JPH06188444A - Manufacture of film solar cell - Google Patents

Manufacture of film solar cell

Info

Publication number
JPH06188444A
JPH06188444A JP4337686A JP33768692A JPH06188444A JP H06188444 A JPH06188444 A JP H06188444A JP 4337686 A JP4337686 A JP 4337686A JP 33768692 A JP33768692 A JP 33768692A JP H06188444 A JPH06188444 A JP H06188444A
Authority
JP
Japan
Prior art keywords
substrate
film
group
solar cell
thin film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4337686A
Other languages
Japanese (ja)
Other versions
JP2983117B2 (en
Inventor
Koki Sato
広喜 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Corporate Research and Development Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Corporate Research and Development Ltd filed Critical Fuji Electric Corporate Research and Development Ltd
Priority to JP4337686A priority Critical patent/JP2983117B2/en
Publication of JPH06188444A publication Critical patent/JPH06188444A/en
Application granted granted Critical
Publication of JP2983117B2 publication Critical patent/JP2983117B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/541CuInSe2 material PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

PURPOSE:To prevent the swelling of volume in the vicinity of a substrate by penetrating gas-form group V1 element and also, suppress the production of V1 compounds on the surface of a substrate by keeping the area near to the substrate of an initial film containing the group V1 element. CONSTITUTION:A lower electrode 2 is formed on a glass substrate 1 by the sputterning of Mo, Cr, or the like, and then a Cu-In-Se mixed film 3 is formed at 200 deg.C in substrate temperature by a triple simultaneous evoparation method. Then, a Cu-In mixe film 4 is formed. Next, processing it for about one hour at approximately 400 deg.C in substrate temperature in atmosphere including S, for example, in the gas containing H2Se deluted with Ar by about 3-15% forms a CuInSe2 film 5 by the reaction of Se being thermally decomposed from H2Se. For this CuInSe2 film 5, the adhesive strength of the interface with the lower electrode 2 on the substrate 1 is favorable. Hereby, the efficiency of a solar cell can be improved sharply.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、太陽光などの光エネル
ギーをカルコパイライト型三元系半導体化合物薄膜を用
いた接合により電気エネルギーに変換する薄膜太陽電池
の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a thin film solar cell in which light energy such as sunlight is converted into electric energy by bonding with a chalcopyrite type ternary semiconductor compound thin film.

【0002】[0002]

【従来の技術】I−III −VI2 族カルコパイライト型三
元化合物薄膜、特にCuInSe2 、CuInS 2 、AgInSe2 、Ag
InS2 は、光学ギャップが1.0〜1.8eVの範囲にあり、
光電変換素子としての利用が期待される。近年、これら
の材料の薄膜形成技術の進展により、薄膜太陽電池素子
材料として一層注目されている。以下この種の太陽電池
でのカルコパイライト型三元系化合物薄膜を形成する方
法について、CuInSe2 を例にとり従来技術について説明
する。
2. Description of the Related Art I-III-VI2Tribe chalcopyrite type three
Original compound thin film, especially CuInSe2, CuInS 2, AgInSe2, Ag
InS2Has an optical gap of 1.0 to 1.8 eV,
It is expected to be used as a photoelectric conversion element. These days
Thin film solar cell device
It is attracting more attention as a material. Below this type of solar cell
To form chalcopyrite-type ternary compound thin films at room temperature
About the method, CuInSe2The conventional technology is explained by taking
To do.

【0003】CuInSe2 薄膜の成膜方法としては、三元同
時蒸着法、セレン化法などが知られているが、セレン化
法は、基板上にCu/In積層膜を室温で形成した後、基板
温度400 〜550 ℃でArで希釈されたSe中、例えば3〜15
%H2 Seを含有するガス中にて数時間処理することによ
り粒径が約3μm程度に大きいCuInSe2 薄膜を形成する
方法である。VI族元素がSの場合は、S雰囲気中で処理
する。
As a film forming method of a CuInSe 2 thin film, a ternary simultaneous vapor deposition method, a selenization method, etc. are known. In the selenization method, after forming a Cu / In laminated film on a substrate at room temperature, Substrate temperature 400 ~ 550 ℃ in Se diluted with Ar, for example 3 ~ 15
This is a method of forming a CuInSe 2 thin film having a large grain size of about 3 μm by treating it in a gas containing% H 2 Se for several hours. When the VI group element is S, the treatment is performed in an S atmosphere.

【0004】[0004]

【発明が解決しようとする課題】上記のようなセレン化
法の工程のH2 Se中で処理する際、基板の表面上にSeガ
スが侵入し、昇温過程で基板表面にSe化合物、例えば基
板表面のMo電極層上にMoSe2 が生成される。このSe化合
物は高抵抗であり、製造された太陽電池の形状因子( F
F) を低下させてしまう。また、Cu/In積層膜中にSeが
入り反応するため体積膨張が起こり、基板/CuInSe2
膜界面の付着力が弱くなり大面積化など工業化には問題
があった。
When processing in H 2 Se in the process of the selenization method as described above, Se gas invades the surface of the substrate, and Se compounds such as, for example, Se compounds on the surface of the substrate during the temperature rising process. MoSe 2 is generated on the Mo electrode layer on the surface of the substrate. This Se compound has a high resistance, and the form factor of the manufactured solar cell (F
F) will be lowered. Moreover, since Se enters the Cu / In laminated film and reacts with it, volume expansion occurs, and the adhesive force at the substrate / CuInSe 2 thin film interface is weakened, and there is a problem in industrialization such as large area.

【0005】次に、Cu−In−Se混合膜を上記同様にH2
Se中で処理すると基板/CuInSe2 薄膜界面の問題は発生
しないが、昇温過程で膜中のSeと反応を始めるため比較
的低温でCuInSe2 薄膜が形成されてしまい、粒径が約1
μm程度までより成長せず、製造される太陽電池の効率
が低かった。本発明の目的は、基板表面上のVI族元素化
合物の形成なく成膜される粒径の大きいカルコパイライ
ト型化合物薄膜を有する薄膜太陽電池の製造方法を提供
することにある。
Next, the Cu-In-Se mixed film was formed into H 2 in the same manner as above.
When treated in Se, the problem of the substrate / CuInSe 2 thin film interface does not occur, but since it reacts with Se in the film during the temperature rising process, a CuInSe 2 thin film is formed at a relatively low temperature, and the grain size is about 1
It did not grow further up to about μm, and the efficiency of the manufactured solar cell was low. An object of the present invention is to provide a method for producing a thin film solar cell having a chalcopyrite type compound thin film having a large grain size, which is formed without forming a group VI element compound on the substrate surface.

【0006】[0006]

【課題を解決するための手段】上記の目的を達成するた
めに、I−III −VI2 族カルコパイライト型三元系化合
物薄膜を基板上に有する薄膜太陽電池の製造方法におい
て、基板上に周期表I族元素およびIII 族元素からな
り、基板側にのみVI族元素を含む初期膜を形成後、VI族
元素雰囲気中で処理するものとする。そして、初期膜中
に含まれるVI族元素の量はI族元素の量とIII 族元素の
量の和以下であることが有効である。また、初期膜が各
元素の積層膜であっても混合膜であってもよい。さら
に、初期膜成膜時の基板温度が400 ℃以下であることが
有効である。
In order to achieve the above object, in a method for producing a thin film solar cell having a group I-III-VI 2 chalcopyrite type ternary compound thin film on a substrate, a periodic pattern is formed on the substrate. After forming an initial film consisting of the group I element and the group III element and containing the group VI element only on the substrate side, the treatment is performed in the group VI element atmosphere. Then, it is effective that the amount of the group VI element contained in the initial film is equal to or less than the sum of the amount of the group I element and the amount of the group III element. The initial film may be a laminated film of each element or a mixed film. Furthermore, it is effective that the substrate temperature during the initial film formation is 400 ° C. or lower.

【0007】[0007]

【作用】初期膜の基板近傍にVI族元素を含ませておくこ
とにより、侵入する気体状のVI族元素による基板近傍で
の体積膨張が防止され、また昇温過程で基板近傍に早期
にI−III −VI2 族化合物が形成されるため、基板表面
のVI族化合物の生成が抑制される。そして、初期膜形成
の際の基板温度を400 ℃以下に抑えることが、基板近傍
の体積膨張、化合物生成の抑制効果を増す。また、III
族元素が基板付近にのみにあるため、形成される膜表面
では気体VI族元素との反応により高い基板温度でI−II
I −VI族化合物が形成され、粒径を大きく成長させるこ
とができる。
[Function] By including the group VI element in the vicinity of the substrate of the initial film, the volume expansion of the invading gaseous group VI element in the vicinity of the substrate is prevented, and during the temperature rising process Since the -III-VI 2 group compound is formed, the generation of the VI group compound on the substrate surface is suppressed. Further, suppressing the substrate temperature at the time of forming the initial film to 400 ° C. or lower enhances the effect of suppressing volume expansion and compound formation in the vicinity of the substrate. Also III
Since the group element is present only near the substrate, the formed film surface reacts with the gas group VI element at a high substrate temperature to cause I-II.
A group I-VI compound is formed, and a large grain size can be grown.

【0008】[0008]

【実施例】以下、CuInSe2 薄膜太陽電池製造の際の本発
明の実施例について述べる。図1(a) 〜(d) は、本発明
の一実施例のCuInSe2 薄膜太陽電池の製造プロセスを示
すものであり、ガラス基板1〔同図(a) 〕上にMo、Crな
どをスパッタ法により約1μm程度の厚さの下部電極2
を形成した後〔同図(b) 〕、三元同時蒸着法により基板
温度200 ℃にてCu−In−Se混合膜3を形成する。この
際、例えばCu/In=0.95としてSe/ (Cu+In) =1以下
となるように制御する。また、Cu−In−Se膜3は基板近
傍のみにし、例えば全体で0.2μm程度の厚さのCu膜に
対応するCuを蒸発させ、0.465 μm程度の厚さのIn膜に
対応するInを蒸発させる場合、厚さ0.1μm以下に対応
するCuを蒸発させた時点でSe蒸発源のシャッタを閉じ、
その後Cu−In混合膜4を形成する〔同図(c) 〕。次い
で、Seを含む雰囲気、例えばArで希釈されたH2 Seを3
〜15%程度含むガス中で、基板温度400 ℃程度で約1時
間処理すると、H2 Seから熱分解したSeとの反応により
CuInSe2 薄膜5が形成される〔同図(d) 〕。
EXAMPLES Examples of the present invention in producing CuInSe 2 thin film solar cells will be described below. 1 (a) to 1 (d) show a manufacturing process of a CuInSe 2 thin film solar cell according to an embodiment of the present invention, in which Mo, Cr, etc. are sputtered on a glass substrate 1 [(a) in the same figure]. Lower electrode 2 with a thickness of about 1 μm
After the formation of [FIG. 2 (b)], the Cu—In—Se mixed film 3 is formed at a substrate temperature of 200 ° C. by the ternary simultaneous vapor deposition method. At this time, for example, Cu / In = 0.95 and Se / (Cu + In) = 1 or less are controlled. Further, the Cu-In-Se film 3 is provided only in the vicinity of the substrate, and for example, Cu corresponding to the Cu film having a thickness of about 0.2 μm is evaporated and In corresponding to the In film having a thickness of about 0.465 μm is evaporated. When evaporating, close the shutter of the Se evaporation source at the time when Cu corresponding to a thickness of 0.1 μm or less is evaporated,
Then, a Cu-In mixed film 4 is formed [FIG. Next, an atmosphere containing Se, for example, H 2 Se diluted with Ar is added to 3
When treated in a gas containing about 15% at a substrate temperature of about 400 ° C for about 1 hour, it reacts with Se pyrolyzed from H 2 Se.
A CuInSe 2 thin film 5 is formed [(d) in the figure].

【0009】この方法により形成されたCuInSe2 薄膜5
は基板1上の下部電極2との界面の付着力も良好であ
り、粒径が約3μmと従来方法のCu−In−Se混合膜より
得たCuInSe2 薄膜の約1μmよりも大きく良好な膜が得
られた。また、図2の線21、22に本方法と基板近傍にSe
を含有させない従来法とにより得られたCuInSe2 薄膜5
を用いて試作した太陽電池の開放電圧VOCおよび変換効
率Effを示す。本方法のCuInSe2 薄膜を用いた太陽電池
は開放電圧が高く変換効率も12%以上と良好な特性を示
した。
CuInSe 2 thin film 5 formed by this method
Has a good adhesive force at the interface with the lower electrode 2 on the substrate 1, and has a particle size of about 3 μm, which is larger than about 1 μm of the CuInSe 2 thin film obtained from the Cu—In—Se mixed film of the conventional method and is a good film. was gotten. In addition, the lines 21 and 22 in FIG.
CuInSe 2 thin film obtained by the conventional method without containing
The open circuit voltage V OC and the conversion efficiency E ff of the solar cell prototyped using are shown. The solar cell using CuInSe 2 thin film of this method has a high open circuit voltage and a good conversion efficiency of 12% or more.

【0010】また、別な方法としてCu/In積層膜につい
ても、Cu形成時にSeを同時に形成し、Cuの膜厚の約1/
2程度でSeの供給をとめた後Cuを規定膜厚形成、その後
Inを形成してもよい。図2の線23、24は、このようにし
て得たCuInSe2 薄膜を用いた太陽電池と、単にCu/In積
層膜をセレン化した従来方法によって得たCuInSe2 薄膜
を用いた太陽電池の開放電圧、変換効率を比較して示
す。なお、AgInSe2 をセレン化法で、CuInS2 、AgInS
2 を硫化法で成膜する場合も、同様な効果をあげること
ができる。
As another method, as for the Cu / In laminated film, Se is simultaneously formed at the time of Cu formation, and the Cu film thickness is about 1 /
After the supply of Se was stopped at around 2, Cu was formed to a specified film thickness, then
In may be formed. Line 23, 24 in FIG. 2, a solar cell using the CuInSe 2 thin film thus obtained, simply open the solar cell using the CuInSe 2 thin film obtained by the conventional method selenide a Cu / In stacked film The voltage and conversion efficiency are shown for comparison. In addition, the AgInSe 2 selenide method, CuInS 2, AgInS
The same effect can be obtained when the film of 2 is formed by the sulfurization method.

【0011】[0011]

【発明の効果】VI族元素を基板付近にのみ含むI−III
元素積層膜および混合膜をSeを含む雰囲気中で熱処理す
ることにより、基板近傍での体積膨張を防ぐことがで
き、また昇温過程で基板近傍のみI−III −VI2 族化合
物が早期に形成されるためVI族元素化合物の生成を抑制
することができる。また、VI族元素は基板付近にのみあ
るため、膜表面は気体VI族元素、例えばH2 Seから熱分
解したSeとの反応により粒径を大きく成長させることが
でき、太陽電池の効率を大きく改善できる。
INDUSTRIAL APPLICABILITY I-III containing a Group VI element only near the substrate
By heat-treating the element laminated film and the mixed film in an atmosphere containing Se, it is possible to prevent the volume expansion near the substrate, and the I-III-VI 2 group compound is formed early only in the vicinity of the substrate during the temperature rising process. Therefore, the production of the group VI element compound can be suppressed. Further, since the group VI element exists only near the substrate, the film surface can be grown to a large particle size by reaction with a gaseous group VI element, for example, Se thermally decomposed from H 2 Se, and the efficiency of the solar cell is increased. Can be improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例におけるCuInSe2 成膜工程を
(a) ないし(d) の順に示す断面図
FIG. 1 shows a CuInSe 2 film forming process in one embodiment of the present invention.
Sectional views shown in order from (a) to (d)

【図2】本発明の実施例および従来法により成膜された
CuInSe2 薄膜を有する太陽電池の特性の比較線図
FIG. 2 is a film formed by an embodiment of the present invention and a conventional method.
Comparative diagram of characteristics of solar cell with CuInSe 2 thin film

【符号の説明】[Explanation of symbols]

1 ガラス基板 2 下部電極 3 Cu−In−Se混合膜 4 Cu−In混合膜 5 CuInSe2 1 Glass substrate 2 Lower electrode 3 Cu-In-Se mixed film 4 Cu-In mixed film 5 CuInSe 2 film

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】I−III −VI族カルコパイライト型三元化
合物薄膜を基板上に有する薄膜太陽電池の製造方法にお
いて、周期表I族元素およびIII 族元素からなり、基板
側にのみVI族元素を含む初期膜を形成後、VI族元素雰囲
気中で処理することを特徴とする薄膜太陽電池の製造方
法。
1. A method of manufacturing a thin film solar cell having a group I-III-VI chalcopyrite ternary compound thin film on a substrate, comprising a group I element and a group III element of the periodic table, and a group VI element only on the substrate side. A method for manufacturing a thin-film solar cell, comprising: treating the substrate in an atmosphere of a Group VI element after forming an initial film containing Al.
【請求項2】初期膜中に含まれるVI族元素の量はI族元
素の量とIII 族元素の量の和以下である請求項1記載の
薄膜太陽電池の製造方法。
2. The method for producing a thin film solar cell according to claim 1, wherein the amount of the group VI element contained in the initial film is not more than the sum of the amount of the group I element and the amount of the group III element.
【請求項3】初期膜が各元素の積層膜である請求項1あ
るいは2記載の薄膜太陽電池の製造方法。
3. The method for producing a thin film solar cell according to claim 1, wherein the initial film is a laminated film of each element.
【請求項4】初期膜が各元素の混合膜である請求項1あ
るいは2記載の薄膜太陽電池の製造方法。
4. The method for producing a thin film solar cell according to claim 1, wherein the initial film is a mixed film of each element.
【請求項5】初期膜成膜時の基板温度が400 ℃以下であ
る請求項1ないし4のいずれかに記載の薄膜太陽電池の
製造方法。
5. The method for producing a thin film solar cell according to claim 1, wherein the substrate temperature during the initial film formation is 400 ° C. or lower.
JP4337686A 1992-12-18 1992-12-18 Manufacturing method of thin film solar cell Expired - Fee Related JP2983117B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4337686A JP2983117B2 (en) 1992-12-18 1992-12-18 Manufacturing method of thin film solar cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4337686A JP2983117B2 (en) 1992-12-18 1992-12-18 Manufacturing method of thin film solar cell

Publications (2)

Publication Number Publication Date
JPH06188444A true JPH06188444A (en) 1994-07-08
JP2983117B2 JP2983117B2 (en) 1999-11-29

Family

ID=18311015

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4337686A Expired - Fee Related JP2983117B2 (en) 1992-12-18 1992-12-18 Manufacturing method of thin film solar cell

Country Status (1)

Country Link
JP (1) JP2983117B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009069729A1 (en) * 2007-11-30 2009-06-04 Showa Shell Sekiyu K.K. Process for producing light-absorbing layer in cis-type thin-film solar cell

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009069729A1 (en) * 2007-11-30 2009-06-04 Showa Shell Sekiyu K.K. Process for producing light-absorbing layer in cis-type thin-film solar cell
US8614114B2 (en) 2007-11-30 2013-12-24 Showa Shell Sekiyu K.K. Process for producing light absorbing layer in CIS based thin-film solar cell

Also Published As

Publication number Publication date
JP2983117B2 (en) 1999-11-29

Similar Documents

Publication Publication Date Title
US8425739B1 (en) In chamber sodium doping process and system for large scale cigs based thin film photovoltaic materials
US20120018828A1 (en) Sodium Sputtering Doping Method for Large Scale CIGS Based Thin Film Photovoltaic Materials
US7141449B2 (en) Method of fabricating a compound semiconductor thin-layer solar cell
US20060219288A1 (en) Process and photovoltaic device using an akali-containing layer
US20080169025A1 (en) Doping techniques for group ibiiiavia compound layers
JP2006049768A (en) Cis compound semiconductor thin film solar battery and manufacturing method for light absorbing layer of solar battery
KR20100121503A (en) Laminated structure of cis-type solar battery and integrated structure
KR101628312B1 (en) PREPARATION METHOD OF CZTSSe-BASED THIN FILM SOLAR CELL AND CZTSSe-BASED THIN FILM SOLAR CELL PREPARED BY THE METHOD
Bosio et al. The second‐generation of CdTe and CuInGaSe2 thin film PV modules
JP2009135299A (en) Method of manufacturing a light absorbing layer of cis-based thin film solar cell
KR101865239B1 (en) Cigs nanoparticle ink formulation having a high crack-free limit
CN103469170B (en) A kind of sputtering target for thin-film solar cells
US9601642B1 (en) CZTSe-based thin film and method for preparing the same, and solar cell using the same
JP2000012883A (en) Manufacture of solar cell
JPH0563224A (en) Manufactureof thin-film solar battery
KR101638379B1 (en) CIGS solar cell with preferred orientation and method of manufacturing the same
JPH07283430A (en) Method for manufacturing solar cell
Schock CulnSe2 and Other Chalcopyrite-Based Solar Cells
KR102015985B1 (en) Method for manufacturing CIGS thin film for solar cell
JPH06188444A (en) Manufacture of film solar cell
EP2787537B1 (en) THIN FILM SOLAR CELL with indium sulfide buffer layer
US20160322532A1 (en) Method of making a czts/silicon thin-film tandem solar cell
JPH05234894A (en) Method and apparatus for manufacturing chalcopyrite type compound thin film
KR102560714B1 (en) Solar cell with improved buffer layer structure
KR101978110B1 (en) Manufacturing method of compound light absorbing layer and manufacturing method of solar cellcomprising the same

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080924

Year of fee payment: 9

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080924

Year of fee payment: 9

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080924

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090924

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090924

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100924

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees