JPH06187921A - Color picture tube device - Google Patents
Color picture tube deviceInfo
- Publication number
- JPH06187921A JPH06187921A JP33574892A JP33574892A JPH06187921A JP H06187921 A JPH06187921 A JP H06187921A JP 33574892 A JP33574892 A JP 33574892A JP 33574892 A JP33574892 A JP 33574892A JP H06187921 A JPH06187921 A JP H06187921A
- Authority
- JP
- Japan
- Prior art keywords
- focusing electrode
- focusing
- electrode
- electron beam
- voltage
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、蛍光体スクリーン面の
全域において高い解像度が得られるように構成したカラ
ー受像管装置に関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a color picture tube device constructed so that a high resolution can be obtained over the entire surface of a phosphor screen.
【0002】[0002]
【従来の技術】カラー受像管装置の解像度は、ビームス
ポットの大きさおよび形状に大きく依存する。すなわ
ち、電子ビームの射突によって蛍光体スクリーン面上に
生成されるビームスポットが径小にしてかつ真円に近い
ものでなければ良好な解像度特性は得られない。2. Description of the Related Art The resolution of a color picture tube device largely depends on the size and shape of the beam spot. That is, good resolution characteristics cannot be obtained unless the beam spot generated on the phosphor screen surface by the electron beam impingement has a small diameter and is close to a perfect circle.
【0003】3つの電子ビーム放射部を水平一直線上に
配列してなるカラー受像管では、セルフコンバーゼンス
構成となすために水平偏向磁界をピンクッション状に、
そして垂直偏向磁界をバレル状にそれぞれ歪ませてい
る。このため、偏向磁界を通過する3電子ビームは水平
方向で発散作用を、そして垂直方向では集束作用をそれ
ぞれ受ける結果となり、水平方向に長軸を置く横長偏平
の断面形状になる。In a color picture tube in which three electron beam radiating parts are arranged in a straight line in a horizontal direction, the horizontal deflection magnetic field is pincushion-shaped in order to form a self-convergence structure.
Then, the vertical deflection magnetic field is distorted in a barrel shape. For this reason, the three electron beams passing through the deflection magnetic field are subjected to a diverging action in the horizontal direction and a focusing action in the vertical direction, respectively, and have a horizontally long flat cross-sectional shape with the long axis in the horizontal direction.
【0004】一般に、電子ビームの偏向角度が増すのに
伴い電子ビーム軌道が長大化し、ビームスポットがオー
バフォーカス化する。しかし、その一部が前記発散作用
によって打ち消されるので、ビームスポットは水平方向
に関しては全偏向期間を通じて最適のフォーカス状態に
保たれる。しかし、垂直方向に関しては前記集束作用が
加わるので、オーバフォーカスの度が増してビームスポ
ットに長いヘイズ部を伴う結果となり解像度が低下す
る。Generally, as the deflection angle of the electron beam increases, the trajectory of the electron beam becomes longer and the beam spot becomes overfocused. However, since a part of the beam spot is canceled by the divergence effect, the beam spot is kept in the optimum focus state in the horizontal direction during the entire deflection period. However, since the focusing action is added in the vertical direction, the degree of overfocus increases, resulting in a long haze portion in the beam spot, resulting in a reduction in resolution.
【0005】かかる課題は、本出願人の出願に係る特開
平3−95835号公報に記載の発明によってかなり改
善できた。この場合、電子銃は図5に示すように陰極1
a,1b,1c、制御格子電極2、加速電極3、板状の
第1集束電極4、板状の第2集束電極5、第1集束電極
4に接続された第3集束電極6、第2集束電極5に接続
された第4集束電極7および最終加速電極8を順次に配
設した構成となる。This problem has been considerably improved by the invention described in Japanese Patent Application Laid-Open No. 3-95835 filed by the present applicant. In this case, the electron gun is the cathode 1 as shown in FIG.
a, 1b, 1c, control grid electrode 2, acceleration electrode 3, plate-shaped first focusing electrode 4, plate-shaped second focusing electrode 5, third focusing electrode 6 connected to the first focusing electrode 4, second The fourth focusing electrode 7 and the final accelerating electrode 8 connected to the focusing electrode 5 are sequentially arranged.
【0006】図6にも示すように、第2集束電極5は第
3集束電極6側の端面に縦長の電子ビーム通過穴5a,
5b,5cを有し、第3集束電極6は第2集束電極5側
の端面に横長の電子ビーム通過穴6a,6b,6cを、
そして、第4集束電極7側の端面には縦長の電子ビーム
通過穴6d,6e,6fをそれぞれ有している。また、
第4集束電極7は第3集束電極6側の端面に横長の電子
ビーム通過穴7a,7b,7cを有し、第4集束電極7
と最終加速電極8とは、相対向する端面に、主レンズ生
成用の非円形の電子ビーム通過穴7d,7e,7fおよ
び8a,8b,8cをそれぞれ有している。As shown in FIG. 6, the second focusing electrode 5 has a vertically elongated electron beam passage hole 5a on the end face on the third focusing electrode 6 side.
5b and 5c, the third focusing electrode 6 has laterally long electron beam passage holes 6a, 6b and 6c on the end face on the second focusing electrode 5 side,
The end faces on the fourth focusing electrode 7 side are provided with vertically long electron beam passage holes 6d, 6e, 6f, respectively. Also,
The fourth focusing electrode 7 has laterally long electron beam passage holes 7a, 7b, 7c on the end face on the third focusing electrode 6 side.
The final accelerating electrode 8 and the final accelerating electrode 8 have non-circular electron beam passage holes 7d, 7e, 7f and 8a, 8b, 8c for producing the main lens, respectively, on the end faces opposed to each other.
【0007】第1集束電極4と第3集束電極6とに一定
の第1フォーカス電圧Vf が印加され、最終加速電極8
に一定の高電圧Va が印加される。そして、第2集束電
極5および第4集束電極7に対しては、フォーカス電圧
Vf から出発して電子ビームの偏向角度の増大に伴い漸
次に上昇するダイナミック電圧が印加される。図中の9
はダイナミック電圧発生源を示す。A constant first focus voltage Vf is applied to the first focusing electrode 4 and the third focusing electrode 6, and the final accelerating electrode 8
A constant high voltage Va is applied to. Then, to the second focusing electrode 5 and the fourth focusing electrode 7, a dynamic voltage is applied which starts from the focus voltage Vf and gradually increases as the deflection angle of the electron beam increases. 9 in the figure
Indicates a dynamic voltage source.
【0008】電子ビームがその偏向角度を高めるのに伴
い、第4集束電極7の電位が第3集束電極6の電位より
も漸次に高くなるので、両電極6,7間に4極レンズ電
界(軸非対称レンズ電界)が生成される。この4極レン
ズ電界はそこを通過する電子ビームに水平方向で発散形
の、そして、垂直方向では集束形のレンズ作用を与え
る。また、第4集束電極7の電位が最終加速電極8の電
位に近づくので、両電極7,8間に生成される主レンズ
(軸非対称レンズ電界)によるレンズ作用が弱まる。そ
して、これら2つの作用によって水平方向で最適のフォ
ーカス状態を保ちながら、垂直方向でもヘイズ部を伴わ
ないビームスポットを生成せしめ得るのであり、蛍光体
スクリーン面の全域において高い解像度を得ることがで
きる。Since the potential of the fourth focusing electrode 7 gradually becomes higher than the potential of the third focusing electrode 6 as the electron beam increases its deflection angle, the quadrupole lens electric field ( An axially asymmetric lens electric field) is generated. The quadrupole lens field imparts a divergent lens action to the electron beam passing therethrough in the horizontal direction and in the vertical direction. Further, since the potential of the fourth focusing electrode 7 approaches the potential of the final accelerating electrode 8, the lens action by the main lens (axial asymmetric lens electric field) generated between both electrodes 7, 8 is weakened. With these two effects, it is possible to generate a beam spot without a haze portion even in the vertical direction while maintaining the optimum focus state in the horizontal direction, and it is possible to obtain high resolution over the entire phosphor screen surface.
【0009】そのうえ、電子ビームの偏向角度が高まる
のに伴い、第2集束電極5の電位が第3集束電極6の電
位よりも高くなるので、両電極5,6間にも4極レンズ
電界が生成される。この4極レンズ電界は第2・第3電
極5,6間に生成される4極レンズ電界とは逆極性にな
るので、このレンズ系における水平方向および垂直方向
のレンズ倍率をほぼ同等となし得るのであり、したがっ
て、ビームスポットの垂直方向径が過小となることによ
るモアレの発生を防ぐことができる。Moreover, as the deflection angle of the electron beam increases, the potential of the second focusing electrode 5 becomes higher than the potential of the third focusing electrode 6, so that a quadrupole lens electric field is generated between the electrodes 5 and 6. Is generated. Since the quadrupole lens electric field has a polarity opposite to that of the quadrupole lens electric field generated between the second and third electrodes 5 and 6, the lens magnifications in the horizontal direction and the vertical direction in this lens system can be made substantially equal. Therefore, it is possible to prevent the occurrence of moire due to an excessively small vertical diameter of the beam spot.
【0010】[0010]
【発明が解決しようとする課題】しかし、一定の第1フ
ォーカス電圧Vf に加えてダイナミック電圧を必要と
し、必要とするダイナミック電圧はカラー受像管の大型
化に伴い高くなるので、その回路構成も煩雑となりコス
ト高を招く。However, a dynamic voltage is required in addition to the constant first focus voltage Vf, and the required dynamic voltage increases as the size of the color picture tube increases, so that the circuit configuration is complicated. Will lead to higher costs.
【0011】[0011]
【課題を解決するための手段】本発明においては、制御
格子電極と最終加速電極との間に加速電極、平板状の第
1集束電極、平板状の第2集束電極、第1集束電極に接
続された第3集束電極および第2集束電極に接続された
第4集束電極を順次に配設する。そして、第1集束電極
および第3集束電極に一定の第1フォーカス電圧を印加
する一方、第2集束電極および第4集束電極には第1フ
ォーカス電圧よりも低く、かつ、電子ビームの偏向角度
の増大に伴い漸次に上昇する第2フォーカス電圧を印加
し、水平方向において集束形の、そして垂直方向におい
ては発散形の第1の軸非対称レンズ電界を第2集束電極
と第3集束電極との間に生成せしめ、水平方向において
発散形の、そして垂直方向においては集束形の第2の軸
非対称レンズ電界を第3集束電極と第4集束電極との間
に生成せしめ、水平方向で強く垂直方向では弱い集束レ
ンズ作用をなす第3の軸非対称レンズ電界を第4集束電
極と最終加速電極との間に生成せしめる。In the present invention, an acceleration electrode, a plate-shaped first focusing electrode, a plate-shaped second focusing electrode, and a first focusing electrode are connected between a control grid electrode and a final acceleration electrode. The third focusing electrode and the fourth focusing electrode connected to the second focusing electrode are sequentially arranged. Then, a constant first focus voltage is applied to the first focusing electrode and the third focusing electrode, while the second focusing electrode and the fourth focusing electrode are lower than the first focusing voltage and the deflection angle of the electron beam By applying a second focus voltage that gradually increases with an increase, a first axially asymmetric lens electric field that is converging in the horizontal direction and diverging in the vertical direction is generated between the second focusing electrode and the third focusing electrode. To generate a second axially asymmetric lens field that is divergent in the horizontal direction and focused in the vertical direction between the third focusing electrode and the fourth focusing electrode, and strongly in the horizontal direction in the vertical direction. A third axially asymmetric lens electric field, which acts as a weak focusing lens, is generated between the fourth focusing electrode and the final accelerating electrode.
【0012】[0012]
【作用】このように構成すると、第2フォーカス電圧が
第1フォーカス電圧よりも低い値から出発して電子ビー
ムの偏向角度の増大に伴い漸次に上昇し、かつ、その過
程において前述のような4極レンズ電界を生成せしめ得
るので、必要とするダイナミック電圧が比較的低いもの
で足りるという利点がある。According to this structure, the second focus voltage starts from a value lower than the first focus voltage and gradually rises as the deflection angle of the electron beam increases. Since the polar lens electric field can be generated, there is an advantage that a relatively low dynamic voltage is required.
【0013】[0013]
【実施例】つぎに、本発明を図示した実施例とともに説
明する。ただし、本実施例における電子銃は図5および
図6に示したものと同様の電極構成をとり、相違点は図
1に示すように第2集束電極5および第4集束電極7に
対する第2フォーカス電圧を、第1集束電極4および第
3集束電極6に対する第1フォーカス電圧よりも低い値
から出発させている点である。The present invention will be described below with reference to the illustrated embodiments. However, the electron gun in the present embodiment has the same electrode configuration as that shown in FIGS. 5 and 6, and the difference is that the second focus electrode 5 and the fourth focus electrode 7 have the second focus as shown in FIG. The point is that the voltage starts from a value lower than the first focus voltage for the first focusing electrode 4 and the third focusing electrode 6.
【0014】いま、第1・第3集束電極4,6に対する
第1フォーカス電圧をVf 、第2・第4集束電極5,7
に対する第2フォーカス電圧をVb +Vd とすると、V
f >Vb の関係に設定する。Vd はダイナミック電圧成
分で、電子ビームの偏向角度が0のとき0Vであり、電
子ビームの偏向角度が増すのに伴い漸次に上昇する。な
お、Vf =6KV〜8KV,Vf −Vb =0.4KV〜
2KVに設定することができる。Now, the first focus voltage for the first and third focusing electrodes 4 and 6 is Vf, and the second and fourth focusing electrodes 5 and 7 are
Let Vb + Vd be the second focus voltage for V
Set to the relationship of f> Vb. Vd is a dynamic voltage component, which is 0 V when the deflection angle of the electron beam is 0, and gradually increases as the deflection angle of the electron beam increases. In addition, Vf = 6KV-8KV, Vf-Vb = 0.4KV-
It can be set to 2KV.
【0015】かかるレンズ電界を含む電子レンズ系での
電子ビームの挙動を図2および図3の参照により説明す
ると、図2の(a)は電子ビームの偏向角度が0の時点
における水平方向断面、(b)は同時点における垂直方
向断面を示す。この時点では第2集束電極5と第3集束
電極6との間に第1の4極電界レンズ10が生成され、
第3集束電極6と第4集束電極7との間に第2の4極レ
ンズ電界11が生成される。The behavior of the electron beam in the electron lens system including such a lens electric field will be described with reference to FIGS. 2 and 3. FIG. 2A shows a horizontal cross section when the deflection angle of the electron beam is 0, (B) shows a vertical cross section at the same point. At this point, the first quadrupole field lens 10 is generated between the second focusing electrode 5 and the third focusing electrode 6,
A second quadrupole lens electric field 11 is generated between the third focusing electrode 6 and the fourth focusing electrode 7.
【0016】このため、クロスオーバ部12から出射し
た電子ビーム13は、第1および第2の4極電界レンズ
10,11および主レンズ14を通じて蛍光体スクリー
ン面15上の一点に収れんする。第1の4極レンズ10
は水平方向断面において凸レンズ10a、垂直方向断面
においては凹レンズ10bとして図示してある。また、
第2の4極レンズ電界11は水平方向断面において凹レ
ンズ11a、垂直方向断面において凸レンズ11bとし
て図示してある。主レンズ14は水平方向において強い
凸レンズ14aとして作用し、垂直方向においては弱い
凸レンズ14bとして作用する。Therefore, the electron beam 13 emitted from the crossover portion 12 is converged on one point on the phosphor screen surface 15 through the first and second quadrupole field lenses 10 and 11 and the main lens 14. First quadrupole lens 10
Is shown as a convex lens 10a in the horizontal section and as a concave lens 10b in the vertical section. Also,
The second quadrupole lens field 11 is shown as a concave lens 11a in the horizontal section and a convex lens 11b in the vertical section. The main lens 14 acts as a strong convex lens 14a in the horizontal direction, and acts as a weak convex lens 14b in the vertical direction.
【0017】このように、電子ビームの偏向角度が0の
時点(Vd =0)においてもVf >Vb となるので、第
1集束電極4と第2集束電極5との電位差によって両電
極4,5間に第1の4極電界レンズ10が生成され、第
3集束電極6と第4集束電極7との間に第2の4極レン
ズ電界11が生成されるのであり、これらと主レンズ1
4とによる合成的集束の結果として、電子ビーム13は
蛍光体スクリーン面15上の一点に収れんする。As described above, Vf> Vb holds even when the deflection angle of the electron beam is 0 (Vd = 0). Therefore, both electrodes 4, 5 are caused by the potential difference between the first focusing electrode 4 and the second focusing electrode 5. The first quadrupole field lens 10 is generated between them, and the second quadrupole lens electric field 11 is generated between the third focusing electrode 6 and the fourth focusing electrode 7.
As a result of the synthetic focusing by 4 and 4, the electron beam 13 converges at a point on the phosphor screen surface 15.
【0018】図3の(a)は電子ビームが水平方向へか
なり偏向された時点における水平方向断面、(b)は同
時点における垂直方向断面を示したものである。この時
点では第2フォーカス電圧(Vb +Vd )が第1フォー
カス電圧(Vf )に近づいているので、第1および第2
の4極レンズ電界10,11の凸レンズ10a、凹レン
ズ10b、凸レンズ14aおよび14bがともに弱ま
る。これは相対的に逆極性の軸非対称レンズ電界成分が
発生したのと等価である。また、第2フォーカス電圧が
最終加速電極電圧Va に近づいているので、主レンズ1
4も弱まる。そして、偏向磁界中における磁界レンズ1
6が水平方向断面において凹レンズ16aとして加わ
り、垂直方向断面においては凸レンズ16bとして加わ
るが、その一部は前記逆極性の軸非対称レンズ電界成分
で相殺される。そして、両4極レンズ電界10,12、
主レンズ14および磁界レンズ16を通じた電子ビーム
は蛍光体スクリーン面15上の一点に収れんする。FIG. 3A shows a horizontal cross section when the electron beam is considerably deflected in the horizontal direction, and FIG. 3B shows a vertical cross section at the same point. At this point, the second focus voltage (Vb + Vd) is approaching the first focus voltage (Vf), so the first and second
The convex lens 10a, the concave lens 10b, and the convex lenses 14a and 14b of the quadrupole lens electric fields 10 and 11 are weakened. This is equivalent to the occurrence of an axially asymmetric lens electric field component of relatively opposite polarity. Since the second focus voltage is close to the final acceleration electrode voltage Va, the main lens 1
4 also weakens. Then, the magnetic field lens 1 in the deflection magnetic field
6 is added as a concave lens 16a in the horizontal section and as a convex lens 16b in the vertical section, a part of which is offset by the axially asymmetric lens electric field component of the opposite polarity. Then, both quadrupole lens electric fields 10, 12,
The electron beam that has passed through the main lens 14 and the magnetic field lens 16 is converged on one point on the phosphor screen surface 15.
【0019】なお、以上は電子ビームが蛍光体スクリー
ン面上で水平方向へ偏向される場合について述べたが、
垂直方向へ偏向される場合にも前述と同様の説明があて
はまる。The case where the electron beam is deflected in the horizontal direction on the phosphor screen surface has been described above.
The same description as above applies to the case of vertical deflection.
【0020】つぎに、第1および第2の軸非対称レンズ
電界による垂直方向のレンズ作用を図4により説明す
る。同図は第1フォーカス電圧Vf を7KVに固定し、
第2フォーカス電圧を横軸に、そして、主レンズからの
仮想物点の垂直方向移動量(レンズ効果と等価)を縦軸
にとった特性図である。第1フォーカス電圧を7KVに
固定し、第2フォーカス電圧を7KVから7.5KVへ
と漸次に上昇せしめていく従来構成での移動量はSa で
ある。これに対し、第1フォーカス電圧を7KVに固定
し、第2フォーカス電圧を6.5KVから7KVへと漸
次に高める本発明実施のものにおける移動量はSb とな
る(Sb >Sa )。つまり、同じ0.5KVのダイナミ
ック電圧成分であっても、最適フォーカスのビームスポ
ットを得るのに必要なダイナミック電圧成分は、本発明
を実施した方が少なくてすむことが分かる。Next, the vertical lens action by the first and second axially asymmetric lens electric fields will be described with reference to FIG. In the figure, the first focus voltage Vf is fixed at 7 KV,
FIG. 6 is a characteristic diagram in which the horizontal axis represents the second focus voltage and the vertical axis represents the amount of vertical movement of the virtual object point from the main lens (equivalent to the lens effect). The amount of movement in the conventional configuration in which the first focus voltage is fixed at 7 KV and the second focus voltage is gradually increased from 7 KV to 7.5 KV is Sa. On the other hand, the movement amount in the embodiment of the present invention in which the first focus voltage is fixed at 7 KV and the second focus voltage is gradually increased from 6.5 KV to 7 KV is Sb (Sb> Sa). In other words, it can be seen that even if the same dynamic voltage component of 0.5 KV, the dynamic voltage component necessary for obtaining the beam spot of the optimum focus can be reduced by implementing the present invention.
【0021】[0021]
【発明の効果】以上のように本発明によると、比較的低
いダイナミック電圧を用いてスクリーン面の周辺部に最
適フォーカスのビームスポットを生成せしめ得るのであ
り、とくに大型のカラー受像管装置に適用してダイナミ
ック電圧発生回路の複雑化および製造コストの増大を抑
えることができる。As described above, according to the present invention, a beam spot of optimum focus can be generated in the peripheral portion of the screen surface by using a relatively low dynamic voltage, which is particularly applicable to a large-sized color picture tube device. Thus, it is possible to prevent the dynamic voltage generating circuit from becoming complicated and the manufacturing cost from increasing.
【図面の簡単な説明】[Brief description of drawings]
【図1】本発明を実施したカラー受像管装置の構成を示
す側断面図FIG. 1 is a side sectional view showing a configuration of a color picture tube device embodying the present invention.
【図2】同装置のレンズ系での電子ビームの挙動(無偏
向時)を説明するための図FIG. 2 is a diagram for explaining the behavior of an electron beam in the lens system of the same apparatus (when there is no deflection).
【図3】同装置のレンズ系での電子ビームの挙動(偏向
時)を説明するための図FIG. 3 is a diagram for explaining the behavior of an electron beam in the lens system of the same apparatus (during deflection).
【図4】同装置のレンズ効果を説明するための特性図FIG. 4 is a characteristic diagram for explaining a lens effect of the device.
【図5】カラー受像管装置の電子銃の電極配列を示す側
断面図FIG. 5 is a side sectional view showing an electrode array of an electron gun of a color picture tube device.
【図6】同電子銃を構成する電極の一部分の平面図FIG. 6 is a plan view of a part of an electrode forming the electron gun.
2 制御格子電極 3 加速電極 4 第1集束電極 5 第2集束電極 6 第3集束電極 7 第4集束電極 8 最終加速電極 2 control grid electrode 3 acceleration electrode 4 first focusing electrode 5 second focusing electrode 6 third focusing electrode 7 fourth focusing electrode 8 final accelerating electrode
Claims (2)
電極、平板状の第1集束電極、平板状の第2集束電極、
第1集束電極に接続された第3集束電極および第2集束
電極に接続された第4集束電極を順次に配設し、第1集
束電極および第3集束電極に一定の第1フォーカス電圧
を印加する一方、第2集束電極および第4集束電極には
第1フォーカス電圧よりも低く、かつ、電子ビームの偏
向角度の増大に伴い漸次に上昇する第2フォーカス電圧
を印加し、水平方向において集束形の、そして垂直方向
においては発散形の第1の軸非対称レンズ電界を第2集
束電極と第3集束電極との間に生成せしめ、水平方向に
おいて発散形の、そして垂直方向においては集束形の第
2の軸非対称レンズ電界を第3集束電極と第4集束電極
との間に生成せしめ、水平方向で強く垂直方向では弱い
集束レンズ作用をなす第3の軸非対称レンズ電界を第4
集束電極と最終加速電極との間に生成せしめることを特
徴とするカラー受像管装置。1. An acceleration electrode, a flat plate-shaped first focusing electrode, a flat plate-shaped second focusing electrode, between a control grid electrode and a final acceleration electrode,
A third focusing electrode connected to the first focusing electrode and a fourth focusing electrode connected to the second focusing electrode are sequentially arranged, and a constant first focus voltage is applied to the first focusing electrode and the third focusing electrode. On the other hand, a second focus voltage, which is lower than the first focus voltage and gradually increases with an increase in the deflection angle of the electron beam, is applied to the second focusing electrode and the fourth focusing electrode to focus in the horizontal direction. A first axially asymmetric lens field, which is divergent in the vertical direction, between the second focusing electrode and the third focusing electrode, and which is divergent in the horizontal direction and focused in the vertical direction. A second axially asymmetric lens electric field is generated between the third focusing electrode and the fourth focusing electrode, and a third axially asymmetric lens electric field that is strong in the horizontal direction and weak in the vertical direction acts as a fourth axially asymmetric lens electric field.
A color picture tube device characterized in that it is formed between a focusing electrode and a final accelerating electrode.
界による合成の集束レンズ作用が、電子ビームの偏向角
度が0の時点において水平方向断面および垂直方向断面
で同等であることを特徴とする請求項1記載のカラー受
像管装置。2. The synthetic focusing lens action by the first, second and third axially asymmetric lens electric fields is equal in a horizontal section and a vertical section when the deflection angle of the electron beam is zero. The color picture tube device according to claim 1.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4335748A JP3040272B2 (en) | 1992-12-16 | 1992-12-16 | Color picture tube equipment |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4335748A JP3040272B2 (en) | 1992-12-16 | 1992-12-16 | Color picture tube equipment |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH06187921A true JPH06187921A (en) | 1994-07-08 |
JP3040272B2 JP3040272B2 (en) | 2000-05-15 |
Family
ID=18292028
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP4335748A Expired - Fee Related JP3040272B2 (en) | 1992-12-16 | 1992-12-16 | Color picture tube equipment |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3040272B2 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100386490B1 (en) * | 1995-07-03 | 2004-04-06 | 코닌클리케 필립스 일렉트로닉스 엔.브이. | A color cathode ray tube used for a display device and a display device |
US6965192B2 (en) | 2002-03-20 | 2005-11-15 | Matsushita Electric Industrial Co., Ltd. | Color picture tube apparatus |
-
1992
- 1992-12-16 JP JP4335748A patent/JP3040272B2/en not_active Expired - Fee Related
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100386490B1 (en) * | 1995-07-03 | 2004-04-06 | 코닌클리케 필립스 일렉트로닉스 엔.브이. | A color cathode ray tube used for a display device and a display device |
US6965192B2 (en) | 2002-03-20 | 2005-11-15 | Matsushita Electric Industrial Co., Ltd. | Color picture tube apparatus |
Also Published As
Publication number | Publication date |
---|---|
JP3040272B2 (en) | 2000-05-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH0360147B2 (en) | ||
JP2645063B2 (en) | Color picture tube equipment | |
JPH01232643A (en) | Color picture tube device | |
KR910007800B1 (en) | Dynamic focus electron gun | |
JP2938476B2 (en) | Color picture tube equipment | |
JP2862993B2 (en) | Electron gun for color cathode ray tube | |
JPS5868848A (en) | Structure of electron gun | |
JPH0785812A (en) | Crt electron gun having electron-beam-divergence-angle controlled by current quantity | |
JP3040272B2 (en) | Color picture tube equipment | |
JP3040268B2 (en) | Color picture tube equipment | |
JP3040271B2 (en) | Color picture tube equipment | |
JP3040269B2 (en) | Color picture tube equipment | |
JP3164834B2 (en) | Color picture tube equipment | |
JPH076707A (en) | Color picture tube device | |
JP2684996B2 (en) | In-line color cathode ray tube | |
JPH09237588A (en) | Color picture tube device | |
JPH06275212A (en) | Electron gun for cathode-ray tube | |
US6448703B1 (en) | Electrode unit with inverted dynamic focus voltage applied thereto for forming quadrupole lens and dynamic focus electron gun using the same | |
JP3262619B2 (en) | Color picture tube equipment | |
JP2001084920A (en) | Electron gun for color picture tube | |
JPH0381934A (en) | Dynamic focus electron gun | |
JP2563273B2 (en) | Picture tube device | |
JPS6391939A (en) | Color picture tube device | |
JPH0360145B2 (en) | ||
JPH08236038A (en) | Electron gun for color cathode-ray tube |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |