JPH06190507A - Stainless steel cast slab having excellent surface characteristic and continuous casting method thereof - Google Patents

Stainless steel cast slab having excellent surface characteristic and continuous casting method thereof

Info

Publication number
JPH06190507A
JPH06190507A JP34437192A JP34437192A JPH06190507A JP H06190507 A JPH06190507 A JP H06190507A JP 34437192 A JP34437192 A JP 34437192A JP 34437192 A JP34437192 A JP 34437192A JP H06190507 A JPH06190507 A JP H06190507A
Authority
JP
Japan
Prior art keywords
slab
stainless steel
cast slab
continuous casting
mold
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP34437192A
Other languages
Japanese (ja)
Inventor
Masatake Houjiyou
優武 北條
Shigenori Tanaka
重典 田中
Takashi Yanai
隆司 柳井
Takeshi Nakano
健 中野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP34437192A priority Critical patent/JPH06190507A/en
Publication of JPH06190507A publication Critical patent/JPH06190507A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Continuous Casting (AREA)

Abstract

PURPOSE:To enable non-cleaning rolling for a stainless steel cast slab by selecting mold cooling, mold material, powder characteristic, etc., in order to uniformize the solidifying speed of the top part and the bottom part of an oscillation mark on the cast slab. CONSTITUTION:In the cast slab cast by continuous casting, the ratio (S B)/(S T) of a secondary dendritic arm interval (S B) at the bottom part of the oscillation to a secondary dendritic arm interval (S T) at the top part of the oscillation below the surface shell of this cast slab at 150-250mum is made to be <1.4. In the case this ratio (S B)/(S T) becomes >=1.4, the breakage of solidified shell is caused, and the larger the ratio of these secondary arm intervals is, the deeper a segregation zone is. As to the solidifying speed at the top part and the bottom part, that at the bottom part is ordinarily lower than at the top part, but by making this ratio almost >=0.5, the segregation zone can be prevented. By this method, the non-cleaning rolling can be attained, and by saving the cleaning to the cast slab, the cost can be reduced.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、表面無手入れのまま又
はわずかな手入れを施した(以下無手入れと称す)鋳片
を熱間圧延し酸洗後冷間圧延した鋼帯でも、鋼帯表面に
光沢むら模様やヘゲ疵が発生することが殆どない、表面
性状の良好なオーステナイト系ステンレス鋼鋳片および
その連続鋳造方法に関するものである。
BACKGROUND OF THE INVENTION The present invention relates to a steel strip which has been hot-rolled, pickled and cold-rolled from a slab which is left unmaintained on the surface or slightly maintained (hereinafter referred to as "non-maintenance"). The present invention relates to an austenitic stainless steel slab having a good surface property in which uneven glossy patterns and bald defects are hardly generated, and a continuous casting method thereof.

【0002】[0002]

【従来の技術】ステンレス鋼は熱間圧延における加熱時
のスケール生成量が少ないため、鋳造において成分偏析
や割れなどの表面欠陥が発生した鋳片を無手入れままで
熱間圧延した場合には、この表面欠陥がスケールオフさ
れずに熱延鋼帯表面に残存する。また、この熱延鋼帯を
疵取り処理を施さずに酸洗のままで冷間圧延した場合に
は、前記表面欠陥が冷延鋼帯表面に残存する。そのた
め、ステンレス鋼連続鋳造鋳片を無手入れままで圧延す
るためには、表面欠陥が無いか有っても極めて僅かであ
る(以下無欠陥と称す)鋳片を得ることが必須である。
2. Description of the Related Art Since stainless steel has a small amount of scale formation during heating in hot rolling, when hot rolling is performed without casting a slab in which surface defects such as component segregation and cracks occur in casting, These surface defects remain on the surface of the hot-rolled steel strip without being scaled off. Further, when this hot-rolled steel strip is cold-rolled without being subjected to a flaw removal treatment while being pickled, the surface defects remain on the surface of the cold-rolled steel strip. Therefore, in order to roll stainless steel continuously cast slabs without maintenance, it is essential to obtain slabs with no surface defects or very few surface defects (hereinafter referred to as defect-free).

【0003】ところが、SUS304に代表されるオー
ステナイト系ステンレス鋼の連続鋳造において、通常条
件で鋳型を正弦波あるいは非正弦波で鋳造方向にオッシ
レーション(振動)させると、図3に示す鋳片表面のオ
ッシレーションマーク谷部にNi等の元素が濃化した偏
析帯やパウダーの巻き込みおよび割れ等の欠陥が発生す
る。このために鋳片を無手入れのままで熱間圧延した場
合には、熱延鋼帯表面に光沢むら模様やヘゲ疵等が発生
して冷延鋼帯にそのまま残存するという問題があった。
However, in continuous casting of austenitic stainless steel typified by SUS304, when the mold is oscillated in a casting direction with a sine wave or a non-sinusoidal wave under normal conditions, the surface of the slab shown in FIG. Defects such as a segregation zone in which an element such as Ni is concentrated, and entrainment and cracking of powder occur in the valley portion of the oscillation mark. For this reason, when hot rolling the slab without maintenance, there was a problem that uneven hot spots, bald spots, etc. were generated on the surface of the hot rolled steel strip and remained on the cold rolled steel strip. .

【0004】連続鋳造鋳片のオッシレーションマーク谷
部における前記欠陥の軽減法として、特開昭57−13
0741号公報には、パウダーの粘度を低下させ、かつ
鋳型の最大下降速度を鋳片引抜速度よりも小さくする
か、あるいは鋳型の最大下降速度が鋳片引抜速度以上の
場合には、高サイクルオッシレーション条件として連続
鋳造を行うことによって鋳片表面性状の改善を図る方法
が開示されている。また、特開平2−30357号公報
には、パウダーの粘度ならびに凝固温度を選定すること
ににより、鋳片表面欠陥を軽減する方法が開示されてい
る。
As a method of reducing the above-mentioned defects in the valley portion of the oscillation mark of the continuously cast slab, Japanese Patent Laid-Open No. 57-13 / 1987 has been proposed.
No. 0741 discloses that the viscosity of the powder is lowered and the maximum descending speed of the mold is made smaller than the slab drawing speed, or when the maximum descending speed of the mold is not less than the slab drawing speed, a high cycle oscillating There is disclosed a method for improving the surface property of a slab by performing continuous casting as a ration condition. Further, Japanese Patent Application Laid-Open No. 2-30357 discloses a method of reducing the surface defects of a cast piece by selecting the viscosity and the solidification temperature of the powder.

【0005】[0005]

【発明が解決しようとする課題】しかし前記欠陥の原因
である偏析帯の生成条件は、鋳型の冷却条件等によって
も変動する。このために従来の方法では、鋳型の冷却条
件等の他の要因によって適性範囲が変動し、十分な効果
が安定して得られないという問題があった。本発明はオ
ーステナイト系ステンレス鋼の連続鋳造において、オッ
シレーションマーク谷部の偏析帯生成機構の調査によっ
て鋳型の冷却条件等を考慮した偏析帯生成防止条件を明
確にし、無手入れ圧延が可能なレベルまで欠陥を軽減し
た鋳片を安定して鋳造し得る連続鋳造手段を提供するこ
とを課題とするものである。
However, the conditions for forming the segregation zone, which is the cause of the defects, also vary depending on the cooling conditions of the mold and the like. For this reason, the conventional method has a problem in that the appropriate range varies depending on other factors such as the cooling conditions of the mold, and a sufficient effect cannot be stably obtained. The present invention, in the continuous casting of austenitic stainless steel, clarifying the segregation zone formation prevention condition considering the cooling conditions of the mold by the investigation of the segregation zone formation mechanism of the oscillation mark valley part, to the level at which maintenance-free rolling is possible. An object of the present invention is to provide a continuous casting means capable of stably casting a slab with reduced defects.

【0006】[0006]

【課題を解決するための手段】前記課題を解決する本発
明の要旨は、鋳片の表面皮下150〜250μmのオッ
シレーションマーク山部の二次デンドライトアーム間隔
(S‖T)に対するオッシレーションマークの谷部の二
次デンドライトアーム間隔(S‖B)の比(S‖B)/(S
‖T)が1.4未満であることを特徴とする表面性状の優
れたステンレス鋼鋳片である。
Means for Solving the Problems The gist of the present invention for solving the above problems is to provide an oscillation mark for the secondary dendrite arm interval (S.ltoreq.T) in the oscillating mark ridge of 150 to 250 .mu.m on the surface of a cast piece. Ratio of secondary dendrite arm spacing (S | B) / (S | B) / (S
It is a stainless steel slab with excellent surface properties characterized by a ‖T) of less than 1.4.

【0007】また、鋳型を鋳造方向のオッシレーション
させながらステンレス鋼鋳片を連続鋳造するにあたり、
下記(1)式を満足する条件下で連続鋳造することを特徴
とする表面性状の優れたステンレス鋼鋳片の連続鋳造方
法である。 λl+α0(dl−dosm)≧0………………(1)式 但し、 λl:1300℃における液相パウダーの熱伝導率(cal
/cm・s・℃) α0:鋳型冷却水〜固相パウダー間の総括熱伝達係数(c
al/cm2・s・℃) dl:液相パウダーの厚み(cm) dosm:初期オッシレーションマークの深さ(cm)。
Further, in continuously casting a stainless steel slab while oscillating the casting mold in the casting direction,
A continuous casting method for a stainless steel slab having excellent surface properties, characterized in that continuous casting is carried out under conditions satisfying the following formula (1). λl + α 0 (dl-dosm) ≧ 0 ……………… (1) where λl: thermal conductivity (cal) of liquid phase powder at 1300 ℃
/ cm ・ s ・ ℃) α 0 : Overall heat transfer coefficient between mold cooling water and solid powder (c
al / cm 2 · s · ° C) dl: Thickness of liquid phase powder (cm) dosm: Depth of initial oscillation mark (cm).

【0008】[0008]

【作用】本発明者は、上記の課題を解決すべく、鋳型冷
却条件、鋳型材質、鋳型振動条件およびパウダー等を変
更した鋳造実験を行い、オッシレーションマーク谷部
(図3)の偏析帯生成機構について研究を行った結果、以
下の知見を得ることができた。 (a)オッシレーションマーク谷部の偏析帯は、凝固シ
ェルの破断により内部のデンドライト樹間の濃化溶鋼が
しみ出したために生成する。
In order to solve the above problems, the present inventor conducted a casting experiment in which the mold cooling conditions, mold materials, mold vibration conditions, powders, etc. were changed, and the oscillation mark trough
As a result of research on the segregation zone formation mechanism of (Fig. 3), the following findings were obtained. (A) The segregation zone in the valley portion of the oscillation mark is formed because the molten steel enriched between the dendrite trees inside oozes due to the fracture of the solidified shell.

【0009】(b)凝固シェルの破断は、オッシレーシ
ョンマーク山部の二次デンドライトアーム間隔(S‖T
)に対するオッシレーションマーク谷部(偏析帯があ
る場合は、偏析帯皮下)の二次デンドライトアーム間隔
(S‖B )の比(S‖B)/(S‖T)が、1.4以上にな
った場合に発生し、この二次デンドライトアーム間隔の
比が大きくなるほど、即ち下記の(2)式で表されるオ
ッシレーションマークの凝固速度が谷部と山部で不均一
になる程、偏析帯は深くなる。また、谷部と山部の凝固
冷速は通常、谷部の方が山部より小さいが、その比を略
0.5以上にすれば、偏析帯を防止できることを明らか
にした。 CR=(S‖/111.3)-2.22………………(2)式 ここで CR:オッシレーションマーク山部および谷部の凝固冷
速(℃/s) S‖:二次デンドライトアーム間隔(μm)。
(B) The breakage of the solidified shell is caused by the secondary dendrite arm interval (S.ltoreq.T) at the peak of the oscillation mark.
), The ratio of the secondary dendrite arm interval (S | B) / (S | B) / (S | T) in the trough of the oscillation mark (subcutaneous segregation zone if there is a segregation zone) is 1.4 or more. When the ratio of the secondary dendrite arm spacing increases, that is, as the solidification rate of the oscillation mark expressed by the following equation (2) becomes more uneven between the valley and the peak, segregation occurs. The belt becomes deep. Further, it was clarified that the solidification cooling rate of the valley and the peak is usually smaller than that of the valley, but if the ratio is set to about 0.5 or more, the segregation zone can be prevented. CR = (S // 111.3) -2.22 formula (2) where CR: Oscillation mark Cooling speed of peak and valley (° C / s) S /: Secondary dendrite arm Interval (μm).

【0010】尚、オッシレーションマーク山部および谷
部(偏析帯がある場合は、偏析帯皮下)における二次デ
ンドライトアーム間隔は、各表面皮下150〜250μ
mの範囲の位置を測定した。
The secondary dendrite arm spacing in the ridges and valleys of the oscillation marks (subcutaneous segregation zones, if segregation zones are present) is 150-250 μm subcutaneously on each surface.
Positions in the range of m were measured.

【0011】図1は、オッシレーションマーク山部の二
次デンドライトアーム間隔(S‖T)に対するオッシレ
ーションマーク谷部の二次デンドライトアーム間隔(S
‖B)の比(S‖B)/(S‖T)と鋳片表面欠陥すなわち偏
析帯、パウダーの巻き込みおよび割れの各欠陥を1(良)
〜5(不良)に指数化したものとの関係を示す図である。
上記(S‖B)/(S‖T)の比を1.4未満にすることによ
り、無手入れ圧延可能なレベルまで表面欠陥を軽減する
ことができた。
FIG. 1 shows the secondary dendrite arm spacing (S.ltoreq.T) at the peak of the oscillation mark and the secondary dendrite arm spacing (S) at the valley of the oscillation mark.
The ratio of (‖B) (S‖B) / (S‖T) and the slab surface defects, that is, segregation zone, powder entrainment and cracking defects are 1 (good).
It is a figure which shows the relationship with what was indexed to 5 (defective).
By setting the ratio of (S / B) / (S / T) to less than 1.4, it was possible to reduce surface defects to a level at which maintenance-free rolling is possible.

【0012】また、上記の結果を得るための条件を解明
することを目的に、特に鋳片表面から鋳型冷却水にいた
る熱伝達に注目して検討を行った。鋳型冷却水〜鋳型銅
板間の熱伝達係数(αw )は、一般的に下記の(3)式より
求めることができる。 αw=0.023・(D・u・ρ/μ)0.8・(Cp・μ/λ)0.4・λ/D =0.023・Re0.8・Pr0.4・λ/D …………(3)式 (ただし、Re=10000〜120000,Pr=0.7〜12
0,l/D≧60) ここで、 D :鋳型冷却水路の相等直径(cm) l :鋳型冷却水路の長さ(cm) ρ :冷却水の密度(g/cm3) λ :冷却水の熱伝導率(cal/cm・s・℃) Cp :冷却水の定圧比熱(cal/g・℃) μ :冷却水の粘度 (poise) u :冷却水の流速 (cm/s) Re :レイノルズ数 Pr :プラントル数。
Further, for the purpose of elucidating the conditions for obtaining the above-mentioned result, the heat transfer from the surface of the slab to the cooling water for the mold was particularly focused and studied. The heat transfer coefficient (αw) between the mold cooling water and the mold copper plate can be generally obtained from the following equation (3). αw = 0.023 · (D · u · ρ / μ) 0.8 · (Cp · μ / λ) 0.4 · λ / D = 0.023 · Re 0.8 · Pr 0.4 · λ / D ………… (3) Formula (However, Re = 10000 to 20000, Pr = 0.7 to 12
0, l / D ≧ 60) where D: Equivalent diameter of mold cooling water channel (cm) l: Length of mold cooling water channel (cm) ρ: Density of cooling water (g / cm 3 ) λ: Cooling water Thermal conductivity (cal / cm ・ s ・ ℃) Cp: Constant pressure specific heat of cooling water (cal / g ・ ℃) μ: Cooling water viscosity (poise) u: Cooling water flow rate (cm / s) Re: Reynolds number Pr: Prandtl number.

【0013】また、鋳型冷却水〜固相パウダー間の総括
熱伝達係数(α0)は、下記(4)式より求めることがで
きる。 (1/α0)=(1/αw)+(dCu/λCu)+(dNi/λNi)+(ds/λs)……(4)式 ここで、 αw :鋳型冷却水〜鋳型銅板間の熱伝達係数(cal/m
2・s・℃) λCu :鋳型銅板の熱伝導率(cal/cm・s・℃) dCu :鋳型銅板の厚み(cm) λNi :鋳型銅板表面のNiメッキの熱伝導率(cal/cm
・s・℃) dNi :Niメッキの厚み(cm) λs :固相パウダーの熱伝導率(cal/cm・s・℃) ds :固相パウダーの厚み(cm)。
The overall heat transfer coefficient (α 0 ) between the mold cooling water and the solid phase powder can be obtained from the following equation (4). (1 / α 0 ) = (1 / αw) + (dCu / λCu) + (dNi / λNi) + (ds / λs) (4) where αw is heat between the mold cooling water and the mold copper plate Transfer coefficient (cal / m
2・ s ・ ℃) λCu: Thermal conductivity of mold copper plate (cal / cm ・ s ・ ℃) dCu: Thickness of mold copper plate (cm) λNi: Thermal conductivity of Ni plating on mold copper plate surface (cal / cm)
・ S ・ ° C) dNi: Ni plating thickness (cm) λs: Thermal conductivity of solid phase powder (cal / cm ・ s ・ ° C) ds: Solid phase powder thickness (cm)

【0014】鋳型冷却水〜オッシレーションマーク山部
間の総括熱伝達係数(α1)は、下記の(5)式より求め
ることができる。 (1/α1)=(1/αw)+(dCu/λCu)+(dNi/λNi)+(ds/λs)+(dl/λl) =(1/α0)+(dl/λl)………………………(5)式 ここで、 λl :液相パウダーの熱伝導率(cal/cm・s・℃) dl :液相パウダーの厚み(cm)。
The overall heat transfer coefficient (α 1 ) between the mold cooling water and the ridge portion of the oscillation mark can be obtained from the following equation (5). (1 / α 1 ) = (1 / αw) + (dCu / λCu) + (dNi / λNi) + (ds / λs) + (dl / λl) = (1 / α 0 ) + (dl / λl) ... …………………… (5) where, λl: thermal conductivity of liquid powder (cal / cm ・ s ・ ° C) dl: thickness of liquid powder (cm).

【0015】尚、液相パウダーの厚み(dl)は、パウ
ダーの消費量および溶融パウダーの比重から算出した。
また、固相パウダーの厚み(ds)は、鋳造中あるいは
鋳造終了後にSrO2等のパウダー成分以外の原料を添加
したパウダーを使用することにより、液相パウダーと固
相パウダーを成分的に分離した状態で、鋳型壁面より採
取した固相パウダーの厚みを実測した。
The thickness (dl) of the liquid phase powder was calculated from the amount of powder consumed and the specific gravity of the molten powder.
The thickness (ds) of the solid phase powder is separated into the liquid phase powder and the solid phase powder by using a powder to which a raw material other than the powder component such as SrO 2 is added during or after the casting. In this state, the thickness of the solid phase powder collected from the wall surface of the mold was measured.

【0016】また、鋳型冷却水〜オッシレーションマー
ク谷部間の総括熱伝達係数(α2)は、下記の(6)式より
求めることができる。 (1/α2)=(1/αw)+(dCu/λCu)+(dNi/λNi)+(ds/λs)+ ([dl+dosm]/λl)=(1/α0)+([dl+dosm]/λl)……(6)式 ここで、 dosm :初期オッシレーションマークの深さ(cm)、す
なわち、偏析帯が発生する場合は、偏析帯を含むオッシ
レーションマークの深さ。
The overall heat transfer coefficient (α 2 ) between the mold cooling water and the valley of the oscillation mark can be obtained from the following equation (6). (1 / α 2 ) = (1 / αw) + (dCu / λCu) + (dNi / λNi) + (ds / λs) + ([dl + dosm] / λl) = (1 / α 0 ) + ([dl + dosm] / Λl) (6) where dosm is the depth (cm) of the initial oscillation mark, that is, if a segregation zone occurs, the depth of the oscillation mark including the segregation zone.

【0017】上記の鋳片を得るための条件は、総括熱伝
達係数α1に対するα2の比α2/α1が、0.5以上であ
れば良いことが分かった。即ち、 (α2/α1)=(α0λl/{λl+α0[dl+dosm]})/(α0λl/{λl+α0dl})≧0.5 =(λl+α0dl)/(λl+α0[dl+dosm])≧0.5……(7)式 上記(7)式より、下記(8)式を得た。 λ1+α0(dl−dosm)≧0…………(8)式 尚、(8)式は、鋳片表面欠陥が発生しないためのオッシ
レーションマークの山部と谷部の熱伝導率の不均一度の
臨界値を示すものと考えられる。
The conditions for obtaining the above slab, the ratio α 2 / α 1 of alpha 2 for overall heat transfer coefficient alpha 1 was found to be as long as 0.5 or more. That is, (α 2 / α 1 ) = (α 0 λl / {λl + α 0 [dl + dosm]}) / (α 0 λl / {λl + α 0 dl}) ≧ 0.5 = (λl + α 0 dl) / (λl + α 0 [dl + dosm]) ≧ 0.5 (7) Expression From the above Expression (7), the following Expression (8) is obtained. λ1 + α 0 (dl-dosm) ≧ 0 ………………………………………………………………………………………………………… obtain. (8) Equation (8) is a non-uniform thermal conductivity of the peaks and troughs of the oscillation mark so that surface defects of the slab do not occur. It is considered to indicate the critical value once.

【0018】図2は、オッシレーションマークの山部と
谷部の熱伝導率の不均一度を表す指標と考えられる(8)
式の左辺λl+α0(dl−dosm)と鋳片表面欠陥すなわ
ち偏析帯、パウダー巻き込みおよび割れの各欠陥を1
(良)〜5(不良)に指数化したものとの関係を示す図であ
る。上記(8)式の関係式を満足する鋳造条件下で鋳造を
行うことにより、オッシレーションマーク山部の二次デ
ンドライトアーム間隔(S‖T)に対てして(通常は谷
部の方が凝固冷速が小さいため二次デンドライトアーム
間隔が大きくなり(S‖B)>(S‖T)である)、オッシレ
ーションマーク谷部(偏析帯がある場合は、偏析帯皮
下)の二次デンドライトアーム間隔(S‖B)が1.4倍
未満、即ち、オッシレーションマークの山部と谷部の凝
固冷速の比が略0.5以上を満足する鋳片を製造し得
る。
FIG. 2 is considered to be an index showing the non-uniformity of the thermal conductivity of the peaks and valleys of the oscillation mark (8).
1 on the left side of the formula, λl + α 0 (dl-dosm), and the slab surface defects, that is, segregation zone, powder entrainment and cracking defects.
It is a figure which shows the relationship with what was indexed to (good) -5 (bad). By performing the casting under the casting conditions satisfying the relational expression (8), the secondary dendrite arm interval (S‖T) of the oscillation mark peak portion (usually the valley portion is The secondary dendrite arm spacing is large (S ‖B)> (S ‖T) due to the low solidification cooling speed, and the secondary dendrites in the valley of the oscillation mark (subcutaneous segregation zone if there is a segregation zone) It is possible to manufacture a slab having an arm spacing (S | B) of less than 1.4 times, that is, a ratio of the solidification cool speeds of the crests and the troughs of the oscillation mark is about 0.5 or more.

【0019】この鋳片はオッシレーションマークの山部
と谷部の冷却がより均一化されているために、谷部に発
生する引張応力を小さくすることができる。その結果、
引張応力の過大による谷部の凝固シェル破断を防止でき
るために、内部の濃化溶鋼のしみ出しによる偏析帯の生
成を防止できる。また、偏析帯の生成を防止できるので
偏析帯に集中して発生するパウダーの巻き込みおよび割
れ欠陥も防止できる。また、偏析帯が発生した場合で
も、その深さが浅いために無手入れ圧延可能なレベル以
下に抑えることができる。
Since the slab has more uniform cooling of the peaks and valleys of the oscillation mark, the tensile stress generated in the valleys can be reduced. as a result,
Since it is possible to prevent the solidified shell from breaking at the valley portion due to excessive tensile stress, it is possible to prevent the formation of a segregation zone due to the seepage of the concentrated molten steel inside. Further, since it is possible to prevent the formation of the segregation zone, it is possible to prevent the powder entrapment and the cracking defects which are concentrated in the segregation zone. Further, even if a segregation zone is generated, the depth thereof is shallow, so that it can be suppressed below the level at which maintenance-free rolling is possible.

【0020】本発明を実施する方法は例えば、鋳型冷却
水の温度、流速等の条件、鋳型およびメッキの条件、鋳
型振動条件、パウダー物性およびオッシレーションマー
ク深さなどの制御因子と(8)式のλl,α0,dl,do
smの関係および上記の関係式をコンピュータに入力して
おき、この関係式を満足するように、制御因子をオンラ
イン制御する方法等である。
The method for carrying out the present invention includes, for example, conditions such as temperature and flow rate of mold cooling water, mold and plating conditions, mold vibration conditions, powder physical properties and oscillation mark depth, and equation (8). Λl, α 0 , dl, do
The sm relationship and the above relational expression are input to a computer, and the control factor is online controlled so as to satisfy this relational expression.

【0021】[0021]

【実施例】寸法が168mm×1290mmの鋳型を用
いて、表1に示す種々の鋳造条件下でSUS304ステ
ンレス鋼を連続鋳造した。続いて、得られた鋳片から鋳
造方向に平行な方向の断面サンプルを採取して、偏析
帯、パウダーの巻き込み、割れの各欠陥の発生状況につ
いて調査を行った。また、無手入れ圧延を行って厚さ3
mmの熱延鋼帯を得た。この鋼帯を酸洗後、表面の光沢
むら模様およびヘゲ疵の発生率の調査を行った。この結
果を表1に併せて示す。
EXAMPLES SUS304 stainless steel was continuously cast under various casting conditions shown in Table 1 using a mold having dimensions of 168 mm × 1290 mm. Then, a cross-section sample in a direction parallel to the casting direction was taken from the obtained slab, and the state of occurrence of defects such as segregation zones, entrainment of powder, and cracks was investigated. In addition, maintenance-free rolling is performed to a thickness of 3
A hot rolled steel strip of mm was obtained. After pickling this steel strip, the occurrence rate of uneven glossy pattern and bald spots on the surface was investigated. The results are also shown in Table 1.

【0022】[0022]

【表1】 [Table 1]

【0023】尚、表1においては、鋼帯表面の「光沢む
ら模様」は“強”、“中”、“弱”および“無”の4段
階で表示し、「ヘゲ疵発生率」は鋼帯全長の表面を幅1
245mm×長さ1000mmの面に区分し、ヘゲ疵が
発生している面の割合によって表示した。
In Table 1, the "gloss unevenness pattern" on the surface of the steel strip is displayed in four levels of "strong", "medium", "weak" and "absent", and the "health defect rate" is Width 1 across the length of the steel strip
The surface was classified into 245 mm × 1000 mm length and displayed by the ratio of the surface where the bald defects were generated.

【0024】本発明法に従って連続鋳造されたステンレ
ス鋼鋳片は、その表面欠陥が軽減されており、無手入れ
圧延を行っても光沢むら模様およびヘゲ疵の発生率を低
く抑えることが可能であった。これに対して、本発明法
において規定する範囲から外れた条件で連続鋳造した鋳
片を無手入れ圧延を行った場合には、光沢むら模様ある
いはヘゲ疵が多発して無手入れ圧延が不可能であること
がわかった。
The stainless steel slab continuously cast according to the method of the present invention has reduced surface defects, and it is possible to suppress the occurrence of uneven gloss patterns and bald spots to a low level even after performing careless rolling. there were. On the other hand, when the slab continuously cast under the condition out of the range specified in the method of the present invention is subjected to maintenance-free rolling, gloss unevenness patterns or bald spots frequently occur and maintenance-free rolling is impossible. I found out.

【0025】[0025]

【発明の効果】本発明法によれば、これまで困難であっ
ったステンレス鋼鋳片の無手入れ圧延が可能となり、鋳
片手入れ工程の省略によってコストを大幅に低減するこ
とが可能となる。
According to the method of the present invention, it becomes possible to perform maintenance free rolling of a stainless steel slab, which has been difficult so far, and it is possible to significantly reduce the cost by omitting the slab servicing step.

【図面の簡単な説明】[Brief description of drawings]

【図1】オッシレーションマークの山部の二次デンドラ
イトアーム間隔(S‖T)に対する谷部の二次デンドライ
トアーム間隔(S‖B)の比と鋳片表面欠陥指数との関
係を示す図である。
FIG. 1 is a diagram showing the relationship between the ratio of the secondary dendrite arm interval (S | B) in the valley to the secondary dendrite arm interval (S || T) in the peak of the oscillation mark and the slab surface defect index. is there.

【図2】オッシレーションマークの山部と谷部の熱伝導
率の不均一度を表す指標と鋳片表面欠陥指数との関係を
示す図である。
FIG. 2 is a diagram showing a relationship between a cast surface defect index and an index indicating a non-uniformity of thermal conductivity of a crest portion and a trough portion of an oscillation mark.

【図3】オッシレーションマークの偏析帯および山部と
谷部の二次デンドライトの金属組織の写真である。
FIG. 3 is a photograph of a segregation zone of oscillation marks and a metallographic structure of secondary dendrites in peaks and valleys.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 中野 健 山口県光市大字島田3434番地 新日本製鐵 株式会社光製鐵所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Ken Nakano 3434 Shimada, Hikari City, Yamaguchi Prefecture Nippon Steel Corporation Hikari Steel Works Co., Ltd.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】連続鋳造によって鋳造された鋳片であっ
て、該鋳片は表面皮下150〜250μmのオッシレー
ションマーク山部の二次デンドライトアーム間隔(S‖T
)に対するオッシレーションマーク谷部の二次デンドラ
イトアーム間隔(S‖B )の比(S‖B )/(S‖T )が、
1.4未満であることを特徴とする表面性状の優れたス
テンレス鋼鋳片。
1. A slab cast by continuous casting, wherein the slab has a secondary dendrite arm spacing (S || T
), The ratio of the secondary dendrite arm spacing (S | B) in the valley of the oscillation mark (S | B) / (S | T) is
A stainless steel slab having excellent surface properties characterized by being less than 1.4.
【請求項2】鋳型を鋳造方向のオッシレーションさせな
がらステンレス鋼鋳片を連続鋳造するにあたり、下記
(1)式を満足する条件下で連続鋳造することを特徴とす
る表面性状の優れたステンレス鋼鋳片の連続鋳造方法。 λl+α0(dl−dosm)≧0………………(1)式 但し、 λl:1300℃における液相パウダーの熱伝導率(cal/
cm・s・℃) α0:鋳型冷却水〜固相パウダー間の総括熱伝達係数(ca
l/cm2・s・℃) dl:液相パウダーの厚み(cm) dosm:初期オッシレーションマーク深さ(cm)
2. When continuously casting a stainless steel slab while oscillating the casting mold in the casting direction,
A continuous casting method for a stainless steel slab having excellent surface properties, which is characterized in that continuous casting is carried out under conditions satisfying the expression (1). λl + α 0 (dl-dosm) ≧ 0 ……………… (1) However, λl: thermal conductivity of liquid phase powder at 1300 ° C (cal /
cm ・ s ・ ℃) α 0 : Overall heat transfer coefficient between mold cooling water and solid powder (ca
l / cm 2・ s ・ ° C) dl: Liquid phase powder thickness (cm) dosm: Initial oscillation mark depth (cm)
JP34437192A 1992-12-24 1992-12-24 Stainless steel cast slab having excellent surface characteristic and continuous casting method thereof Withdrawn JPH06190507A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP34437192A JPH06190507A (en) 1992-12-24 1992-12-24 Stainless steel cast slab having excellent surface characteristic and continuous casting method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP34437192A JPH06190507A (en) 1992-12-24 1992-12-24 Stainless steel cast slab having excellent surface characteristic and continuous casting method thereof

Publications (1)

Publication Number Publication Date
JPH06190507A true JPH06190507A (en) 1994-07-12

Family

ID=18368723

Family Applications (1)

Application Number Title Priority Date Filing Date
JP34437192A Withdrawn JPH06190507A (en) 1992-12-24 1992-12-24 Stainless steel cast slab having excellent surface characteristic and continuous casting method thereof

Country Status (1)

Country Link
JP (1) JPH06190507A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20020034333A (en) * 2000-11-01 2002-05-09 이구택 A method for continuous casting austenitic stainless steel
WO2018173888A1 (en) 2017-03-24 2018-09-27 日新製鋼株式会社 Method for producing austenite stainless steel slab

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20020034333A (en) * 2000-11-01 2002-05-09 이구택 A method for continuous casting austenitic stainless steel
WO2018173888A1 (en) 2017-03-24 2018-09-27 日新製鋼株式会社 Method for producing austenite stainless steel slab
KR20200002842A (en) 2017-03-24 2020-01-08 닛테츠 스테인레스 가부시키가이샤 Manufacturing method of austenitic stainless steel slabs
US10807156B2 (en) 2017-03-24 2020-10-20 Nippon Steel Stainless Steel Corporation Method for producing austenite stainless steel slab

Similar Documents

Publication Publication Date Title
JP3372953B2 (en) Thin cast slabs and sheets of plain carbon steel containing large amounts of copper and tin, and methods for producing the same
US4715428A (en) Method and apparatus for direct casting of crystalline strip by radiant cooling
KR102245010B1 (en) Method for continuous casting of steel
JPH06190507A (en) Stainless steel cast slab having excellent surface characteristic and continuous casting method thereof
EP0174765B1 (en) Method and apparatus for continuous casting of crystalline strip
CA2024685C (en) Process for the twin-roll type, continuous casting of metal sheets
US20030015309A1 (en) Apparatus and method for metal strip casting
JP3817188B2 (en) Thin slab manufacturing method using twin drum type continuous casting machine having scum weir and scum weir
JPH07308745A (en) Method for continuously casting stainless steel cast slab having excellent surface characteristic
JPS5910846B2 (en) High temperature slab direct rolling method
JP2003071546A (en) Aluminum ingot, and continuous casting method therefor, and manufacturing method for aluminum foil for electrode of electrolytic capacitor using the aluminum ingot
KR100397295B1 (en) Reduction of surface sliver defects in 304 series stainless steel castings
JP2561476B2 (en) Method for preventing cracking during rapid solidification of Cr-Ni stainless steel or Cr-Ni high alloy steel
JPH06592A (en) Method for casting nb-containing ferritic stainless steel by twin roll continuous casting method
JP3342774B2 (en) Mold powder for continuous casting
JPH0539807Y2 (en)
JPH01202347A (en) Continuous casting machine for cast strip
JPH0460741B2 (en)
JP3234964B2 (en) Mold powder for continuous casting and continuous casting method
JPH0270354A (en) Method for casting extremely low carbon titanium killed steel
JP2000202583A (en) Continuous casting method and mold for continuous casting
JP2574471B2 (en) Cooling drum for continuous casting of thin cast slabs
JPH02141561A (en) Continuously cast billet of steel
JPS61186153A (en) Continuous casting method of thin strip by solidifying it below molten metal surface
JP3398608B2 (en) Continuous casting method and mold for continuous casting

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20000307