバック制御
の急激な変化を防止して出力電流が負荷給電量の基準信
号に相当する大きさからその1/Nに相当する大きさに
滑らかに減少し、残りのN−1台の直流電源装置5は出
力電流が滑らかに負荷給電の基準信号の1/Nに相当す
る大きさに増加する。そのため、所定の直流電源装置4
が単独運転されるパイロットアークから各直流電源装置
4,5が並列運転されるプラズマアークに移行するとき
に、各直流電源装置4,5の出力電流が滑らかに変化し
てすみやかに並列運転に移行し、アークスタート時の給
電が安定化してプラズマ溶断,プラズマ溶接が良好に行
える。
Then, based on the change in the output setting signal of the adder 32, the predetermined DC power supply device 4 prevents a sudden change in the feedback control so that the output current changes from the magnitude corresponding to the reference signal of the load power supply amount. The output current of the remaining N-1 DC power supply devices 5 smoothly increases to a value corresponding to 1 / N of the reference signal for load power feeding. Therefore, the predetermined DC power supply device 4
When the pilot arc is operated independently, the output currents of the DC power supply units 4 and 5 change smoothly when the DC power supply units 4 and 5 are moved to the plasma arc in parallel. However, the power supply at the time of arc start is stabilized, and plasma fusing and plasma welding can be performed well.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明のプラズマアーク用電源の1実施例の一
部の詳細なブロック部である。
FIG. 1 is a detailed block diagram of a part of one embodiment of a plasma arc power supply of the present invention.

【図2】本発明のプラズマアーク用電源の1実施例の全
体構成のブロック図である。
FIG. 2 is a block diagram of the overall configuration of one embodiment of the plasma arc power supply of the present invention.

【図3】図1の各部の波形図である。FIG. 3 is a waveform diagram of each part of FIG.

【図4】図2の動作説明用の波形図である。FIG. 4 is a waveform diagram for explaining the operation of FIG.

【符号の説明】[Explanation of symbols]

4,5 直流電源装置 25 基準電源 26 並列運転指令端子 27 運転信号発生回路 28 積分器 29 減衰器 30 第1の乗算器 31 第2の乗算器 33 加算器 4, 5 DC power supply device 25 Reference power supply 26 Parallel operation command terminal 27 Operation signal generation circuit 28 Integrator 29 Attenuator 30 First multiplier 31 Second multiplier 33 Adder

───────────────────────────────────────────────────── フロントページの続き (72)発明者 森口 晴雄 大阪市東淀川区淡路2丁目14番3号 株式 会社三社電機製作所内 (72)発明者 狩野 国男 大阪市東淀川区淡路2丁目14番3号 株式 会社三社電機製作所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Haruo Moriguchi 2-3-14 Awaji, Higashiyodogawa-ku, Osaka City Sansha Electric Manufacturing Co., Ltd. (72) Inventor Kunio Kano 2-3-14 Awaji, Higashiyodogawa-ku, Osaka Stock company Sansha Denki Seisakusho

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 N台の直流電源装置をそれぞれの出力設
定信号と出力電流の検出信号との誤差信号によりフィー
ドバック制御し、 所定の直流電源装置のみを運転して負荷にパイロットア
ーク電流を給電した後、各直流電源装置を並列運転して
前記負荷にプラズマアーク電流を給電するプラズマアー
ク電源において、 並列運転指令信号が供給される並列運転指令端子と、 前記並列運転指令端子の信号の積分信号と該信号を反転
した反転信号とを形成する積分器と、 負荷給電量の基準信号と前記反転信号とを乗算する第1
の乗算器と、 前記基準信号を1/Nに減衰する減衰器と、 前記積分信号と前記減衰器の出力信号とを乗算する第2
の乗算器と、 前記第1の乗算器の出力信号と前記第2の乗算器の出力
信号とを加算する加算器とを備え、 前記加算器の出力信号により前記所定の直流電源装置の
前記出力設定信号を形成し、前記第2の乗算器の出力信
号により残りの直流電源装置の前記出力設定信号を形成
したことを特徴とするプラズマアーク用電源。
1. N feedback control of DC power supply devices is performed by an error signal between an output setting signal and an output current detection signal, and only a predetermined DC power supply device is operated to supply a pilot arc current to a load. After that, in the plasma arc power supply for supplying the plasma arc current to the load by operating each DC power supply device in parallel, a parallel operation command terminal to which a parallel operation command signal is supplied, and an integrated signal of the signal of the parallel operation command terminal An integrator that forms an inverted signal of the inverted signal, and a first signal that multiplies the inverted signal by the reference signal of the load power supply amount
A multiplier for attenuating the reference signal to 1 / N, and a second multiplier for multiplying the integrated signal by the output signal of the attenuator.
And an adder for adding the output signal of the first multiplier and the output signal of the second multiplier, the output of the predetermined DC power supply device according to the output signal of the adder. A power supply for plasma arc, wherein a setting signal is formed, and the output setting signal of the remaining DC power supply device is formed by the output signal of the second multiplier.
JP35892592A 1992-12-26 1992-12-26 Power supply for plasma arc Expired - Fee Related JP2707037B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP35892592A JP2707037B2 (en) 1992-12-26 1992-12-26 Power supply for plasma arc

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP35892592A JP2707037B2 (en) 1992-12-26 1992-12-26 Power supply for plasma arc

Publications (2)

Publication Number Publication Date
JPH06190562A true JPH06190562A (en) 1994-07-12
JP2707037B2 JP2707037B2 (en) 1998-01-28

Family

ID=18461828

Family Applications (1)

Application Number Title Priority Date Filing Date
JP35892592A Expired - Fee Related JP2707037B2 (en) 1992-12-26 1992-12-26 Power supply for plasma arc

Country Status (1)

Country Link
JP (1) JP2707037B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008168343A (en) * 2006-12-15 2008-07-24 Sansha Electric Mfg Co Ltd Plasma arc source and its control method
JP2010125458A (en) * 2008-11-25 2010-06-10 Daihen Corp Output control method of welding power source

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008168343A (en) * 2006-12-15 2008-07-24 Sansha Electric Mfg Co Ltd Plasma arc source and its control method
US7586766B2 (en) 2006-12-15 2009-09-08 Sansha Electric Manufacturing Co., Ltd. Plasma arc power supply and control method for same
JP2010125458A (en) * 2008-11-25 2010-06-10 Daihen Corp Output control method of welding power source

Also Published As

Publication number Publication date
JP2707037B2 (en) 1998-01-28

Similar Documents

Publication Publication Date Title
US5644214A (en) Power factor correction circuit
US4876433A (en) Inverter controlled-type power source for arc welding
Mak et al. Switched-capacitor inverter with high power density and enhanced regulation capability
CZ283921B6 (en) Controlled power supply unit
JPH0345984B2 (en)
US4021721A (en) AC-to-DC converter
US3372326A (en) High efficiency low iron ac-to-regulated dc converter
JP2707037B2 (en) Power supply for plasma arc
Borst et al. Voltage control by means of power thyristors
JP2006081285A (en) Control method for static reactive power compensator
Takahashi et al. High power factor switching regulator with no rush current
JP2000236628A (en) Control method for active filters
US3388312A (en) Dual response regulator
JPH0124644Y2 (en)
JPS6364574A (en) Control circuit of inverter
Hayner et al. The venable converter: a new approach to power processing
JP3283591B2 (en) Overcurrent protection circuit
US2745049A (en) Phase shift system utilizing saturable reactors and motor control utilizing such system
JPS61220012A (en) Dc stabilizing power source device
SU1541575A1 (en) Current control
JPH06327249A (en) Multiple-output converter using closed-loop control and secondary pwm-control
JPH05207650A (en) Controller for dc transmission system
JPH08340679A (en) Biased magnetization preventing circuit in high-frequency transformer
Monica et al. Implementation of Three Phase UPS system using Multi-Loop Fuzzy Logic Controller for Linear and Non-Linear Loads
GAUTHAM et al. IMPLEMENTATION OF THREE PHASE UPS SYSTEM USING SPWM AND FUZZY LOGIC CONTROLLERS FOR LINEAR AND NON-LINEAR LOADS

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees