JP2010125458A - Output control method of welding power source - Google Patents

Output control method of welding power source Download PDF

Info

Publication number
JP2010125458A
JP2010125458A JP2008299355A JP2008299355A JP2010125458A JP 2010125458 A JP2010125458 A JP 2010125458A JP 2008299355 A JP2008299355 A JP 2008299355A JP 2008299355 A JP2008299355 A JP 2008299355A JP 2010125458 A JP2010125458 A JP 2010125458A
Authority
JP
Japan
Prior art keywords
welding
output
current
value
output control
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008299355A
Other languages
Japanese (ja)
Inventor
Toshiro Uesono
敏郎 上園
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daihen Corp
Original Assignee
Daihen Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daihen Corp filed Critical Daihen Corp
Priority to JP2008299355A priority Critical patent/JP2010125458A/en
Publication of JP2010125458A publication Critical patent/JP2010125458A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To achieve balance of output current in each inverter circuit when a plurality of inverter circuits built in a power source unit are arranged in parallel, and parallel operation is performed. <P>SOLUTION: In the output control method of a welding power source, N pieces of output control circuits are connected in parallel, and an output voltage set value Er for setting the output voltage of the welding power source, and an inductance set value Lr for setting a proper inductance value of the welding power source, are preliminarily set. A welding voltage during welding is detected and, simultaneously, a first output current of a first output control circuit or an N'th output current of an N'th output control circuit is detected. A current setting variance ΔIr=(Er-Vd)/Lr is calculated with a welding voltage detection value Vd as input, and a welding current control set value is calculated by integrating the current setting variance ΔIr, and a welding current command value is calculated by making the welding current control set value 1/N times. Then, the output is controlled in the manner that the first output current value of the first output control circuit or the N'th output current value of the N'th output control circuit is nearly equalized to the welding current command value. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、溶接電源の出力制御回路を複数並列に設けた溶接電源の出力制御方法に関するものである。   The present invention relates to a welding power source output control method in which a plurality of welding power source output control circuits are provided in parallel.

CO2、MAG溶接等では、溶接電源の種類又は定格出力電流の違いにより内部インダクタンス値の違う直流リアクトルを設け、この直流リアクトルよって生じる内部インダクタンス値の違い、さらに、溶接電源の出力端子と溶接トーチ又は母材を接続する溶接ケーブルの長さ及び引き回しによって変化する、外部インダクタンス値の違いに対応してインダクタンス値を調整して溶接の安定を図っていた。そして、このインダクタンス値の調整を怠ると適正なインダクタンス値からはずれ溶接状態が不安定になってしまう。   In CO2, MAG welding, etc., a DC reactor having a different internal inductance value is provided depending on the type of welding power source or the rated output current, the difference in internal inductance value caused by this DC reactor, and the welding power source output terminal and welding torch or In order to stabilize welding, the inductance value is adjusted in accordance with the difference in the external inductance value, which varies depending on the length and the length of the welding cable connecting the base material. If the adjustment of the inductance value is neglected, the welding state becomes unstable due to the deviation from the appropriate inductance value.

下記に示す図4は、内部インダクタンス値及び外部インダクタンス値が変化しても、適正なインダクタンス値を常に維持する電子リアクトル機能を備えた溶接電源のブロック図である。以下、同図を参照して説明する。   FIG. 4 shown below is a block diagram of a welding power source having an electronic reactor function that always maintains an appropriate inductance value even when the internal inductance value and the external inductance value change. Hereinafter, a description will be given with reference to FIG.

図4において、出力制御回路INVは、図示省略の商用交流電源を整流し直流電圧を出力する1次整流回路と、1次整流回路に並列に設けて直流電圧を平滑する平滑コンデンサと、直流電圧を高周波交流電圧に変換する第1のインバータ回路と、第1のインバータ回路の出力を所定の負荷に適した高周波交流電圧に変換する第1の主変圧器と、第1の主変圧器の出力電力を整流する2次整流回路とで構成され、この出力制御回路INVは、商用電源を入力として出力制御を行い、出力電流を出力する。   In FIG. 4, an output control circuit INV includes a primary rectifier circuit that rectifies a commercial AC power supply (not shown) and outputs a DC voltage, a smoothing capacitor that is provided in parallel with the primary rectifier circuit and smoothes the DC voltage, and a DC voltage. A first inverter circuit for converting the output of the first inverter circuit into a high-frequency AC voltage, a first main transformer for converting the output of the first inverter circuit into a high-frequency AC voltage suitable for a predetermined load, and the output of the first main transformer The output control circuit INV is configured by a secondary rectifier circuit that rectifies power, performs output control with a commercial power supply as an input, and outputs an output current.

図4において、出力電流検出回路IDは、出力制御回路INVの出力電流を検出して出力電流検出信号Idとして出力し、溶接電圧検出回路VDは、溶接電圧vを検出して溶接電圧検出信号Vdとして出力する。直流リアクトルDCLは、出力制御回路INVの出力を平滑して溶接トーチ4に供給する。   In FIG. 4, the output current detection circuit ID detects the output current of the output control circuit INV and outputs it as an output current detection signal Id, and the welding voltage detection circuit VD detects the welding voltage v and detects the welding voltage detection signal Vd. Output as. The direct current reactor DCL smoothes the output of the output control circuit INV and supplies it to the welding torch 4.

図4に示す出力電圧設定回路ERは、所定の出力電圧設定信号Erを設定する。インダクタンス設定回路LRは、適正インダクタンス値Lmに相当するインダクタンス設定信号Lrを出力する。同図に示す、電流設定変化量演算回路DIR、溶接電圧検出信号Vd、出力電圧設定信号Er及びインダクタンス設定信号Lrを入力として、(Er−Vd)/Lrの演算を行い、電流設定変化量信号ΔIrを求める。積分回路IIRは、電流設定変化量信号ΔIrを積分して溶接電流制御設定信号Ircを算出する。   The output voltage setting circuit ER shown in FIG. 4 sets a predetermined output voltage setting signal Er. The inductance setting circuit LR outputs an inductance setting signal Lr corresponding to the appropriate inductance value Lm. The current setting change amount calculation circuit DIR, the welding voltage detection signal Vd, the output voltage setting signal Er, and the inductance setting signal Lr shown in the figure are input, and the calculation of (Er−Vd) / Lr is performed to obtain the current setting change amount signal. ΔIr is obtained. The integration circuit IIR calculates the welding current control setting signal Irc by integrating the current setting change amount signal ΔIr.

電流誤差増幅回路APIは、溶接電流制御設定信号Ircの値と出力電流検出信号Idとの誤差を増幅して電流誤差増幅信号APiを出力する。そして、出力制御回路INVは、電流誤差増幅信号APiに応じて出力電流を制御する。よって、出力電流検出信号Idが溶接電流制御設定信号Ircと略等しくなる。   The current error amplification circuit API amplifies an error between the value of the welding current control setting signal Irc and the output current detection signal Id and outputs a current error amplification signal APi. The output control circuit INV controls the output current in accordance with the current error amplification signal APi. Therefore, the output current detection signal Id becomes substantially equal to the welding current control setting signal Irc.

図5は、内部インダクタンス及び外部インダクタンス値が変化しても適正インダクタンスを維持する定電圧特性を有する、図4に示す溶接電源装置の等価回路である。
この等価回路を用いて内部インダクタンス及び外部インダクタンス値が変化しても適正インダクタンスを維持する原理について説明する。
FIG. 5 is an equivalent circuit of the welding power source apparatus shown in FIG. 4 having a constant voltage characteristic that maintains an appropriate inductance even when the internal inductance value and the external inductance value change.
The principle of maintaining an appropriate inductance even when the internal inductance value and the external inductance value change using this equivalent circuit will be described.

図5(A)は、適正インダクタンス値Lmを有する定電圧特性の溶接電源の等価回路図である。同図において、下式が成立する。
E=Lm・di/dt+v
但し、E[V]は出力電圧、Lm[H]は適正インダクタンス値、i[A]は溶接電流、v[V]は溶接電圧である。
上式を整理すると、下式となる。
di/dt=(E−v)/Lm
両辺を積分すると、下式となる。
i=∫((E−v)/Lm)・dt
ここで、溶接電流iを溶接電流制御設定値Ircに、出力電圧Eを出力電圧設定値Erに、適正インダクタンス値Lmをインダクタンス設定値Lrにそれぞれ置換すると、下式となる。
Irc=∫((Er−v)/Lr)・dt
上式に対応する等価回路を図5(B)に示す。同図において、溶接電圧vを検出し定電流源CCの溶接電流iに相当する溶接電流制御設定値Ircが、上式の演算値となるように制御する。これによって、溶接負荷の変動に対する溶接電流iの変化は、図5(A)と同一になる。
FIG. 5A is an equivalent circuit diagram of a welding power source having a constant voltage characteristic having an appropriate inductance value Lm. In the figure, the following formula is established.
E = Lm · di / dt + v
However, E [V] is an output voltage, Lm [H] is an appropriate inductance value, i [A] is a welding current, and v [V] is a welding voltage.
When the above equation is arranged, the following equation is obtained.
di / dt = (E−v) / Lm
Integrating both sides gives the following formula.
i = ∫ ((E−v) / Lm) · dt
Here, when the welding current i is replaced with the welding current control set value Irc, the output voltage E is replaced with the output voltage set value Er, and the appropriate inductance value Lm is replaced with the inductance set value Lr, the following equations are obtained.
Irc = ∫ ((Er−v) / Lr) · dt
An equivalent circuit corresponding to the above equation is shown in FIG. In the figure, the welding voltage v is detected and the welding current control set value Irc corresponding to the welding current i of the constant current source CC is controlled to be the calculated value of the above equation. Thereby, the change of the welding current i with respect to the fluctuation of the welding load becomes the same as that in FIG.

図5(C)は、内部インダクタンス及び外部インダクタンスの値がLioの場合の等価回路を示す。同図において、Irc=∫((Er−v)/Lr)・dtのLrがLmのままでも、溶接負荷の変動に対する溶接電流iの変化は同一となる。すなわち、内部インダクタンス及び外部インダクタンスの値Lioが変化しても、上述の制御方法には影響を与えない。したがって、溶接電源装置を構成する部品のばらつきによって内部インダクタンス値が変化しても、かつ、溶接ケーブルの長さ及び引き回しによって外部インダクタンス値が変化しても、インダクタンス設定値Lrは常に適正インダクタンス値になる。
(例えば、特許文献1)
FIG. 5C shows an equivalent circuit when the values of the internal inductance and the external inductance are Lio. In this figure, even if Lr of Irc = ∫ ((Er−v) / Lr) · dt remains Lm, the change of the welding current i with respect to the fluctuation of the welding load is the same. That is, even if the values Lio of the internal inductance and the external inductance change, the above control method is not affected. Therefore, even if the internal inductance value changes due to variations in the parts constituting the welding power source device, and the external inductance value changes due to the length and routing of the welding cable, the inductance setting value Lr is always set to an appropriate inductance value. Become.
(For example, Patent Document 1)

特開2003−305571号公報JP 2003-305571 A

従来の溶接電源では、内部インダクタンス値及び外部インダクタンス値が変化しても、常に適正なインダクタンス値を維持する電子リアクトル機能を有している。
そして、この機能を有した出力制御回路を複数並列に溶接電源に設けて出力電流の増大を図った溶接電源が要望されている。
しかし、この電源装置の出力制御回路は定電圧特性を有し、この定電圧特性を有する出力制御回路を、例えばN台並列に設けて運転すると出力制御回路を構成する半導体素子等の部品のばらつきにより、出力電圧に微小なズレが発生し、この状態が継続すると出力制御回路の一方の出力電流が増加し、他方の出力電流が減少して電流バランスが崩れ、この電流バランスの崩れによって特定の半導体素子に電流が流れ過ぎ、熱損失によって部品の劣化に繋がってしまう。
A conventional welding power source has an electronic reactor function that always maintains an appropriate inductance value even when the internal inductance value and the external inductance value change.
There is a demand for a welding power source in which a plurality of output control circuits having this function are provided in the welding power source in parallel to increase the output current.
However, the output control circuit of this power supply device has a constant voltage characteristic, and when the output control circuit having this constant voltage characteristic is provided in parallel with, for example, N units, the components such as the semiconductor elements constituting the output control circuit vary. As a result, a slight deviation occurs in the output voltage, and when this state continues, one output current of the output control circuit increases, the other output current decreases and the current balance is lost. Current flows too much in the semiconductor element, leading to deterioration of parts due to heat loss.

そこで、本発明では、出力制御回路を、例えばN台並列に設けた状態でも内部インダクタンス値及び外部インダクタンス値の変化の影響を受けず、且つ出力電流が略同一になる溶接電源を提供することを目的とする。   Therefore, the present invention provides a welding power source that is not affected by changes in the internal inductance value and the external inductance value even when the output control circuit is provided in parallel, for example, N units, and that the output current is substantially the same. Objective.

上述した課題を解決するために、本発明は、出力制御回路をN個並列に接続し、前記接続点と出力端子との間に直流リアクトルを接続し、溶接電源の出力電圧を設定する出力電圧設定値Erと前記溶接電源の適正インダクタンス値を設定するインダクタンス設定値Lrを予め設定し、溶接中の溶接電圧を検出すると共に前記第1の出力制御回路の第1の出力電流ないし前記第Nの出力制御回路の第Nの出力電流を検出し、前記溶接電圧検出値Vdを入力として電流設定変化量ΔIr=(Er−Vd)/Lrを算出し、前記電流設定変化量ΔIrを積分して溶接電流制御設定値を算出し、前記溶接電流制御設定値を1/N倍にして溶接電流指令値を算出し、前記第1の出力制御回路の第1の出力電流値が前記溶接電流指令値と略等しくなるように制御し、ないし前記第Nの出力制御回路の第Nの出力電流値が前記溶接電流指令値と略等しくなるように制御する、ことを特徴とする溶接電源の出力制御方法である。   In order to solve the above-described problem, the present invention provides an output voltage in which N output control circuits are connected in parallel, a DC reactor is connected between the connection point and the output terminal, and an output voltage of the welding power source is set. A set value Er and an inductance set value Lr for setting an appropriate inductance value for the welding power source are set in advance, a welding voltage during welding is detected, and the first output current or the Nth output current of the first output control circuit is detected. The Nth output current of the output control circuit is detected, the current setting change amount ΔIr = (Er−Vd) / Lr is calculated using the welding voltage detection value Vd as an input, and the current setting change amount ΔIr is integrated to perform welding. A current control set value is calculated, a welding current command value is calculated by multiplying the welding current control set value by 1 / N, and the first output current value of the first output control circuit is equal to the welding current command value. To be approximately equal The welding power supply output control method is characterized in that control is performed and control is performed so that an Nth output current value of the Nth output control circuit is substantially equal to the welding current command value.

第2の発明は、前記溶接電流制御設定値を、前記第1の出力制御回路ないし第Nの出力制御回路の定格出力電流値の比率に基づいて分配して第1の溶接電流指令値ないし第Nの溶接電流指令値を生成し、前記第1の出力制御回路の第1の出力電流値が前記第1の溶接電流指令値と略等しくなるように制御し、ないし前記第Nの出力制御回路の第Nの出力電流値が前記第Nの溶接電流指令値と略等しくなるように制御する、ことを特徴とする請求項1記載の溶接電源の出力制御方法である。   According to a second aspect of the invention, the welding current control set value is distributed based on a ratio of rated output current values of the first output control circuit to the Nth output control circuit, and the first welding current command value to the first welding current command value. N welding current command values are generated, and the first output current value of the first output control circuit is controlled to be substantially equal to the first welding current command value, or the Nth output control circuit. The welding power output control method according to claim 1, wherein the Nth output current value is controlled to be substantially equal to the Nth welding current command value.

第1の発明によれば、溶接電流制御設定値を並列接続された出力制御回路の台数(例えば、N台)に応じて1/N倍して溶接電流指令値を算出し、この算出した溶接電流指令値に基づいてN台の出力制御回路を制御すると、各出力電流は略同一になり電流バランスがとれ、出力電流の増大が可能となり、且つ出力制御回路が並列に設けた状態でも内部インダクタンス値及び外部インダクタンス値の変化の影響を受けないので、アークが安定し溶接品質の向上にもつながる。   According to the first aspect of the invention, the welding current command value is calculated by multiplying the welding current control set value by 1 / N according to the number of output control circuits (for example, N units) connected in parallel, and the calculated welding is performed. When the N output control circuits are controlled based on the current command value, the output currents are substantially the same, the current balance is achieved, the output current can be increased, and the internal inductance is maintained even when the output control circuits are provided in parallel. Since it is not affected by the change of the value and the external inductance value, the arc is stabilized and the welding quality is improved.

第2の発明によれば、定格出力電流値の違う出力制御回路をN台並列に設け、この定格出力電流値の比率に基づいて溶接電流制御設定値を分配し、この分配して生成した各溶接電流指令値に基づいて各出力制御回路を制御すると、定格出力電流値の違う出力制御回路でも並列運転が可能となる。   According to the second invention, N output control circuits having different rated output current values are provided in parallel, and the welding current control set value is distributed based on the ratio of the rated output current values. When each output control circuit is controlled based on the welding current command value, parallel operation is possible even with output control circuits having different rated output current values.

図1は、本発明の実施形態1に係る溶接電源の出力制御方法を実施するための電気接続図である。同図において、図4と同一符号は、同一構成であるので説明は省略し、符号の相違する構成物についてのみ説明する。   FIG. 1 is an electrical connection diagram for carrying out an output control method for a welding power source according to Embodiment 1 of the present invention. In the figure, the same reference numerals as those in FIG. 4 have the same configuration, and therefore description thereof will be omitted. Only components having different reference numerals will be described.

図1に示に並列接続された第1の出力制御回路INV1及び第2の出力制御回路INV2は、図4に示す出力制御回路INVと同一構成であり、第1の出力制御回路INV1は商用電源を入力として出力制御を行い第1の出力電流を出力すると、共に第2の出力制御回路INV1も商用電源を入力として出力制御を行い第2の出力電流を出力する。   The first output control circuit INV1 and the second output control circuit INV2 connected in parallel as shown in FIG. 1 have the same configuration as the output control circuit INV shown in FIG. 4, and the first output control circuit INV1 is a commercial power supply. When the first output current is output by performing the output control, the second output control circuit INV1 outputs the second output current by performing the output control with the commercial power supply as an input.

第1の分配回路DI1は、溶接電流制御設定信号Ircを1/2倍にして溶接電流指令信号Iraとして出力する。   The first distribution circuit DI1 halves the welding current control setting signal Irc and outputs it as a welding current command signal Ira.

第1の電流誤差増幅回路API1は、溶接電流指令信号Iraと第1の出力電流検出信号Id1との誤差を増幅して第1の電流誤差増幅信号APi1を出力する。そして、第1の出力制御回路INV1は、第1の電流誤差増幅信号APi1に応じて出力電流を定電流制御する第1の定電流源CC1を構成する。   The first current error amplification circuit API1 amplifies the error between the welding current command signal Ira and the first output current detection signal Id1, and outputs a first current error amplification signal APi1. The first output control circuit INV1 constitutes a first constant current source CC1 that performs constant current control of the output current in accordance with the first current error amplification signal APi1.

第2の電流誤差増幅回路API2は、溶接電流指令信号Iraと第2の出力電流検出信号Id2との誤差を増幅して第2の電流誤差増幅信号APi2を出力する。そして、第2の出力制御回路INV2は、第2の電流誤差増幅信号APi2に応じて出力電流を定電流制御する第2の定電流源CC2を構成する。   The second current error amplification circuit API2 amplifies an error between the welding current command signal Ira and the second output current detection signal Id2, and outputs a second current error amplification signal APi2. The second output control circuit INV2 constitutes a second constant current source CC2 that performs constant current control of the output current in accordance with the second current error amplification signal APi2.

つぎに、図2は、図1に示す本発明の等価回路であり、この等価回路を用いて動作について説明する。
図2(A)は、適正インダクタンス値Lmを有する定電圧特性の溶接電源の等価回路図である。同図において、下式が成立する。
di/dt=(E−v)/Lm
両辺を積分すると、下式となる。
i=∫((E−v)/Lm)・dt
ここで、溶接電流iを溶接電流制御設定値Ircに、出力電圧Eを出力電圧設定値Erに、適正インダクタンス値Lmをインダクタンス設定値Lrにそれぞれ置換すると、下式となる。
Irc=∫((Er−v)/Lr)・dt
上式に対応する等価回路を図2(B)に示す。同図において、溶接電圧vを検出し第1の定電流源CC1の溶接電流i/2に相当する溶接電流制御設定値1/2・Irc(に基づいて制御し、第2の定電流源CC2も溶接電流制御設定値1/2・Ircに基づいて制御する。これにより、溶接負荷の変動に対する溶接電流iの変化は、図2(A)と同一になる。
Next, FIG. 2 is the equivalent circuit of the present invention shown in FIG. 1, and the operation will be described using this equivalent circuit.
FIG. 2A is an equivalent circuit diagram of a welding power source having a constant voltage characteristic having an appropriate inductance value Lm. In the figure, the following formula is established.
di / dt = (E−v) / Lm
Integrating both sides gives the following formula.
i = ∫ ((E−v) / Lm) · dt
Here, when the welding current i is replaced with the welding current control set value Irc, the output voltage E is replaced with the output voltage set value Er, and the appropriate inductance value Lm is replaced with the inductance set value Lr, the following equations are obtained.
Irc = ∫ ((Er−v) / Lr) · dt
An equivalent circuit corresponding to the above equation is shown in FIG. In the figure, the welding voltage v is detected and controlled based on the welding current control set value 1/2 · Irc (corresponding to the welding current i / 2 of the first constant current source CC1, and the second constant current source CC2 is controlled. Is also controlled based on the welding current control set value 1/2 · Irc, so that the change of the welding current i with respect to the fluctuation of the welding load is the same as in FIG.

即ち、図2(B)に示す等価回路より定電流源CCが2つ並列に接続され、溶接電流制御設定値Ircを図1に示す第1の分配回路DI1により1/2倍にして溶接電流指令信号Ira(1/2・Irc)を算出する。そして、第1の定電流源CC1及び第2の定電流源CC2を溶接電流指令信号Ira(1/2・Irc)に基づいて出力電流を制御すると、この2つの出力電流の値は略同一になる。   That is, two constant current sources CC are connected in parallel from the equivalent circuit shown in FIG. 2B, and the welding current control set value Irc is halved by the first distribution circuit DI1 shown in FIG. The command signal Ira (1/2 · Irc) is calculated. When the output currents of the first constant current source CC1 and the second constant current source CC2 are controlled based on the welding current command signal Ira (1/2 · Irc), the values of the two output currents are substantially the same. Become.

図2(C)は、内部インダクタンス値及び外部インダクタンス値がLioの場合の等価回路を示す。同図において、Lr=Lmのままでも溶接負荷の変動に対する各溶接電流i/2の変化は同一となる。すなわち、内部インダクタンス値及び外部インダクタンス値のLioが変化しても、インダクタンス設定値Lrは常に適正インダクタンス値になる   FIG. 2C shows an equivalent circuit when the internal inductance value and the external inductance value are Lio. In the same figure, even if Lr = Lm, the change of each welding current i / 2 with respect to the fluctuation of the welding load is the same. That is, even if the internal inductance value and the external inductance value Lio change, the inductance setting value Lr is always an appropriate inductance value.

上述より、本発明では、2つの出力電流が略平衡となり、且つ内部インダクタンス値及び外部インダクタンス値の変化の影響を受けない溶接電源が形成される。
さらに、本発明では、出力制御回路をN個並列に接続し、この接続点と出力端子との間に直流リアクトルを接続しているが、溶接電源に配設されたN個の出力制御回路を接続する溶接ケーブルの長さ及び引き回しによってインダクタンス値が発生するので、直流リアクトルを設けなくてもよい。
As described above, in the present invention, a welding power source is formed in which the two output currents are substantially balanced and are not affected by changes in the internal inductance value and the external inductance value.
Furthermore, in the present invention, N output control circuits are connected in parallel, and a DC reactor is connected between the connection point and the output terminal. However, the N output control circuits disposed in the welding power source are connected to each other. Since the inductance value is generated by the length and the routing of the welding cable to be connected, it is not necessary to provide a DC reactor.

[実施の形態2]
図3は、本発明の実施形態2に係る溶接電源の出力制御方法を実施するための電気接 接続図である。同図において、図1及び図4と同一符号は、同一構成であるので説明は省略し、符号の相違する構成物についてのみ説明する。
[Embodiment 2]
FIG. 3 is an electrical connection diagram for carrying out the output control method of the welding power source according to the second embodiment of the present invention. In this figure, the same reference numerals as those in FIG. 1 and FIG. 4 have the same configuration, and therefore description thereof will be omitted. Only components having different reference numerals will be described.

図3に示す、第1の出力制御回路INV1と第2の出力制御回路INV2とは、定格出力電流値の比が、例えば、2:1となり、定格出力電流値が違う2つの出力制御回路が並列に設けられている。   In the first output control circuit INV1 and the second output control circuit INV2 shown in FIG. 3, the ratio of the rated output current values is, for example, 2: 1 and two output control circuits having different rated output current values are used. It is provided in parallel.

図3に示す、第2の分配回路DI2は、溶接電流制御設定信号Ircを2/3倍(2/3・Irc)にして第2の溶接電流指令信号Ira2として出力すると共に第3の分配回路DI3は、溶接電流制御設定信号Ircを1/3倍(1/3・Irc)にして第3の溶接電流指令信号Ira3として出力する。   The second distribution circuit DI2 shown in FIG. 3 increases the welding current control setting signal Irc by 2/3 (2/3 · Irc) and outputs it as the second welding current command signal Ira2, and the third distribution circuit. DI3 multiplies the welding current control setting signal Irc by 1/3 (1/3 · Irc) and outputs it as a third welding current command signal Ira3.

図3に示す、第1の電流誤差増幅回路API1は、第2の溶接電流指令信号Ira2と第1の出力電流検出信号Id1との誤差を増幅して第1の電流誤差増幅信号APi1を出力する。そして、第1の出力制御回路INV1は、第1の電流誤差増幅信号APi1に応じて出力電流を制御する。   The first current error amplification circuit API1 shown in FIG. 3 amplifies the error between the second welding current command signal Ira2 and the first output current detection signal Id1, and outputs a first current error amplification signal APi1. . Then, the first output control circuit INV1 controls the output current according to the first current error amplification signal APi1.

図3に示す、第2の電流誤差増幅回路API2は、第3の溶接電流指令信号Ira3と第2の出力電流検出信号Id2との誤差を増幅して第2の電流誤差増幅信号APi2を出力する。そして、第2の出力制御回路INV2は、第2の電流誤差増幅信号APi2に応じて出力電流を制御する。   The second current error amplification circuit API2 shown in FIG. 3 amplifies the error between the third welding current command signal Ira3 and the second output current detection signal Id2, and outputs a second current error amplification signal APi2. . Then, the second output control circuit INV2 controls the output current according to the second current error amplification signal APi2.

上述より、並列接続された第1の出力制御回路INV1の定格電流値が、例えば200A、第2の出力制御回路INV2の定格電流値が100Aと同一でないときでも、出力制御回路を並列に設けて並列運転が可能となる。   From the above, even when the rated current value of the first output control circuit INV1 connected in parallel is 200A, for example, and the rated current value of the second output control circuit INV2 is not the same as 100A, the output control circuit is provided in parallel. Parallel operation is possible.

本発明の実施形態1に係る出力制御方法を実施するための溶接電源の電気接 続図である。It is an electrical connection diagram of a welding power source for carrying out the output control method according to Embodiment 1 of the present invention. 本発明の実施の形態1を説明するための等価回路図である。It is an equivalent circuit diagram for demonstrating Embodiment 1 of this invention. 本発明の実施形態2に係る出力制御方法を実施するための溶接電源の電気接 接続図である。It is an electrical connection diagram of the welding power source for implementing the output control method concerning Embodiment 2 of the present invention. 従来技術の出力制御方法を実施するため溶接電源の電気接続図である。It is an electrical connection diagram of a welding power source for implementing the output control method of a prior art. 従来技術を説明するための等価回路図である。It is an equivalent circuit diagram for demonstrating a prior art.

符号の説明Explanation of symbols

1 溶接ワイヤ
2 母材
3 アーク
4 溶接トーチ
5 送給ロール
API 電流誤差増幅回路
APi 電流誤差増幅信号
API1 第1の電流誤差増幅回路
APi1 第1の電流誤差増幅信号
API2 第2の電流誤差増幅回路
APi2 第2の電流誤差増幅信号
CC 定電流源
CC1 第1の定電流源
CC2 第2の定電流源
DI1 第1の分配回路
DI2 第2の分配回路
DI3 第3の分配回路
DCL 直流リアクトル
DIR 電流設定変化量演算回路
E1 第1の出力電圧
E2 第2の出力電圧
ER 出力電圧設定回路
Er 出力電圧設定信号(出力電圧設定値)
ID 出力電流検出回路
id 出力電流検出信号
ID1 第1の出力電流検出回路
id1 第1の出力電流検出信号
ID2 第2の出力電流検出回路
id2 第2の出力電流検出信号
IIR 積分回路
INV 出力制御回路
INV1 第1の出力制御回路
INV2 第2の出力制御回路
Irc 溶接電流制御設定信号
Ira 溶接電流指令信号
Ira2 第2の溶接電流指令信号
Ira3 第3の溶接電流指令信号
Lio 内外部インダクタンス値
Lm 適正インダクタンス値
LR インダクタンス設定回路
Lr インダクタンス設定信号
v 溶接電圧
VD 溶接電圧検出回路
Vd 溶接電圧検出信号
ΔIr 電流設定変化量(信号)
DESCRIPTION OF SYMBOLS 1 Welding wire 2 Base material 3 Arc 4 Welding torch 5 Feed roll API Current error amplifier circuit APIi Current error amplifier signal API1 First current error amplifier circuit APi1 First current error amplifier signal API2 Second current error amplifier circuit API2 Second current error amplification signal CC constant current source CC1 first constant current source CC2 second constant current source DI1 first distribution circuit DI2 second distribution circuit DI3 third distribution circuit DCL DC reactor DIR Current setting change Quantity calculation circuit E1 First output voltage E2 Second output voltage ER Output voltage setting circuit Er Output voltage setting signal (output voltage setting value)
ID output current detection circuit id output current detection signal ID1 first output current detection circuit id1 first output current detection signal ID2 second output current detection circuit id2 second output current detection signal IIR integration circuit INV output control circuit INV1 First output control circuit INV2 Second output control circuit Irc Welding current control setting signal Ira Welding current command signal Ira2 Second welding current command signal Ira3 Third welding current command signal Lio Internal and external inductance value Lm Proper inductance value LR Inductance setting circuit Lr Inductance setting signal v Welding voltage VD Welding voltage detection circuit Vd Welding voltage detection signal ΔIr Current setting change amount (signal)

Claims (2)

出力制御回路をN個並列に接続し、前記接続点と出力端子との間に直流リアクトルを接続し、溶接電源の出力電圧を設定する出力電圧設定値Erと前記溶接電源の適正インダクタンス値を設定するインダクタンス設定値Lrを予め設定し、溶接中の溶接電圧を検出すると共に前記第1の出力制御回路の第1の出力電流ないし前記第Nの出力制御回路の第Nの出力電流を検出し、前記溶接電圧検出値Vdを入力として電流設定変化量ΔIr=(Er−Vd)/Lrを算出し、前記電流設定変化量ΔIrを積分して溶接電流制御設定値を算出し、前記溶接電流制御設定値を1/N倍にして溶接電流指令値を算出し、前記第1の出力制御回路の第1の出力電流値が前記溶接電流指令値と略等しくなるように制御し、ないし前記第Nの出力制御回路の第Nの出力電流値が前記溶接電流指令値と略等しくなるように制御する、ことを特徴とする溶接電源の出力制御方法。   N output control circuits are connected in parallel, a DC reactor is connected between the connection point and the output terminal, and an output voltage set value Er for setting the output voltage of the welding power source and an appropriate inductance value for the welding power source are set. An inductance setting value Lr to be set in advance, a welding voltage during welding is detected, and a first output current of the first output control circuit or an Nth output current of the Nth output control circuit is detected; The welding voltage detection value Vd is input to calculate a current setting change amount ΔIr = (Er−Vd) / Lr, and the current setting change amount ΔIr is integrated to calculate a welding current control setting value, and the welding current control setting is calculated. The welding current command value is calculated by multiplying the value by 1 / N, and the first output current value of the first output control circuit is controlled to be substantially equal to the welding current command value, or the Nth Output control circuit An output control method for a welding power source, wherein an output current value of N is controlled to be substantially equal to the welding current command value. 前記溶接電流制御設定値を、前記第1の出力制御回路ないし第Nの出力制御回路の定格出力電流値の比率に基づいて分配して第1の溶接電流指令値ないし第Nの溶接電流指令値を生成し、前記第1の出力制御回路の第1の出力電流値が前記第1の溶接電流指令値と略等しくなるように制御し、ないし前記第Nの出力制御回路の第Nの出力電流値が前記第Nの溶接電流指令値と略等しくなるように制御する、ことを特徴とする請求項1記載の溶接電源の出力制御方法。   The welding current control set value is distributed based on a ratio of rated output current values of the first output control circuit to the Nth output control circuit, and the first welding current command value to the Nth welding current command value. And the first output current value of the first output control circuit is controlled to be substantially equal to the first welding current command value, or the Nth output current of the Nth output control circuit. 2. The output control method for a welding power source according to claim 1, wherein a value is controlled to be substantially equal to the Nth welding current command value.
JP2008299355A 2008-11-25 2008-11-25 Output control method of welding power source Pending JP2010125458A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008299355A JP2010125458A (en) 2008-11-25 2008-11-25 Output control method of welding power source

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008299355A JP2010125458A (en) 2008-11-25 2008-11-25 Output control method of welding power source

Publications (1)

Publication Number Publication Date
JP2010125458A true JP2010125458A (en) 2010-06-10

Family

ID=42326205

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008299355A Pending JP2010125458A (en) 2008-11-25 2008-11-25 Output control method of welding power source

Country Status (1)

Country Link
JP (1) JP2010125458A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06190562A (en) * 1992-12-26 1994-07-12 Sansha Electric Mfg Co Ltd Power source for plasma arc
JP2003305571A (en) * 2002-04-15 2003-10-28 Daihen Corp Output controlling method for welding power supply unit

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06190562A (en) * 1992-12-26 1994-07-12 Sansha Electric Mfg Co Ltd Power source for plasma arc
JP2003305571A (en) * 2002-04-15 2003-10-28 Daihen Corp Output controlling method for welding power supply unit

Similar Documents

Publication Publication Date Title
JP5170315B2 (en) Arc welding method and arc welding apparatus
JP5186227B2 (en) Output control method of welding power source
RU2660917C2 (en) Apparatus and method for dynamically adjusting an electric arc furnace
JP7108825B2 (en) Laser drive power supply
EP2832486A1 (en) Arc welding control method and arc welding device
CN102699486A (en) Method for controlling output characteristics of electric arc welding power source
US10239144B2 (en) Welding device
TWI533547B (en) Resonant converter apparatus and control method for the same
JP2010125458A (en) Output control method of welding power source
US11031881B2 (en) Output current synthesizer and power supply apparatus
US8232501B2 (en) Plasma arc power supply and control method therefor
JP3833137B2 (en) Output control method for welding power supply
JP2006116556A (en) Power supply device of arc applying equipment
JP5429791B2 (en) Welding power supply
JP2009254180A (en) Power device for cutting and welding
JP2005051907A (en) Power converter
JP2013116495A (en) Power source device for arc machining
KR101644300B1 (en) Welding device and welding system
JP2009012028A (en) Electric power source apparatus for arc welding
JP5689016B2 (en) Power supply
JP2009225569A (en) Power supply for arc discharge
JP2006116555A (en) Power supply device of arc applying equipment
JP2017073248A (en) Induction heating device
JP2006115637A (en) Power supply device
KR20150038936A (en) Power supply apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111104

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130207

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130305

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130325

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130924