JPH06187680A - Magneto-optical recording medium - Google Patents
Magneto-optical recording mediumInfo
- Publication number
- JPH06187680A JPH06187680A JP43A JP35446192A JPH06187680A JP H06187680 A JPH06187680 A JP H06187680A JP 43 A JP43 A JP 43A JP 35446192 A JP35446192 A JP 35446192A JP H06187680 A JPH06187680 A JP H06187680A
- Authority
- JP
- Japan
- Prior art keywords
- magnetic layer
- recording
- magneto
- recording medium
- layer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Abstract
Description
【0001】[0001]
【産業上の利用分野】この発明は、光磁気記録媒体に関
するものである。さらに詳しくは、この発明は、コンピ
ュータ、オーディオ機器、計測機器等に有用な光磁気記
録媒体に関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a magneto-optical recording medium. More specifically, the present invention relates to a magneto-optical recording medium useful for computers, audio equipment, measuring equipment and the like.
【0002】[0002]
【従来の技術とその課題】最近、高密度、大容量、高ア
クセス速度、高記録速度、および高再生速度等をはじめ
とする種々の要求を満足する光学的記録再生方法や、そ
れに使用される記録装置、再生装置および記録媒体を開
発しようとする努力がなされている。各種の光学的記録
再生方法の中でも、光磁気記録再生方法は、情報を一度
記録した後らその情報を消去することが可能であり、さ
らに、情報を消去した後に再び新たな情報を記録するこ
とが繰り返し可能であるというユニークな利点のため
に、最も大きな魅力に満ちている。2. Description of the Related Art Recently, an optical recording / reproducing method satisfying various requirements such as high density, large capacity, high access speed, high recording speed, high reproducing speed and the like, and an optical recording / reproducing method used therefor. Efforts have been made to develop recording devices, playback devices and recording media. Among various optical recording / reproducing methods, the magneto-optical recording / reproducing method is capable of erasing the information after recording the information once, and further recording new information after erasing the information. Is full of greatest appeal because of the unique advantage of being repeatable.
【0003】この光磁気記録再生方法で使用される光磁
気記録媒体は、一般的には記録層に垂直磁気異方性を有
する磁性薄膜を用いている。そして磁性薄膜としては、
代表的には、GdFeやGdCo、GdFeCo、TBFe、TbCo、TbFeCo
等の非晶質の重希土類−遷移金属合金からなるものが知
られている。この光磁気記録媒体における初期化、記
録、再生方法は次の手順で行なわれる。すなわち、初期
化は、記録層の磁化の向きを上向きまたは下向きの一方
方向にして行なわれる。また、記録は、直径1ミクロン
位に小さく絞ったレーザービームにより記録層の一部を
キュリー点近傍に昇温し、記録磁界Hbを用いて反対向き
の磁化を有するマークを形成することにより行なわれ
る。記録情報は、このマークの有無および/またはマー
ク長によって表現される。そして、この記録情報の再生
は、記録層のカー回転角θk によるレーザビームの偏光
を用いて行なう。The magneto-optical recording medium used in this magneto-optical recording / reproducing method generally uses a magnetic thin film having perpendicular magnetic anisotropy in the recording layer. And as a magnetic thin film,
Typically, GdFe, GdCo, GdFeCo, TBFe, TbCo, TbFeCo
It is known to be composed of an amorphous heavy rare earth-transition metal alloy such as. The initialization, recording, and reproducing methods for this magneto-optical recording medium are performed in the following procedure. That is, the initialization is performed by setting the magnetization direction of the recording layer to either the upward direction or the downward direction. Recording is performed by heating a part of the recording layer near the Curie point with a laser beam whose diameter is reduced to about 1 micron, and using the recording magnetic field Hb to form a mark having magnetization in the opposite direction. . The recorded information is expressed by the presence or absence of this mark and / or the mark length. Then, this recorded information is reproduced by using the polarization of the laser beam depending on the Kerr rotation angle θk of the recording layer.
【0004】だが、一般的には、キュリー点が低く記録
が容易であり、しかも保磁力が大きく保存安定性が高
く、その上θk が大きく再生時のCN比が高い等の高性能
な記録層を1つの磁性材料だけで実現することは困難で
ある。そのため、記録層に必要な機能を、たとえば、狭
義の記録層(または記録保持層)と再生層の2層に分離
して、それぞれに好適な組成の磁性材料を選択した2層
膜光磁気記録媒体が提案されている。このタイプの2層
膜光磁気記録媒体の1つには、特開昭57-78652号の2層
膜光磁気記録媒体がある。この2層膜光磁気記録媒体は
相対的に高いキュリー温度と相対的に低い保磁力を有す
る磁性層(低保磁力層)と相対的に低いキュリー温度と
相対的に高い保磁力を有する磁性層(高保磁力層)との
2層膜からなり、その高保磁力層と低保磁力層とは互い
に交換結合しているものである。この2層膜光磁気記録
媒体では、高保磁力層の低キュリー温度近傍で記録を行
なうため記録感度が高く、さらに、高キュリー温度を有
しカー回転角θk の大きな低保磁力層側から記録情報の
再生を行なうため、記録された情報のCN比が高い。ま
た、情報の保存は高保磁力層で行なうため情報の保存性
が優れてもいる。Generally, however, a high-performance recording layer having a low Curie point, easy recording, a large coercive force, a high storage stability, a large θk, and a high CN ratio during reproduction. It is difficult to realize the above with only one magnetic material. Therefore, the function required for the recording layer is divided into, for example, a recording layer (or recording holding layer) in a narrow sense and a reproducing layer, and a magnetic material having a suitable composition is selected for each of the two-layer magneto-optical recording. A medium has been proposed. One of the two-layer film magneto-optical recording media of this type is the two-layer film magneto-optical recording medium disclosed in JP-A-57-78652. This two-layer film magneto-optical recording medium is a magnetic layer having a relatively high Curie temperature and a relatively low coercive force (low coercive force layer) and a magnetic layer having a relatively low Curie temperature and a relatively high coercive force. (High coercive force layer) and a two-layer film, and the high coercive force layer and the low coercive force layer are exchange-coupled to each other. In this double-layered magneto-optical recording medium, since recording is performed in the vicinity of the low Curie temperature of the high coercive force layer, the recording sensitivity is high, and the recorded information is recorded from the side of the low coercive force layer having a high Curie temperature and a large Kerr rotation angle θk. The recorded data has a high CN ratio due to the reproduction of the. Further, since the information is stored in the high coercive force layer, the information storage property is also excellent.
【0005】しかしながら、最近になって、この2層膜
光磁気記録媒体では、記録レーザーパワーが最適記録パ
ワーより小さいときには、記録されるべきマークがある
割合で記録されないで欠落してしまう現象が起こりやす
いことがわかってきた。光磁気記録媒体に記録を行なう
場合には、記録レーザーパワーが大きいほど記録される
マークは長くなる。記録時にレーザーが記録パワー(P
w)で発光した時間との信号の時間長さが一致する記録
パワーを最適記録パワーと呼び、光磁気記録でマーク長
記録を行なう場合、記録最適記録パワーで行なわれるの
が望ましい。However, recently, in this double-layered magneto-optical recording medium, when the recording laser power is smaller than the optimum recording power, there occurs a phenomenon that marks to be recorded are not recorded at a certain ratio and are lost. I've found it easy. When recording on a magneto-optical recording medium, the larger the recording laser power, the longer the mark to be recorded. The recording power (P
The recording power at which the time length of the signal coincides with the light emission time in w) is called the optimum recording power, and when the mark length recording is performed by magneto-optical recording, it is desirable that the recording optimum recording power is used.
【0006】しかしながら、実際の記録再生装置におい
ては各種の理由で記録パワーは最適記録パワーからずれ
ることがしばしば起こる。そこで、記録パワーが最適値
から±20% 程度ずれたとしてもマークが確実に記録され
ることが望ましいが、上記した通りの従来の2層膜光磁
気記録媒体では記録パワーが最適記録パワーから15%程
度小さくなると記録されるべきマークの欠落が見られ
た。However, in an actual recording / reproducing apparatus, the recording power often deviates from the optimum recording power for various reasons. Therefore, it is desirable that the mark be surely recorded even if the recording power deviates from the optimum value by about ± 20%. However, in the conventional double-layered magneto-optical recording medium as described above, the recording power is 15% from the optimum recording power. When it was reduced by about%, there was a missing mark to be recorded.
【0007】この発明は、以上の通りの事情に鑑みてな
されたものであり、従来の技術における問題点を解消
し、記録パワーが最適記録パワーと比べて小さくとも、
情報記録のためのマークを確実に付与することのでき
る、改善された光磁気記録媒体を提供することをを目的
としている。The present invention has been made in view of the above circumstances, solves the problems in the prior art, and even if the recording power is smaller than the optimum recording power,
An object of the present invention is to provide an improved magneto-optical recording medium capable of surely providing a mark for recording information.
【0008】[0008]
【課題を解決するための手段】この発明は、上記の課題
を解決するものとして、各々が垂直磁気異方性を有する
非晶質の重希土類−遷移金属合金からなる第1磁性層と
第2磁性層とが磁気的に結合されて積層されており、第
1磁性層は相対的に高いキュリー温度(Tc1 )と室温で
の相対的に低い保磁力(Hc1 )を有し、第2磁性層は相
対的に低いキュリー温度(Tc2 )と室温での相対的に高
い保磁力(Hc2 )を有する光磁気記録媒体において、第
2磁性層のキュリー温度Tc2 における第1磁性層の飽和
磁化の大きさ(Ms1 )が、 130 ≦Ms1 ≦175 (emu/cc) であることを特徴とする光磁気記録媒体を提供する。In order to solve the above-mentioned problems, the present invention provides a first magnetic layer and a second magnetic layer each made of an amorphous heavy rare earth-transition metal alloy having perpendicular magnetic anisotropy. The first magnetic layer has a relatively high Curie temperature (Tc1) and a relatively low coercive force (Hc1) at room temperature. Is the magnitude of the saturation magnetization of the first magnetic layer at the Curie temperature Tc2 of the second magnetic layer in a magneto-optical recording medium having a relatively low Curie temperature (Tc2) and a relatively high coercive force (Hc2) at room temperature. Provided is a magneto-optical recording medium characterized in that (Ms1) is 130 ≤ Ms1 ≤ 175 (emu / cc).
【0009】すなわち、この発明は、低保磁力層(第1
磁性層)のキュリー温度Tc2 での飽和磁化の大きさMs1
を130(emu/cc) 以上にすれば、記録パワーが最適記録パ
ワーに対して15% 以上も小さなパワーで記録してもマー
クの欠落が見られず、かつ再生信号のCN比の良好な光磁
気記録媒体が得られるとの知見に基づいて完成されたも
のである。そしてこの場合の第1磁性層にはGdFe,GdFeC
o,GdCo,GdTbFeCo,GdDy等が望ましい。これらの中でも特
にキュリー温度が高く、大きなMs1 を持つGdFeCoが第1
磁性層に最も適している。That is, the present invention provides a low coercive force layer (first
Saturation magnetization Ms1 at Curie temperature Tc2 of magnetic layer)
If the recording power is set to 130 (emu / cc) or more, even if the recording power is 15% or more smaller than the optimum recording power, no marks are lost and the optical signal with a good CN ratio of the reproduced signal is obtained. It was completed based on the finding that a magnetic recording medium can be obtained. And, in this case, GdFe and GdFeC are used for the first magnetic layer.
O, GdCo, GdTbFeCo, GdDy, etc. are desirable. Of these, GdFeCo with the highest Curie temperature and large Ms1 is the first.
Most suitable for magnetic layers.
【0010】さらに、この発明においては、高いキュリ
ー温度と大きなMs1 を実現するために遷移金属中のCoの
比率が大きいことが望ましく、FeとCoの原子数の割合を
Fe:Co=1-X:X とするときX ≧0.30であることが望まし
い。Further, in the present invention, in order to realize a high Curie temperature and a large Ms1, it is desirable that the ratio of Co in the transition metal is large, and the ratio of the number of Fe and Co atoms is changed.
When Fe: Co = 1-X: X, X ≧ 0.30 is desirable.
【0011】[0011]
【作用】この発明では、記録パワーが最適記録パワーに
対してたとえば15% から25% も小さなパワーで記録して
もマークの欠落が見られず、かつ再生信号のCN比の良好
な光磁気記録媒体が得られる、その理由は、以下のよう
に考えられる。すなわち、まず2層膜光磁気記録媒体で
は高保磁力層の第2磁性層のキュリー温度(Tc2 )以上
の温度が低保磁力層の第1磁性層の磁化を反転させ、そ
れを降温時に高保磁力層に転写するという過程で記録が
行なわれる。According to the present invention, even if the recording power is smaller than the optimum recording power by, for example, 15% to 25%, no mark drop is observed and the CN ratio of the reproduced signal is good. The reason why the medium is obtained is considered as follows. That is, first, in the two-layer film magneto-optical recording medium, a temperature higher than the Curie temperature (Tc2) of the second magnetic layer of the high coercive force layer reverses the magnetization of the first magnetic layer of the low coercive force layer, and when the temperature is lowered, the high coercive force is increased. Recording is performed in the process of transferring to a layer.
【0012】マークの欠落は光磁気記録媒体の温度上昇
が不十分で低保磁力層の第1磁性層の磁化の反転がうま
く行なわれない場合に起こっていると考えられる。一
方、磁性記録膜には記録膜自身が作る反磁界が作用す
る。この反磁界は記録膜の磁化が記録磁界Hbの方向を向
くのを助ける向きに働き、その大きさは磁化の大きさに
比例して大きくなる。It is considered that the missing of the mark occurs when the temperature rise of the magneto-optical recording medium is insufficient and the reversal of the magnetization of the first magnetic layer of the low coercive force layer is not performed well. On the other hand, a demagnetizing field created by the recording film itself acts on the magnetic recording film. This demagnetizing field acts in a direction to help the magnetization of the recording film to face the direction of the recording magnetic field Hb, and its magnitude increases in proportion to the magnitude of the magnetization.
【0013】記録マークが形成される付近は第2磁性層
のキュリー温度Tc2 近傍の温度に熱せられているため、
この温度でのMs1 が大きいと反磁界によって記録が助け
られる。そして、記録パワーが小さく媒体の温度上昇が
不十分な場合においても、Tc2 近傍の温度での第1磁性
層の飽和磁化の大きさMs1 が大きければ、反磁界の助け
によりマークが確実に形成される。Since the vicinity of the recording mark is heated to a temperature near the Curie temperature Tc2 of the second magnetic layer,
Large Ms1 at this temperature helps recording by the demagnetizing field. Even if the recording power is small and the temperature rise of the medium is insufficient, if the magnitude Ms1 of the saturation magnetization of the first magnetic layer at a temperature near Tc2 is large, the mark is reliably formed with the help of the demagnetizing field. It
【0014】以上のことから、従来の2層膜光磁気媒体
ではTc2 近傍の温度でのMs1 が小さかったため、記録マ
ークの欠落が起こりやすくなっていたと考えられる。一
方、Ms1 が大きすぎると今度は記録マークの中に微少な
初期化方向を向いた磁区が現われる現象が起こり、デー
タ再生時のノイズ成分が大きくなる。この現象はTc2 で
のMs1 が175 (emu/cc)より大きい場合に見られる。こ
れらのことより、Tc2 におけるMs1 は130 (emu/cc)以
上175 (emu/cc)以下とすることが必要である。この発
明は、以上の光磁気記録作用の新しい知見を踏まえてい
るものである。From the above, it is considered that in the conventional double-layered magneto-optical medium, Ms1 at a temperature near Tc2 was small, and thus the recording mark was likely to be lost. On the other hand, if Ms1 is too large, then a phenomenon occurs in which a minute magnetic domain facing the initialization direction appears in the recording mark, and the noise component during data reproduction increases. This phenomenon is observed when Ms1 at Tc2 is larger than 175 (emu / cc). From these, Ms1 in Tc2 must be 130 (emu / cc) or more and 175 (emu / cc) or less. The present invention is based on the above new knowledge of the magneto-optical recording action.
【0015】以下実施例を示し、さらにこの発明につい
て詳しく説明する。The present invention will be described in detail below with reference to examples.
【0016】[0016]
【実施例】実施例1 図1に示したように、厚さ1.2mm 、直径300mm のディス
ク状ガラス基板(10)を3次元のマグネトロンスパッ
タリング装置の真空チャンバー内にセットして、磁性膜
を成膜した。 Example 1 As shown in FIG. 1, a disk-shaped glass substrate (10) having a thickness of 1.2 mm and a diameter of 300 mm was set in a vacuum chamber of a three-dimensional magnetron sputtering apparatus to form a magnetic film. Filmed
【0017】真空チャンバー内をいったん5 ×10-5Paま
で排気した後、Arガスを導入し、Arガス圧を2 ×10-1Pa
に保持しながらスパッタリングを行なった。最初にSiN
ターゲットを用い、基板上に膜厚70nmのSiN 保護膜層
(11)を成膜した。続いてGdFeCoの合金ターゲットを
用いて、保護膜層(11)の上に厚さ50nmのGd22.6(Fe
70Co30)77.4(添え字は原子%を表わす)からなる第1
磁性層(低保磁力層)(12)を成膜した。さらにその
上にTbFeの合金ターゲットを用いて厚さ50nmのTb23Fe77
からなる第2磁性膜(高保磁力層)(13)を成膜し
た。最後に再びSiN ターゲットを用い膜厚70nmの保護膜
層(14)を成膜した。After evacuating the interior of the vacuum chamber to 5 × 10 -5 Pa, Ar gas was introduced to adjust the Ar gas pressure to 2 × 10 -1 Pa.
Sputtering was carried out while holding at. First SiN
Using the target, a SiN protective film layer (11) having a film thickness of 70 nm was formed on the substrate. Then, using a GdFeCo alloy target, Gd 22.6 (Fe with a thickness of 50 nm was formed on the protective film layer (11).
70 Co 30 ) 77.4 (subscript represents atomic%) 1st
A magnetic layer (low coercive force layer) (12) was formed. On top of that, a Tb 23 Fe 77 film with a thickness of 50 nm was formed using a TbFe alloy target.
A second magnetic film (high coercive force layer) (13) was formed. Finally, a protective film layer (14) having a film thickness of 70 nm was formed again using a SiN target.
【0018】こうして成膜した各磁性層のキュリー温度
は第1磁性層(12)が400 ℃以上、第2磁性層(1
3)が140 ℃であった。また、第1磁性層(12)の14
0 ℃におけるMs1 は152 (emu/cc)であった。このディ
スクに対して線速度15m/s 、記録磁界300 Oeの条件で7.
5MHzの信号の記録を行なったところ、最適記録パワーは
6.20mWであった。The Curie temperature of each magnetic layer thus formed is 400 ° C. or higher for the first magnetic layer (12) and the Curie temperature for the second magnetic layer (1)
3) was 140 ° C. In addition, 14 of the first magnetic layer (12)
The Ms1 at 0 ° C was 152 (emu / cc). For this disc under the conditions of linear velocity of 15 m / s and recording magnetic field of 300 Oe 7.
When recording a 5MHz signal, the optimum recording power is
It was 6.20 mW.
【0019】次に記録パワーを約20% 下げて4.95mWとし
て記録を行なった。マークの欠落はまったく見られなか
った。さらに、0.05mWずつ記録パワーを下げて記録を行
なったところ、マークの欠落は記録パワー4.90mWになっ
て初めて見られた。つまり、最適記録パワーに対して-2
0%の記録パワーまでマークの欠落は起こらなかった。 実施例2〜5 実施例1と同様の手順で第1磁性層(12)のGd:(Fe70
Co30) の組成比だけを変えて、光磁気記録媒体を作製し
た。Gdの原子% を22.0, 22.4, 22.7, 23.1と変化させ
た。この光磁気記録媒体に実施例1と同じ条件で記録を
行なったときの組成、Ms1 、最適記録パワー、記録パワ
ーを0.05mWずつ下げていった時にマーク欠落が初めに観
測された時の記録パワーであるマーク欠落開始パワー、
および、それが最適記録パワーに対して何% レーザーパ
ワーダウンとなっているかを示す最適記録パワーからの
ずれ量を測定した。Next, the recording power was reduced by about 20% to 4.95 mW.
Was recorded. Is there any missing mark?
It was. Furthermore, the recording power is reduced by 0.05 mW each.
However, when the mark was lost, the recording power was 4.90 mW.
First seen. That is, -2 for the optimum recording power
No mark was lost until the recording power was 0%. Examples 2-5 In the same procedure as in Example 1, Gd: (Fe of the first magnetic layer (12) was70
Co30) Is changed to produce a magneto-optical recording medium.
It was Change the atomic% of Gd to 22.0, 22.4, 22.7, 23.1
It was Recording on this magneto-optical recording medium under the same conditions as in Example 1.
Composition at the time of recording, Ms1, optimum recording power, recording power
Mark was first observed when the
Mark missing start power, which is the recording power when measured,
And what percentage of laser power
From the optimum recording power that indicates whether it is warned
The amount of deviation was measured.
【0020】その結果は、表1に示す通りであった。The results are shown in Table 1.
【0021】[0021]
【表1】 [Table 1]
【0022】実施例6 実施例1と同様の手順で、第1磁性層(12)は厚さ50
nmのGd22(Fe60Co40)78とし、第2磁性層(13)は厚さ
50nmのTb20Fe76Co4 として、磁性膜を成膜した。こうし
て成膜した各磁性層のキュリー温度は第1磁性層(1
2)が400 ℃以上、第2磁性層(13)が175 ℃であっ
た。また第1磁性層の175 ℃におけるMs1は173 (emu/c
c)であった。このディスクに対して線速度15m/s 、記
録パワー6.7mW 、記録磁界300 Oeの条件で7.5MHzの信号
の記録を行なったところ、最適記録パワーは8.10mWであ
った。 Example 6 By the same procedure as in Example 1, the first magnetic layer (12) has a thickness of 50.
Gd 22 (Fe 60 Co 40 ) 78 nm, and the thickness of the second magnetic layer (13) is
A magnetic film was formed as 50 nm Tb 20 Fe 76 Co 4 . The Curie temperature of each magnetic layer formed in this way is determined by the first magnetic layer (1
2) was 400 ° C. or higher, and the second magnetic layer (13) was 175 ° C. The Ms1 of the first magnetic layer at 175 ° C is 173 (emu / c
It was c). When a signal of 7.5 MHz was recorded on this disk under the conditions of a linear velocity of 15 m / s, a recording power of 6.7 mW and a recording magnetic field of 300 Oe, the optimum recording power was 8.10 mW.
【0023】さらに、徐々に記録パワーを下げて記録を
行なったところ、マークの欠落は記録パワー6.05mWまで
は見られなかった。つまり、最適記録パワーに対して-2
5%の記録パワーまでマークの欠落は起こらなかったこと
になる。Further, when recording was performed while gradually lowering the recording power, no mark was lost until the recording power was 6.05 mW. That is, -2 for the optimum recording power
It means that no marks were lost until the recording power was 5%.
【0024】[0024]
【発明の効果】以上詳しく説明した通り、この発明によ
って、記録感度が高く、再生時の信号のCN比が高く、さ
らに、記録パワーマージンの大きい光磁気記録媒体を提
供することが可能となる。As described in detail above, according to the present invention, it is possible to provide a magneto-optical recording medium having a high recording sensitivity, a high CN ratio of a signal during reproduction, and a large recording power margin.
【図1】実施例としての記録媒体の断面図である。FIG. 1 is a sectional view of a recording medium as an example.
10 基板 11 保護膜層 12 第1磁性層(低保磁力層) 13 第2磁性層(高保磁力層) 14 保護膜層 Reference Signs List 10 substrate 11 protective film layer 12 first magnetic layer (low coercive force layer) 13 second magnetic layer (high coercive force layer) 14 protective film layer
Claims (3)
重希土類−遷移金属合金からなる第1磁性層と第2磁性
層とが磁気的に結合されて積層されており、第1磁性層
は相対的に高いキュリー温度(Tc1 )と室温での相対的
に低い保磁力(Hc1 )を有し、第2磁性層は相対的に低
いキュリー温度(Tc2 )と室温での相対的に高い保磁力
(Hc2 )を有する光磁気記録媒体において、第2磁性層
のキュリー温度Tc2 における第1磁性層の飽和磁化の大
きさ(Ms1 )が、 130 ≦Ms1 ≦175 (emu/cc) であることを特徴とする光磁気記録媒体。1. A first magnetic layer and a second magnetic layer, each of which is composed of an amorphous heavy rare earth-transition metal alloy having perpendicular magnetic anisotropy, are magnetically coupled and laminated. The magnetic layer has a relatively high Curie temperature (Tc1) and a relatively low coercive force (Hc1) at room temperature, and the second magnetic layer has a relatively low Curie temperature (Tc2) and a relatively low room temperature. In a magneto-optical recording medium having a high coercive force (Hc2), the magnitude of saturation magnetization (Ms1) of the first magnetic layer at the Curie temperature Tc2 of the second magnetic layer is 130 ≤ Ms1 ≤ 175 (emu / cc). A magneto-optical recording medium characterized by the above.
たはCoからなることを特徴とする請求項1の光磁気記録
媒体。2. The magneto-optical recording medium according to claim 1, wherein the main component of the first magnetic layer is Gd, Fe and / or Co.
割合が、Fe:Co=1-X:X とするとき、X ≧0.30であること
を特徴とする請求項2の光磁気記録媒体。3. The light according to claim 2, wherein when the ratio of the number of Fe and Co atoms contained in the first magnetic layer is Fe: Co = 1-X: X, X ≧ 0.30. Magnetic recording medium.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP43A JPH06187680A (en) | 1992-12-15 | 1992-12-15 | Magneto-optical recording medium |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP43A JPH06187680A (en) | 1992-12-15 | 1992-12-15 | Magneto-optical recording medium |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH06187680A true JPH06187680A (en) | 1994-07-08 |
Family
ID=18437716
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP43A Withdrawn JPH06187680A (en) | 1992-12-15 | 1992-12-15 | Magneto-optical recording medium |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH06187680A (en) |
-
1992
- 1992-12-15 JP JP43A patent/JPH06187680A/en not_active Withdrawn
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3049482B2 (en) | Magneto-optical recording medium and reproducing method thereof | |
US5204193A (en) | Recording magnetooptical recording medium | |
US5265073A (en) | Overwritable magneto-optical recording medium having two-layer magnetic films wherein one of the films contains one or more of Cu, Ag, Ti, Mn, B, Pt, Si, Ge, Cr and Al, and a method of recording on the same | |
JPH0535499B2 (en) | ||
JPH0522303B2 (en) | ||
JPH10124943A (en) | Magneto-optical recording medium and its production, reproducing method and reproduction device | |
JPH0395745A (en) | Magneto-optical recording method and recording device | |
JPH02158938A (en) | Magneto-optical recording medium and recording method | |
JP3093340B2 (en) | Magneto-optical recording medium | |
JPH06187680A (en) | Magneto-optical recording medium | |
JPH06180877A (en) | Magneto-optical recording medium | |
JP2929918B2 (en) | Magneto-optical recording medium and reproducing method thereof | |
JP3074104B2 (en) | Magneto-optical recording medium | |
JPH06309710A (en) | Magneto-optical recording medium | |
JP3075048B2 (en) | Magneto-optical recording medium and reproducing method thereof | |
JPH11238264A (en) | Magneto-optical record medium and its reproducing method | |
JP2770836B2 (en) | Method for manufacturing magneto-optical recording medium | |
JP3756052B2 (en) | Reproduction method of magneto-optical recording medium | |
JP2815034B2 (en) | Method for manufacturing magneto-optical recording medium | |
JP3355759B2 (en) | Magneto-optical recording medium and reproducing method thereof | |
JPH0696479A (en) | Magneto-optical recording medium | |
JP2648623B2 (en) | Magneto-optical recording medium | |
JP2001176140A (en) | Magneto-optical recording medium and recording and reproducing method for the same | |
JPH087348A (en) | Magneto-optical recording medium | |
JPH09293285A (en) | Magneto-optical recording medium and its reproducing method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A300 | Withdrawal of application because of no request for examination |
Free format text: JAPANESE INTERMEDIATE CODE: A300 Effective date: 20000307 |