JPH06187821A - Copper alloy wire - Google Patents

Copper alloy wire

Info

Publication number
JPH06187821A
JPH06187821A JP5065491A JP5065491A JPH06187821A JP H06187821 A JPH06187821 A JP H06187821A JP 5065491 A JP5065491 A JP 5065491A JP 5065491 A JP5065491 A JP 5065491A JP H06187821 A JPH06187821 A JP H06187821A
Authority
JP
Japan
Prior art keywords
copper
wire
copper alloy
tin
magnesium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5065491A
Other languages
Japanese (ja)
Inventor
Masayoshi Aoyama
正義 青山
Takao Ichikawa
貴朗 市川
Sadahiko Sanki
貞彦 参木
Mitsuaki Onuki
光明 大貫
Koichi Tamura
幸一 田村
Yuji Kajikawa
裕二 梶川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Original Assignee
Hitachi Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd filed Critical Hitachi Cable Ltd
Priority to JP5065491A priority Critical patent/JPH06187821A/en
Publication of JPH06187821A publication Critical patent/JPH06187821A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To provide a coil winding copper wire excellent in conductivity which allows high speed windup, even if the cross section of a wire material is small, by using copper alloy containing a specified weight ratio of tin and magnesium with an oxygen content of less than specified weight ratio. CONSTITUTION:Weight ratio 22-1000ppm of tin and weight ratio 11-500ppm of magnesium are added to copper to form a copper alloy with an oxygen content of less than 30ppm, and then a super fine wire of the copper alloy of 17-60mum in diameter is annealed at a temperature of 250-350 deg.C after cold plastic working. This copper wire is free from cutting in initiating windup at a high speed of 200m or more per minute and so it is useful as a coil winding. Oil enamel as well as formalin resin and polyurethane enamel are applicable as insulator as usual to cover the outer periphery.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は銅合金線に関するもの
で、特に抗張力および導電性が大きく、コイル巻線等に
用いられる極細径銅線として適した、銅合金線に関する
ものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a copper alloy wire, and more particularly to a copper alloy wire which has a large tensile strength and conductivity and is suitable as an ultrafine diameter copper wire used for a coil winding or the like.

【0002】[0002]

【従来の技術】時計用ステッピングコイルや磁気記録ヘ
ッド用コイル等のコイルの巻線には、主にエナメル線が
用いられている。直径0.06mm以下の線材は一般に極
細線と呼ばれ、極細線を用いたコイルは多くの場合巻回
数も大きいので、巻線を毎分200m(コイル直径6.
5mmとすれば10000rpm)程度の高速で行うこと
が多い。
2. Description of the Related Art An enameled wire is mainly used for winding a coil such as a stepping coil for a watch and a coil for a magnetic recording head. Wires with a diameter of 0.06 mm or less are generally called extra-fine wires, and coils using extra-fine wires often have a large number of turns, so the winding is 200 m / min (coil diameter 6.
If it is 5 mm, it is often performed at a high speed of about 10,000 rpm).

【0003】従来、コイル巻線用エナメル線の導体材料
としては、導電率の高い無酸素銅(略称OFC)、タフ
ピッチ銅(略称TFC)が多く用いられている。
Conventionally, oxygen-free copper (abbreviated as OFC) and tough pitch copper (abbreviated as TFC), which have high conductivity, have been widely used as the conductor material of the enamel wire for coil winding.

【0004】[0004]

【発明が解決しようとする課題】しかし、従来、コイル
巻線用エナメル線の導体材料として用いられている無酸
素銅(OFC)、タフピッチ銅(TFC)は、導電率は
高いが、直径0.06mm以下の極細線の導電材料として
用いたとき、巻線を毎分200m(コイル直径6.5mm
とすれば10000rpm)程度の高速で行うと、巻線
作業開始時に断線を起こし易い。これは、線材の断面積
が小さくなり、また巻線速度が高くなるとともに、必然
的に巻線の際に受ける張力が大きくなり、さらに、巻線
作業の開始時には特に大きい張力が加わるためである。
However, oxygen-free copper (OFC) and tough pitch copper (TFC), which have hitherto been used as the conductor material of the enameled wire for coil winding, have high conductivity but a diameter of 0. When used as a conductive material for ultrafine wires of 0.6 mm or less, the winding is 200 m / min (coil diameter 6.5 mm).
If this is done at a high speed of about 10000 rpm), wire breakage is likely to occur at the start of winding work. This is because the cross-sectional area of the wire becomes smaller, the winding speed becomes higher, the tension that is inevitably received at the time of winding becomes larger, and further, a particularly large tension is applied at the start of the winding work. .

【0005】直径の小さい線材の巻線を、例えば100
00rpm程度の高速で行っても、巻線作業の開始時に
受ける張力により断線を起こさない、コイル巻線用銅線
が強く望まれている。
For example, the winding of a wire having a small diameter is 100
There is a strong demand for a copper wire for coil winding, which does not cause disconnection due to the tension received at the start of winding work even at a high speed of about 00 rpm.

【0006】それ故、本発明の目的は、断面積が小さく
ても、高速で行う巻線作業の開始時に断線を起こさな
い、しかも導電性のすぐれた、コイル巻線用銅線を実現
することである。
Therefore, it is an object of the present invention to realize a copper wire for coil winding, which has a small cross-sectional area, does not cause a disconnection at the start of high-speed winding work, and has excellent conductivity. Is.

【0007】[0007]

【課題を解決するための手段】本発明の銅線では、断面
積が小さくても、高速で行う巻線作業の開始時に断線を
起こさない、しかも導電性のすぐれたコイル巻線用銅線
を実現するため、22乃至1000ppmの錫単体と1
1乃至500ppmのマグネシウム単体を含み、また酸
素含有量を30ppm未満とし、残部が銅である銅合金
で、銅線(以下、便宜上、銅合金線を銅線と称する。)
を構成した。鋳造および伸線後に焼き鈍しを行うことが
好ましい。
With the copper wire of the present invention, a copper wire for coil winding, which has a small cross-sectional area, does not cause disconnection at the start of high-speed winding work and has excellent conductivity. To achieve this, 22 to 1000 ppm tin alone and 1
A copper wire which contains 1 to 500 ppm of magnesium simple substance, has an oxygen content of less than 30 ppm, and the balance is copper, and is a copper wire (hereinafter, the copper alloy wire is referred to as a copper wire for convenience).
Configured. Annealing is preferably performed after casting and wire drawing.

【0008】錫の含有量を1000ppm以上にする
と、導電率が低下して90%IACS未満になり、また
錫の偏析が生じるため、却って断線が起こり易くなる。
マグネシウムの含有量を500ppm以上にした場合
も、マグネシウムの偏析により、断線が起こり易くな
る。一方、錫の含有量を22ppm以下、またはマグネ
シウムの含有量を11ppm以下にすると、引張り強さ
が低下し、また一定荷重に対する伸び率も小さくなる。
錫とマグネシウムの含有量の比は、特に限定されない
が、4:1乃至1:1程度が好ましい。
When the content of tin is 1000 ppm or more, the conductivity is lowered to less than 90% IACS, and the segregation of tin occurs, so that the wire breakage tends to occur.
Even when the content of magnesium is 500 ppm or more, segregation of magnesium easily causes disconnection. On the other hand, when the tin content is 22 ppm or less or the magnesium content is 11 ppm or less, the tensile strength is reduced and the elongation rate under a constant load is also reduced.
The ratio of the tin and magnesium contents is not particularly limited, but is preferably about 4: 1 to 1: 1.

【0009】本発明の銅合金線の重要な特徴は、特定量
の錫と特定量のマグネシウムを同時に含むことにあり、
錫またはマグネシウム単独では引張り強さが小さい。後
に詳しく述べるように、所定の条件の高温軟化試験で1
0%の伸び率が得られる加熱温度で、本発明の銅合金の
引張り強さは35kg/mm2 程度にもなるが、錫またはマ
グネシウム単独では、OFCと同じく30kg/mm2 に達
しない。
An important feature of the copper alloy wire of the present invention is that it contains a specific amount of tin and a specific amount of magnesium at the same time.
Tin or magnesium alone has low tensile strength. As will be described later in detail, 1 in a high temperature softening test under specified conditions
At the heating temperature at which 0% elongation is obtained, the copper alloy of the present invention has a tensile strength of about 35 kg / mm 2 , but tin or magnesium alone does not reach 30 kg / mm 2 as in OFC.

【0010】本発明は、直径0.06mm(60μm)以
下の極細線に適用すると、特に有用である。特に、直径
が17乃至60μmの銅線に有用である。本発明の銅線
は、高速巻取り(例えば線速度毎分200m以上)でも
巻取り開始時に切断しないので、コイル巻線として有用
である。コイル巻線として用いるためには、外周を絶縁
体で被覆する必要があるが、絶縁体としては、エナメル
線等に通常用いるものを適用できる。絶縁体として、油
性エナメルのほか、ホルマール樹脂、ナイロンエナメ
ル、ポリウレタンエナメル、ポリエステルエナメル、ポ
リエステルイミドエナメル、ポリアミドイミドエナメ
ル、ポリイミドエナメル、自己融着エナメル等のいずれ
を用いてもよい。
The present invention is particularly useful when applied to an ultrafine wire having a diameter of 0.06 mm (60 μm) or less. Particularly, it is useful for a copper wire having a diameter of 17 to 60 μm. The copper wire of the present invention is useful as a coil winding because it does not cut at the start of winding even at high speed winding (for example, linear velocity of 200 m / min or more). In order to use it as a coil winding, it is necessary to coat the outer circumference with an insulator, but as the insulator, one normally used for an enameled wire or the like can be applied. As the insulator, in addition to oil-based enamel, any of formal resin, nylon enamel, polyurethane enamel, polyester enamel, polyesterimide enamel, polyamideimide enamel, polyimide enamel, self-fusing enamel and the like may be used.

【0011】[0011]

【実施例】以下に実施例を示し、本発明のさらに詳細な
説明とする。 〔実施例1〕本発明の銅線の一例は、錫330ppm、
マグネシウム165ppm、酸素20ppmを含む銅合
金で構成された、直径0.05mmの銅(合金)線であ
る。
EXAMPLES Examples will be shown below for further detailed explanation of the present invention. Example 1 One example of the copper wire of the present invention is tin 330 ppm,
It is a copper (alloy) wire having a diameter of 0.05 mm and made of a copper alloy containing 165 ppm of magnesium and 20 ppm of oxygen.

【0012】この銅線は下記のようにして製造される。
アルゴン雰囲気中で溶融した酸素含有量20ppmの銅
に、錫の含有量が330ppm、マグネシウムの含有量
が165ppmになるように、0.3%錫−銅母合金およ
び0.13%マグネシウム−銅母合金を添加して銅合金を
調製し、アルゴン雰囲気中で直径20mm、長さ250mm
の円柱状に鋳造する( 重量約700g)。これを直径
8.0mmにスウェージングし、常法により直径2.8mm
に伸線した後、アルゴン雰囲気中、温度350℃で90
分の焼き鈍しを行い、直径0.05mmまで冷間伸線す
る。
This copper wire is manufactured as follows.
To the copper having an oxygen content of 20 ppm melted in an argon atmosphere, a tin content of 330 ppm and a magnesium content of 165 ppm were adjusted so that a 0.3% tin-copper master alloy and a 0.13% magnesium-copper master alloy were prepared. A copper alloy is prepared by adding an alloy, and the diameter is 20 mm and the length is 250 mm in an argon atmosphere.
It is cast into a cylindrical shape (weight: about 700 g). This is swaged to a diameter of 8.0 mm, and the diameter is 2.8 mm by the conventional method.
After wire drawing at 90 ° C. in an argon atmosphere at a temperature of 350 ° C.
Minute annealing is performed, and cold drawing is performed to a diameter of 0.05 mm.

【0013】こうして得られた銅線について、クロスヘ
ッドスピード毎分20mmで、引張試験を行った。引張強
さは72kgf/mm2 、伸び率は1.5%であった。
The copper wire thus obtained was subjected to a tensile test at a crosshead speed of 20 mm / min. The tensile strength was 72 kgf / mm 2 and the elongation was 1.5%.

【0014】また、得られた銅線に温度20乃至500
℃で1時間の等温焼き鈍しを行った後、同様に引張試験
を行った。その結果を、後述のOFCを用いた比較例と
ともに、図1(A)および(B)に示す。また、等温焼
き鈍しを行った銅線の導電率を測定した。
Further, the obtained copper wire has a temperature of 20 to 500.
After performing isothermal annealing at ℃ for 1 hour, the tensile test was conducted in the same manner. The results are shown in FIGS. 1 (A) and 1 (B) together with a comparative example using OFC described later. In addition, the electrical conductivity of the copper wire that was annealed at the same temperature was measured.

【0015】図1(B)から理解されるように、上記の
銅線は温度約315℃の焼き鈍しで10%の伸び率が得
られ、図1(A)に示されるように、この温度で焼き鈍
した試料の引張強さは35kgf/mm2 であった(いずれ
もグラフの内挿による)。また温度約300℃および3
25℃で焼き鈍した銅線の導電率は、98.4%IAC
Sであった。
As can be seen from FIG. 1 (B), the copper wire obtained above has an elongation of 10% when annealed at a temperature of about 315 ° C., and as shown in FIG. 1 (A), at this temperature. The tensile strength of the annealed sample was 35 kgf / mm 2 (all are interpolated in the graph). Also, the temperature is about 300 ℃ and 3
The conductivity of the copper wire annealed at 25 ° C. is 98.4% IAC
It was S.

【0016】〔比較例〕錫またはマグネシウムを添加せ
ずに、それ以外は実施例1と全く同様にして直径0.0
5mmの銅線を製作した。錫またはマグネシウムの添加量
は表1に示す通りである。
[Comparative Example] The same as Example 1 except that tin or magnesium was not added, and the diameter was 0.0.
I made a 5mm copper wire. The addition amount of tin or magnesium is as shown in Table 1.

【0017】実施例1と同様、温度20乃至500℃で
1時間の等温焼き鈍しを行った後、引張試験を行った。
引張試験の結果から、実施例1と同様の方法(図1
(A),(B)を参照)で、それぞれの銅線について伸
び率が10%に達する焼き鈍し温度と、その温度で焼き
鈍しされた試料の引張強さを求めた。その結果を表1に
示す。
As in Example 1, a tensile test was conducted after isothermal annealing at a temperature of 20 to 500 ° C. for 1 hour.
From the results of the tensile test, the same method as in Example 1 (see FIG.
(See (A) and (B)), the annealing temperature at which the elongation rate reached 10% for each copper wire and the tensile strength of the sample annealed at that temperature were obtained. The results are shown in Table 1.

【0018】 [0018]

【0019】〔従来例〕錫及びマグネシウムをいずれも
添加せずに、それ以外は実施例1と全く同様にして直径
0.05mmのOFC銅線を製作した。実施例1と同様の
引張試験を行った結果、引張強さは62kgf/mm2 、伸
び率は1.5%であった。温度20乃至500℃で1時間
の等温焼き鈍しの後、引張試験を行った結果は、図1
(A)および(B)に示した通りである。焼き鈍し温度
約155℃で伸び率が10%になるが、図1(A)に示
されるように、この温度で焼き鈍した試料の引張強さは
約27.5kgf/mm2 であった。すなわち、伸び率が1
0%になるように処理したときの引張強さは30kgf/
mm2 に達しない。
[Conventional Example] An OFC copper wire having a diameter of 0.05 mm was manufactured in the same manner as in Example 1 except that neither tin nor magnesium was added. As a result of performing the same tensile test as in Example 1, the tensile strength was 62 kgf / mm 2 , and the elongation rate was 1.5%. After the isothermal annealing at a temperature of 20 to 500 ° C. for 1 hour, the result of the tensile test is shown in FIG.
As shown in (A) and (B). The elongation reaches 10% at the annealing temperature of about 155 ° C., but as shown in FIG. 1A, the tensile strength of the sample annealed at this temperature was about 27.5 kgf / mm 2 . That is, the growth rate is 1
The tensile strength when treated to 0% is 30 kgf /
Not reach mm 2 .

【0020】〔実施例2〕錫とマグネシウムの重量比を
2:1に保って、添加量を変化させ、それ以外は実施例
1と全く同様にして直径0.05mmのOFC銅線を製作
した。
[Example 2] An OFC copper wire having a diameter of 0.05 mm was manufactured in the same manner as in Example 1 except that the weight ratio of tin and magnesium was kept at 2: 1 and the addition amount was changed. .

【0021】実施例1と同様に、温度20乃至500℃
で1時間の等温焼き鈍しの後、一定の張力31kgf/mm
2 において生ずる伸び(率)を、錫の添加量X(マグネ
シウムの添加量X/2)の関数としてグラフを作成し
た。得られたグラフを図2に示す。
As in Example 1, a temperature of 20 to 500 ° C.
After isothermal annealing for 1 hour at a constant tension of 31 kgf / mm
The elongation (rate) occurring at 2 was plotted as a function of the tin addition amount X (magnesium addition amount X / 2). The graph obtained is shown in FIG.

【0022】図2から明らかなように、錫とマグネシウ
ムの重量比を2:1としたとき、錫の添加量Xが22p
pm未満(マグネシウムの添加量11ppm未満)で
は、張力31kgf/mm2 において生ずる伸びが10%に
満たない。直径0.05mmの銅線について測定した導電
率は、錫の添加量Xが22乃至1000ppm(マグネ
シウムの添加量11ppm〜500ppm)の範囲にあ
れば、90%IACS以上であった。
As is clear from FIG. 2, when the weight ratio of tin and magnesium is 2: 1, the tin addition amount X is 22 p.
If it is less than pm (the amount of magnesium added is less than 11 ppm), the elongation generated at a tension of 31 kgf / mm 2 is less than 10%. The electrical conductivity measured for a copper wire having a diameter of 0.05 mm was 90% IACS or more when the tin addition amount X was in the range of 22 to 1000 ppm (magnesium addition amount of 11 ppm to 500 ppm).

【0023】[0023]

【発明の効果】本発明の銅(合金)線は、コイル巻線と
して極めて有用で、線材の断面積が小さくても、高速
(例えば線速度毎分200m以上)で行う巻線作業の開
始時に断線を起こさず、しかも導電率が高い。
INDUSTRIAL APPLICABILITY The copper (alloy) wire of the present invention is extremely useful as a coil winding, and even when the cross-sectional area of the wire is small, at the start of winding work performed at a high speed (for example, a linear speed of 200 m / min or more) Does not cause wire breakage and has high conductivity.

【図面の簡単な説明】[Brief description of drawings]

【図1】図1(A)は本発明による銅線の一実施例およ
び従来例の、等温焼き鈍しにおける温度と引張強さの関
係を示すグラフ、図1(B)は本発明による銅線の一実
施例および従来例の、等温焼き鈍しにおける温度と引張
試験における伸び率の関係を示すグラフである。
FIG. 1 (A) is a graph showing the relationship between temperature and tensile strength in isothermal annealing of an example of a copper wire according to the present invention and a conventional example, and FIG. 1 (B) is a graph of a copper wire according to the present invention. It is a graph which shows the relationship between the temperature in an isothermal annealing and the elongation rate in a tensile test of an Example and a prior art example.

【図2】図2は本発明による銅線の他の実施例におけ
る、錫の添加量と一定の張力31kgf/mm2 において生
ずる伸びの関係を示すグラフである。
FIG. 2 is a graph showing the relationship between the amount of tin added and the elongation generated at a constant tension of 31 kgf / mm 2 in another example of the copper wire according to the present invention.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 大貫 光明 茨城県土浦市木田余町3550番地 日立電線 株式会社金属研究所内 (72)発明者 田村 幸一 茨城県土浦市木田余町3550番地 日立電線 株式会社金属研究所内 (72)発明者 梶川 裕二 茨城県日立市川尻町1500番地 日立電線株 式会社豊浦工場内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Mitsuaki Onuki 3550 Kitayo-cho, Tsuchiura-shi, Ibaraki Hitachi Cable Ltd. (72) Inventor Koichi Tamura 3550 Kidayo-cho, Tsuchiura-shi, Ibaraki Hitachi Cable Ltd. Inside the Metal Research Laboratory (72) Inventor Yuji Kajikawa 1500 Kawajiri-cho, Hitachi City, Ibaraki Prefecture Toraura Factory, Hitachi Cable Co., Ltd.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 重量比で22乃至1000ppmの錫、
重量比で11乃至500ppmのマグネシウムおよび重
量比で30ppm未満の酸素を含み、残部が銅で構成さ
れた銅合金から成ることを特徴とする、銅合金線。
1. Tin in a weight ratio of 22 to 1000 ppm,
A copper alloy wire comprising a copper alloy containing 11 to 500 ppm by weight of magnesium and less than 30 ppm of oxygen by weight, with the balance being copper.
【請求項2】 直径が17乃至60μmである、請求項
1の銅合金線。
2. The copper alloy wire according to claim 1, which has a diameter of 17 to 60 μm.
【請求項3】 コイル巻線用の、請求項1または2の銅
合金線。
3. The copper alloy wire according to claim 1, which is for coil winding.
【請求項4】 前記銅合金が、冷間塑性加工後、焼き鈍
しされた、請求項1または2の銅合金線。
4. The copper alloy wire according to claim 1, wherein the copper alloy is annealed after cold plastic working.
【請求項5】 前記銅合金が、冷間塑性加工後、温度2
50℃乃至350℃で焼き鈍しされた、請求項1または
2の銅合金線。
5. The copper alloy has a temperature of 2 after cold plastic working.
The copper alloy wire according to claim 1 or 2, which is annealed at 50 ° C to 350 ° C.
JP5065491A 1991-02-22 1991-02-22 Copper alloy wire Pending JPH06187821A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5065491A JPH06187821A (en) 1991-02-22 1991-02-22 Copper alloy wire

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5065491A JPH06187821A (en) 1991-02-22 1991-02-22 Copper alloy wire

Publications (1)

Publication Number Publication Date
JPH06187821A true JPH06187821A (en) 1994-07-08

Family

ID=12864938

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5065491A Pending JPH06187821A (en) 1991-02-22 1991-02-22 Copper alloy wire

Country Status (1)

Country Link
JP (1) JPH06187821A (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6123736A (en) * 1984-07-09 1986-02-01 Nippon Mining Co Ltd Copper alloy having superior heat resistance, formability and electric conductivity
JPS62243728A (en) * 1986-04-16 1987-10-24 Furukawa Electric Co Ltd:The High conductivity and highly heat resistant copper alloy
JPS62262315A (en) * 1986-05-07 1987-11-14 古河電気工業株式会社 Manufacture of stranded conductor for portable cable
JPS6365038A (en) * 1986-09-08 1988-03-23 Furukawa Electric Co Ltd:The Copper alloy for electronic and electrical equipment
JPS63262435A (en) * 1987-04-21 1988-10-28 Nippon Mining Co Ltd High strength high electroconductive copper alloy
JPS644445A (en) * 1987-06-26 1989-01-09 Mitsubishi Electric Corp Copper alloy for terminal-connector
JPH02232327A (en) * 1989-03-06 1990-09-14 Nippon Mining Co Ltd High conductivity copper alloy having excellent workability and heat resistance

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6123736A (en) * 1984-07-09 1986-02-01 Nippon Mining Co Ltd Copper alloy having superior heat resistance, formability and electric conductivity
JPS62243728A (en) * 1986-04-16 1987-10-24 Furukawa Electric Co Ltd:The High conductivity and highly heat resistant copper alloy
JPS62262315A (en) * 1986-05-07 1987-11-14 古河電気工業株式会社 Manufacture of stranded conductor for portable cable
JPS6365038A (en) * 1986-09-08 1988-03-23 Furukawa Electric Co Ltd:The Copper alloy for electronic and electrical equipment
JPS63262435A (en) * 1987-04-21 1988-10-28 Nippon Mining Co Ltd High strength high electroconductive copper alloy
JPS644445A (en) * 1987-06-26 1989-01-09 Mitsubishi Electric Corp Copper alloy for terminal-connector
JPH02232327A (en) * 1989-03-06 1990-09-14 Nippon Mining Co Ltd High conductivity copper alloy having excellent workability and heat resistance

Similar Documents

Publication Publication Date Title
JP2726939B2 (en) Highly conductive copper alloy with excellent workability and heat resistance
JP2002121629A (en) Super-extra-fine copper-alloy wire, copper-alloy stranded-wire conductor, extra-fine coaxial cable, and method for manufacturing super-extra-fine copper-alloy wire
JP2001148206A (en) Material for ultra thin copper alloy wire and its method of manufacturing
JP4288844B2 (en) Extra fine copper alloy wire
JP2520878B2 (en) Method for manufacturing stranded wire conductor for movable cable
CN110808124B (en) Preparation method of super-soft high-conductivity stranded conductor
JPH11293365A (en) Super-fine conductor for winding, and its manufacture
JP3279374B2 (en) Copper alloy wire and method of manufacturing the same
JPH06187821A (en) Copper alloy wire
JP2001295011A (en) Bending resistant copper alloy wire and cable using the same
JPH0352523B2 (en)
JP3050554B2 (en) Magnet wire
JPH01289021A (en) Manufacture of copper clad steel stranded wire
JP2997121B2 (en) Aluminum stabilized superconducting wire
JP3087552B2 (en) Electrode wire for electric discharge machining
JP2602546B2 (en) Extra fine enameled wire
JP2000282157A (en) Foil conductor
JP3718036B2 (en) Extra fine copper wire and method for producing the same
JP3858861B2 (en) Copper wire for overhead distribution lines and method for manufacturing the same
JP3963067B2 (en) Tinned copper wire
JPH06240388A (en) Copper alloy wire and its production
JP3173226B2 (en) Flexible cable
JPH02197013A (en) Cable conductor with high bending strength
JPH0689622A (en) Manufacture of stranded wire for wiring
JP3010906B2 (en) Copper alloy wire