JPH06188010A - Separator for flat plate-shaped solid electrolyte type fuel battery and flat plate-shaped solid electrolyte type fuel battery using this - Google Patents

Separator for flat plate-shaped solid electrolyte type fuel battery and flat plate-shaped solid electrolyte type fuel battery using this

Info

Publication number
JPH06188010A
JPH06188010A JP3098332A JP9833291A JPH06188010A JP H06188010 A JPH06188010 A JP H06188010A JP 3098332 A JP3098332 A JP 3098332A JP 9833291 A JP9833291 A JP 9833291A JP H06188010 A JPH06188010 A JP H06188010A
Authority
JP
Japan
Prior art keywords
separator
solid electrolyte
flat plate
oxidant gas
shaped solid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3098332A
Other languages
Japanese (ja)
Inventor
Atsushi Tsunoda
淳 角田
Isao Mukaisawa
功 向沢
Toshihiko Yoshida
利彦 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SEKIYU SANGYO KASSEIKA CENTER
Tonen General Sekiyu KK
Japan Petroleum Energy Center JPEC
Original Assignee
SEKIYU SANGYO KASSEIKA CENTER
Petroleum Energy Center PEC
Tonen Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SEKIYU SANGYO KASSEIKA CENTER, Petroleum Energy Center PEC, Tonen Corp filed Critical SEKIYU SANGYO KASSEIKA CENTER
Priority to JP3098332A priority Critical patent/JPH06188010A/en
Publication of JPH06188010A publication Critical patent/JPH06188010A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)

Abstract

PURPOSE:To provide a separator for flat plate-shaped solid electrolyte fuel type battery that can decrease pressure loss of an oxidant gas, and reduce dispersion in temperature distribution. CONSTITUTION:The entire shape of a separator is rectangular, and a long fuel gas channel is provided on the upper surface in the longitudinal direction, while a short oxidant gas channel is provided on the under surface in the direction of shorter side. The depth of the oxidant gas channel of the separator is preferably shallow in the side facing to the inlet side of fuel gas, while becoming gradually deeper toward the side facing to the outlet side of fuel gas.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、酸化剤ガスの圧損を軽
減でき、しかも温度分布のバラツキを縮小しうる平板状
固体電解質型燃料電池用セパレータ及びそれを用いた平
板状固体電解質型燃料電池に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a flat plate solid electrolyte fuel cell separator which can reduce pressure loss of an oxidant gas and can reduce variations in temperature distribution, and a flat plate solid electrolyte fuel cell using the same. It is about.

【0002】[0002]

【従来の技術】集積多段セル構造の固体電解質型燃料電
池における平板状セパレータとしては、電池の構造に合
わせてこれまではほとんどが正方形構造のものが提案さ
れ、試用されてきた。
2. Description of the Related Art As a flat-plate separator in a solid oxide fuel cell having an integrated multi-stage cell structure, most of the flat plate separators having a square structure have been proposed and tested according to the structure of the battery.

【0003】しかしながら、この正方形状セパレータは
酸化剤ガスの圧損や温度分布のバラツキの点で問題を有
していた。
However, this square separator has a problem in terms of pressure loss of the oxidant gas and variation in temperature distribution.

【0004】[0004]

【発明が解決しようとする課題】本発明は、このような
従来のセパレータのもつ欠点を克服し、酸化剤ガスの圧
損を軽減でき、しかも温度分布のバラツキを縮小しうる
固体電解質型燃料電池用のセパレータ及びそれを用いた
平板状固体電解質型燃料電池を提供することを目的とし
てなされたものである。
DISCLOSURE OF THE INVENTION The present invention overcomes the drawbacks of such conventional separators, can reduce the pressure loss of the oxidant gas, and can reduce the variation in temperature distribution. The present invention has been made for the purpose of providing the separator and the plate-shaped solid oxide fuel cell using the separator.

【0005】[0005]

【課題を解決するための手段】本発明者らは、前記の好
ましい特徴を有するセパレータを開発するために種々研
究を重ねた結果、セパレータの全体形状を長方形とし、
その両面の一方に長辺方向の長い燃料ガス流路を、また
他方に短辺方向の短い酸化剤ガス流路を設けることによ
り、その目的を達成しうることを見出し、この知見に基
づいて本発明を完成するに至った。
Means for Solving the Problems The present inventors have conducted various studies to develop a separator having the above-mentioned preferable characteristics, and as a result, the separator has a rectangular overall shape,
It was found that the objective can be achieved by providing a long fuel gas flow path in the long side direction on one side and a short oxidant gas flow path in the short side direction on the other side. The invention was completed.

【0006】すなわち、本発明は、長方形状であって、
かつ上下面にそれぞれ長辺方向の長い燃料ガス流路及び
短辺方向の短い酸化剤ガス流路を設けて成る固体電解質
型燃料電池用セパレータを提供するものである。
That is, the present invention has a rectangular shape,
Further, the present invention provides a separator for a solid oxide fuel cell, in which a long fuel gas passage in the long side direction and a short oxidant gas passage in the short side direction are provided on the upper and lower surfaces, respectively.

【0007】本発明のセパレータにおいては、上面に長
辺に沿ってすなわち長辺方向に長い燃料ガス流路が、ま
た下面に短辺に沿ってすなわち短辺方向に短い酸化剤ガ
ス流路が、例えばいずれも溝状に形成されて隣接するセ
ルのカソード側及びアノード側のそれぞれのガス通路を
構成している。特に有利には、酸化剤ガス流路の深さに
ついて燃料ガスの入り口側に対応する側においては浅く
し、それより燃料ガスの出口側に対応する側に向かうに
つれて次第に深くするようにするのが好ましい。各ガス
流路はそれぞれ燃料ガス及び酸化剤ガスを供給しうるも
のであれば特に制限されず、形状や配置等も適宜選定し
うるが、互いに直角方向に配置するのが簡単である。セ
パレータの材質としては通常金属又はLaCrOなど
の導電性セラミックスが用いられる。
In the separator of the present invention, the upper surface has a long fuel gas flow path along the long side, that is, the long side direction, and the lower surface has a short oxidant gas flow path along the short side, that is, the short side direction. For example, each of them is formed in a groove shape to form the gas passages on the cathode side and the anode side of the adjacent cells. Particularly preferably, the depth of the oxidant gas flow path is shallow on the side corresponding to the inlet side of the fuel gas, and gradually deeper toward the side corresponding to the outlet side of the fuel gas. preferable. Each gas flow path is not particularly limited as long as it can supply the fuel gas and the oxidant gas, and the shape and the arrangement can be appropriately selected, but it is easy to arrange the gas passages at right angles to each other. The material of the separator is usually metal or conductive ceramics such as LaCrO 3 .

【0008】本発明は、本発明のセパレータを用いた平
板状固体電解質型燃料電池も包含する。
The present invention also includes a flat plate solid oxide fuel cell using the separator of the present invention.

【0009】すなわち、本発明の平板状固体電解質型燃
料電池は、前記した本発明の長方形状セパレータ、及び
いずれも該セパレータとほぼ等大の長方形状である、外
部端子及び上下面にそれぞれカソード及びアノードが形
成された平板状固体電解質を備え、これらを集積して成
るものである。
That is, the flat plate solid oxide fuel cell of the present invention comprises the above-described rectangular separator of the present invention, and a cathode and an upper terminal respectively having a rectangular shape of approximately the same size as the separator. It comprises a flat solid electrolyte having an anode formed thereon, and these are integrated.

【0010】このように、多数のセルからなる多段直列
型の電池は、各セルにおいて所定の平板状固体電解質板
の上下面にそれぞれカソード及びアノードを形成して成
る3層構造板を所定のセパレータを介して集積し、単位
セルの積層数を適宜調整し、両端に外部端子をそれぞれ
設けることにより、作製される。
As described above, in the multi-stage series type battery composed of a large number of cells, a three-layer structure plate formed by forming a cathode and an anode on the upper and lower surfaces of a predetermined flat solid electrolyte plate in each cell is a predetermined separator. It is fabricated by stacking via the, the number of laminated unit cells is adjusted appropriately, and external terminals are provided at both ends.

【0011】固体電解質板は酸素伝導性を有するもので
あれば特に制限されず、例えばイットリア安定化ジルコ
ニア(YSZ)、カルシア安定化ジルコニア(CSZ)
のような部分安定化ジルコニアや安定化ジルコニアなど
の公知の固体電解質で作った板状物からなり、その厚さ
は通常0.05〜0.3mm程度、好ましくは0.08
〜0.25mm程度が適当である。この厚さが0.05
mmよりも薄いと強度が低下するし、また0.3mm超
えると電流路が長くなりすぎて好ましくない。
The solid electrolyte plate is not particularly limited as long as it has oxygen conductivity. For example, yttria-stabilized zirconia (YSZ) and calcia-stabilized zirconia (CSZ).
It is composed of a plate-like material made of a known solid electrolyte such as partially stabilized zirconia or stabilized zirconia, and its thickness is usually about 0.05 to 0.3 mm, preferably 0.08 mm.
Approximately 0.25 mm is suitable. This thickness is 0.05
If it is thinner than mm, the strength is lowered, and if it exceeds 0.3 mm, the current path becomes too long, which is not preferable.

【0012】カソードは酸素や空気などの酸化剤ガス通
路側なので、高温下で酸化剤ガスに対して耐食性のある
導電性材料、例えばLaSr1−xMnOなどを用
い、ガス透過性となるように多孔状に被覆形成するのが
一般的である。
Since the cathode is on the side of an oxidant gas passage such as oxygen or air, a conductive material having corrosion resistance to the oxidant gas at high temperature, for example, La x Sr 1-x MnO 3 is used, and the gas permeability is improved. It is common to form a porous coating so that

【0013】アノードは水素などの燃料ガス通路側なの
で、高温下で燃料ガスに対して耐食性のある導電性材
料、例えばNi/ZrOサーメットなどを用い、ガス
透過性となるように多孔状に被覆形成するのが−般的で
ある。
Since the anode is on the side of a fuel gas passage such as hydrogen, a conductive material having corrosion resistance to the fuel gas at high temperature, such as Ni / ZrO 2 cermet, is used and is covered porous so as to be gas permeable. It is common to form.

【0014】これらカソード及びアノードの被覆形成法
としては、例えば所定の粉末を固体電解質板にはけ塗り
法やスクリーン印刷法などで塗布するなどの方法が用い
られる。その他、CVD法、プラズマCVD法、スパッ
タリング法、溶射法、プラズマ溶射法、真空蒸着法や電
子ビーム蒸着法のような蒸着法も用いられる。
As a method for forming the coating of the cathode and the anode, for example, a method of applying a predetermined powder to the solid electrolyte plate by a brush coating method or a screen printing method is used. In addition, a vapor deposition method such as a CVD method, a plasma CVD method, a sputtering method, a thermal spraying method, a plasma thermal spraying method, a vacuum vapor deposition method or an electron beam vapor deposition method is also used.

【0015】また、カソード、アノードは多孔質板にす
ることが可能であれば、それを固体電解質に付着一体化
させて使用することもできる。
Further, if the cathode and the anode can be made into a porous plate, they can be used by adhering and integrating them with a solid electrolyte.

【0016】各電極を一体形成した固体電解質板、セパ
レータ、外部端子を集積して組み立てるときには、固体
電解質板の上下面に配設された電極すなわちカソード、
アノードとセパレータ又は外部端子との間でガス漏れ
(ガスリーク)しないように封止することが必要であ
る。このためには、軟化点が約800℃のガラスペース
トで封止すればよい。このガラスペーストは電池の作動
温度(900〜1000℃)で適度に軟化しガスを封止
する。このガラスとしては電池の作動温度で水素に対し
て耐還元性があり、空気に対して耐酸化性があり、また
耐水蒸気性のあるものを選ぶ。
When a solid electrolyte plate integrally formed with each electrode, a separator, and external terminals are integrated and assembled, electrodes or cathodes provided on the upper and lower surfaces of the solid electrolyte plate,
It is necessary to seal the anode and the separator or the external terminal so that gas does not leak (gas leak). For this purpose, it may be sealed with a glass paste having a softening point of about 800 ° C. This glass paste moderately softens at the operating temperature of the battery (900 to 1000 ° C.) and seals the gas. This glass is selected to have resistance to hydrogen reduction at the operating temperature of the battery, oxidation resistance to air, and steam resistance.

【0017】こうして組み立てた電池に燃料ガス及び酸
化剤ガスを供給するためには、燃料ガスの入口、出口、
酸化剤ガスの入口、出口の面にマニホールドを取り付け
ればよい。
In order to supply the fuel gas and the oxidant gas to the cell thus assembled, the fuel gas inlet, outlet,
A manifold may be attached to the inlet and outlet surfaces of the oxidant gas.

【0018】図1に3段直列セルの集合様式を展開して
示す。各セルにおいて平板状固体電解質板11は上下面
にそれぞれカソード12及びアノード13が形成されて
いる。
FIG. 1 is an expanded view of the assembly mode of three-stage series cells. In each cell, a flat solid electrolyte plate 11 has a cathode 12 and an anode 13 formed on the upper and lower surfaces, respectively.

【0019】このように固体電解質板の上下面に各電極
を一体形成したものを、図1及び2に示すように、上下
面にそれぞれ長辺方向の燃料ガスの流路としての溝14
a,短辺方向の酸化剤ガスの流路としての溝14bを互
いに直角方向に設けた長方形状のセパレータ14を介し
て集積し、両端には外部端子をそれぞれ設ける。セパレ
ータ14における酸化剤ガスの流路としての溝14b
は、燃料ガス入口側に対応する側を浅く、燃料ガス出口
側に対応する側を深くし、深さに一定の勾配がつくよう
に形成されている。
As shown in FIGS. 1 and 2, the solid electrolyte plate with the electrodes integrally formed on the upper and lower surfaces thereof is provided with grooves 14 as fuel gas flow passages in the long side direction on the upper and lower surfaces, respectively.
a, grooves 14b serving as oxidant gas flow paths in the short side direction are integrated through rectangular separators 14 provided at right angles to each other, and external terminals are provided at both ends. Groove 14b as a flow path for the oxidant gas in the separator 14
Is formed so that the side corresponding to the fuel gas inlet side is shallow and the side corresponding to the fuel gas outlet side is deep so that a constant gradient is formed in the depth.

【0020】この集合セルを組み立てるときにはガス漏
れしないようにガラスペーストで封止する。
When assembling this collective cell, it is sealed with glass paste so as not to leak gas.

【0021】図3に、組み立てられた電池本体のマニホ
ールドヘの取付例を示す。電池本体21を筒状マニホー
ルド22の管内に挿入し、溝14a,14bの出口が管
壁に面するように配置する。電池本体21とマニホール
ド22の接続箇所(4ケ所)をガス封止し、溝14a,
14bの各両端をそれぞれマニホールド22の筒状管壁
と電池本体21で形成された4つのガス通路23〜26
と対応させる。
FIG. 3 shows an example of attachment of the assembled battery body to the manifold. The battery main body 21 is inserted into the pipe of the tubular manifold 22, and is arranged so that the outlets of the grooves 14a and 14b face the pipe wall. The connection points (four points) between the battery body 21 and the manifold 22 are gas-sealed, and the grooves 14a,
Four gas passages 23 to 26 formed by the tubular wall of the manifold 22 and the battery body 21 at both ends of 14b.
Correspond to.

【0022】[0022]

【実施例】図1の集合様式に従い、3段直列セルの固体
電解質型燃料電池を作製した。固体電解質板11にはイ
ットリアを3モル%添加したジルコニアである部分安定
化ジルコニアからなる70×35×0.2mmの板状物
を用いた。また、セパレータ14にはニッケル基合金か
らなる70×35×5mmの寸法で燃料ガス流路として
の溝の深さが1.0mm、酸化剤ガス流路としての溝の
深さが1.0〜3.0mmの板状物を用いた。そして、
酸素通路側にLa0.9r0.1MnO粉末(平均
粒径約5μm)を厚さ0.3mmに塗布してカソード1
2とし、水素通路側にNi/ZrO(9/1重量比)
のサーメット混合粉末を厚さ0.3mmに塗布してアノ
ード13とした。
Example A solid oxide fuel cell of three-stage series cell was produced according to the assembly mode of FIG. As the solid electrolyte plate 11, a 70 × 35 × 0.2 mm plate-shaped material made of partially stabilized zirconia which is zirconia added with 3 mol% of yttria was used. Further, the separator 14 has a size of 70 × 35 × 5 mm made of a nickel-based alloy and has a groove depth of 1.0 mm as a fuel gas flow channel and a groove depth of 1.0 to as an oxidant gas flow channel. A 3.0 mm plate was used. And
La 0.9 S r0.1 MnO 3 powder (average particle size of about 5 μm) was applied on the oxygen passage side to a thickness of 0.3 mm to form a cathode 1.
2. Ni / ZrO 2 (9/1 weight ratio) on the hydrogen passage side
The cermet mixed powder of was applied to a thickness of 0.3 mm to form an anode 13.

【0023】このように固体電解質板11に各電極を一
体形成したものと長方形状のセパレータ14を図1のよ
うに集積し、固体電解質板11とセパレータ14の間に
軟化点が約800℃のガラスペーストを塗布してガス封
止用とした。このガラスペーストは電池の作動温度で適
度に軟化してガスを封止する。
As shown in FIG. 1, the solid electrolyte plate 11 in which each electrode is integrally formed and the rectangular separator 14 are integrated, and the softening point between the solid electrolyte plate 11 and the separator 14 is about 800.degree. A glass paste was applied for gas sealing. This glass paste softens moderately at the operating temperature of the battery and seals the gas.

【0024】こうして集積した電池に図3に示したアル
ミナ製マニホールド22を取り付けた。マニホールド2
2と電池本体21との接触部分はガラスペーストを塗布
してガス封止をした。電気の取り出し部には白金リード
線を溶接し、電気的に接続した。
The alumina manifold 22 shown in FIG. 3 was attached to the battery thus integrated. Manifold 2
A glass paste was applied to the contact portion between 2 and the battery main body 21 to seal the gas. A platinum lead wire was welded to the electrical outlet to electrically connect it.

【0025】このようにして作製した固体電解質型燃料
電池を加熱した。室温から150℃までは1℃/min
で昇温し、ガラスペーストの溶媒、塗布電極の溶媒を蒸
発させた。150℃から350℃までは5℃/minで
昇温した。350℃以上では水素通路側にアノードの酸
化を防止するため、窒素ガスを流し、5℃/minで1
000℃まで昇温した。その後、1000℃に保持して
アノード側に水素、カソード側に酸素を流し、発電を開
始した。開放電圧は3.8Vでガスクロスリークは水素
の0.3%以下であった。放電特性を表1に示す。
The solid oxide fuel cell thus produced was heated. 1 ℃ / min from room temperature to 150 ℃
The temperature was raised with to evaporate the solvent of the glass paste and the solvent of the coating electrode. The temperature was raised from 150 ° C to 350 ° C at 5 ° C / min. At 350 ° C or higher, nitrogen gas is flowed to prevent hydrogen oxidation on the hydrogen passage side at 1 ° C at 5 ° C / min.
The temperature was raised to 000 ° C. Then, the temperature was maintained at 1000 ° C., hydrogen was flown to the anode side and oxygen was flown to the cathode side to start power generation. The open circuit voltage was 3.8 V and the gas cross leak was 0.3% or less of hydrogen. The discharge characteristics are shown in Table 1.

【表1】 [Table 1]

【0026】このセルの各段の面内の温度分布を測定し
たところ、10℃以内と小さかった。また、酸化剤ガス
側の圧力損失は次に挙げる従来のセルに比ベて70%程
度であった。
When the in-plane temperature distribution of each stage of this cell was measured, it was as small as within 10 ° C. The pressure loss on the oxidant gas side was about 70% as compared with the conventional cell described below.

【0027】これに対し、図4及び図5に示した従来の
セルでは同様の電極面積で表2に示す放電特性が得られ
たが、各段の面内の温度分布は約30℃と大きかった。
On the other hand, in the conventional cells shown in FIGS. 4 and 5, the discharge characteristics shown in Table 2 were obtained with the same electrode area, but the in-plane temperature distribution of each step was as large as about 30.degree. It was

【表2】 [Table 2]

【0028】[0028]

【発明の効果】本発明の固体電解質型燃料電池用セパレ
ータは、燃料ガス通路が長く、酸化剤ガス通路が短いの
で、酸化剤ガスの圧損を軽減でき、しかも温度分布の幅
を縮小しうる。また、酸化剤ガス通路の深さについて燃
料ガスの入り口側に対応する側を浅くし、それから燃料
ガスの出口側に対応する側に向かうにつれて次第に深く
することにより、酸化剤ガスによる燃料ガス出口側付近
の冷却効率が高められ、温度分布の幅を縮小しうる。
In the solid oxide fuel cell separator of the present invention, since the fuel gas passage is long and the oxidant gas passage is short, the pressure loss of the oxidant gas can be reduced and the width of the temperature distribution can be reduced. Further, regarding the depth of the oxidant gas passage, the side corresponding to the inlet side of the fuel gas is made shallow, and then gradually becomes deeper as it goes to the side corresponding to the outlet side of the fuel gas. The cooling efficiency in the vicinity can be increased, and the width of the temperature distribution can be reduced.

【0029】したがって、本発明のセパレータを組み込
んだ固体電解質型燃料電池は、発電に伴う発熱による温
度上昇に伴う部材の劣化が抑制され、安定した電池性能
が得られる。また、燃料ガス側と酸化剤ガス側の圧力差
を低減し、安定したシール状態を維持できる。
Therefore, in the solid oxide fuel cell incorporating the separator of the present invention, the deterioration of the member due to the temperature rise due to the heat generation due to the power generation is suppressed, and the stable cell performance can be obtained. Further, the pressure difference between the fuel gas side and the oxidant gas side can be reduced, and a stable sealed state can be maintained.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明のセパレータを用いた3段直列セルの
固体電解質型燃料電池本体の1例の斜視説明図。
FIG. 1 is a perspective explanatory view of an example of a solid oxide fuel cell main body of a three-stage series cell using a separator of the present invention.

【図2】 本発明のセパレータの説明図。FIG. 2 is an explanatory diagram of a separator of the present invention.

【図3】 図1の電池本体をマニホールドに収納して完
成品とした燃料電池の説明図。
FIG. 3 is an explanatory view of a fuel cell that is a completed product by accommodating the cell body of FIG. 1 in a manifold.

【符号の説明】[Explanation of symbols]

11 固体電解質板 12 カソード 13 アノード 14 セパレータ 14a,14b 溝 21 電池本体 22 マニホールド 11 Solid Electrolyte Plate 12 Cathode 13 Anode 14 Separator 14a, 14b Groove 21 Battery Main Body 22 Manifold

─────────────────────────────────────────────────────
─────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成5年12月2日[Submission date] December 2, 1993

【手続補正1】[Procedure Amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】図面の簡単な説明[Name of item to be corrected] Brief description of the drawing

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明のセパレータを用いた3段直列セルの
固体電解質型燃料電池本体の1例の斜視説明図。
FIG. 1 is a perspective explanatory view of an example of a solid oxide fuel cell main body of a three-stage series cell using a separator of the present invention.

【図2】 本発明のセパレータの説明図。FIG. 2 is an explanatory diagram of a separator of the present invention.

【図3】 図1の電池本体をマニホールドに収納して完
成品とした燃料電池の説明図。
FIG. 3 is an explanatory view of a fuel cell that is a completed product by accommodating the cell body of FIG. 1 in a manifold.

【図4】 従来のセパレータを用いた3段直列セルの固
体電解質型燃料電池本体の1例の概略図。
FIG. 4 is a schematic view of an example of a solid oxide fuel cell main body of a three-stage series cell using a conventional separator.

【図5】 図4の電池本体をマニホールドに収納して完
成品とした燃料電池の概略図。
FIG. 5 is a schematic view of a fuel cell that is a finished product by housing the cell body of FIG. 4 in a manifold.

【符号の説明】 11 固体電解質板 12 カソード 13 アノード 14 セパレータ 14a,14b 溝 21 電池本体 22 マニホールド[Explanation of Codes] 11 Solid Electrolyte Plate 12 Cathode 13 Anode 14 Separator 14a, 14b Groove 21 Battery Main Body 22 Manifold

───────────────────────────────────────────────────── フロントページの続き (72)発明者 吉田 利彦 埼玉県入間郡大井町西鶴ケ岡一丁目3番1 号 東燃株式会社総合研究所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Toshihiko Yoshida 1-3-1 Nishitsurugaoka, Oi-cho, Iruma-gun, Saitama Tonen Research Institute

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 長方形状であって、かつ上下面にそれぞ
れ長辺方向の長い燃料ガス流路及び短辺方向の短い酸化
剤ガス流路を設けて成る固体電解質型燃料電池用セパレ
ータ。
1. A separator for a solid oxide fuel cell, which has a rectangular shape and is provided with a long fuel gas passage in the long side direction and a short oxidant gas passage in the short side direction on the upper and lower surfaces, respectively.
【請求項2】 酸化剤ガス流路の深さを燃料ガスの入り
口側に対応する側においては浅くし、それより燃料ガス
の出口側に対応する側に向かうにつれて次第に深くして
成る請求項1記載のセパレータ。
2. The depth of the oxidant gas flow channel is shallower on the side corresponding to the fuel gas inlet side, and is gradually deeper toward the side corresponding to the fuel gas outlet side. The described separator.
【請求項3】 請求項1又は2記載のセパレータ、及び
いずれも該セパレータとほぼ等大の長方形状である、外
部端子及び上下面にそれぞれカソード及びアノードが形
成された平板状固体電解質を備え、これらを集積して成
る平板状固体電解質型燃料電池。
3. The separator according to claim 1 or 2, and a flat solid electrolyte in which a cathode and an anode are formed on an external terminal and an upper surface and a lower surface, respectively, each having a rectangular shape having substantially the same size as the separator. A flat plate solid oxide fuel cell which is formed by integrating these.
JP3098332A 1991-01-31 1991-01-31 Separator for flat plate-shaped solid electrolyte type fuel battery and flat plate-shaped solid electrolyte type fuel battery using this Pending JPH06188010A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3098332A JPH06188010A (en) 1991-01-31 1991-01-31 Separator for flat plate-shaped solid electrolyte type fuel battery and flat plate-shaped solid electrolyte type fuel battery using this

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3098332A JPH06188010A (en) 1991-01-31 1991-01-31 Separator for flat plate-shaped solid electrolyte type fuel battery and flat plate-shaped solid electrolyte type fuel battery using this

Publications (1)

Publication Number Publication Date
JPH06188010A true JPH06188010A (en) 1994-07-08

Family

ID=14216953

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3098332A Pending JPH06188010A (en) 1991-01-31 1991-01-31 Separator for flat plate-shaped solid electrolyte type fuel battery and flat plate-shaped solid electrolyte type fuel battery using this

Country Status (1)

Country Link
JP (1) JPH06188010A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011109004A1 (en) * 2010-03-01 2011-09-09 Utc Power Corporation Fuel cell reactant inlet humidification

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011109004A1 (en) * 2010-03-01 2011-09-09 Utc Power Corporation Fuel cell reactant inlet humidification
US8916301B2 (en) 2010-03-01 2014-12-23 Ballard Power Systems Inc. Fuel cell reactant inlet humidification

Similar Documents

Publication Publication Date Title
US7632593B2 (en) Bipolar plate supported solid oxide fuel cell with a sealed anode compartment
KR20120021850A (en) Anode supported flat-tube sofc and manufacturing method thereof
JPH0644981A (en) Flat plate-shaped solid electrolyte fuel cell
JP6268209B2 (en) Fuel cell power generation unit and fuel cell stack
JPH06188010A (en) Separator for flat plate-shaped solid electrolyte type fuel battery and flat plate-shaped solid electrolyte type fuel battery using this
JPH07245113A (en) Solid electrolyte for fuel cell and solid electrolyte fuel cell using this
JPH0294365A (en) Solid electrolyte fuel cell
JPH06196195A (en) Supply of raw material gas in plate-like solid electrolyte type fuel cell in plate-like solid electrolyte type fuel cell and plate like solid electrolyte type fuel cell
JPH0722058A (en) Flat solid electrolyte fuel cell
JP7194070B2 (en) Electrochemical reaction cell stack
JPH0237669A (en) Fuel cell of solid electrolyte type
JP7187382B2 (en) Electrochemical reaction unit and electrochemical reaction cell stack
JP3101358B2 (en) Solid oxide fuel cell separator
JP2944141B2 (en) High temperature fuel cell
JPH0734281A (en) High temperature steam electrolytic cell
JP2948439B2 (en) Solid electrolyte fuel cell
JP2948441B2 (en) Flat solid electrolyte fuel cell
JP6774230B2 (en) Current collector-electrochemical reaction single cell complex and electrochemical reaction cell stack
JPH07245107A (en) Solid electrolyte fuel cell
JPH0412468A (en) High-temperature fuel cell
JPH0294366A (en) Solid electrolyte fuel cell
JPH0676834A (en) Separator for solid electrolyte type fuel battery
US20070178364A1 (en) Electrolyte electrode assembly and method of producing the same
JPH0676833A (en) Separator for solid electrolyte type fuel battery
JPH0676832A (en) Separator for solid electrolyte type fuel battery