JPH06186500A - Stereoscopic picture device - Google Patents

Stereoscopic picture device

Info

Publication number
JPH06186500A
JPH06186500A JP4354717A JP35471792A JPH06186500A JP H06186500 A JPH06186500 A JP H06186500A JP 4354717 A JP4354717 A JP 4354717A JP 35471792 A JP35471792 A JP 35471792A JP H06186500 A JPH06186500 A JP H06186500A
Authority
JP
Japan
Prior art keywords
image
axis direction
image display
light
pixel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4354717A
Other languages
Japanese (ja)
Inventor
Yoshinori Hiraiwa
良規 平岩
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP4354717A priority Critical patent/JPH06186500A/en
Publication of JPH06186500A publication Critical patent/JPH06186500A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To perform color display without having a mechanically movable part by setting as optical element obtained by cutting an anisotropic optical medium with a parallel plane including two main axes whose refractive indexes are different on the front surface of a picture display unit or on an optical path. CONSTITUTION:An anisotropic optical element 13 is obtained by cutting the anisotropic optical medium with the parallel plane including two main axes whose refractive indexes are different, and an x-y plane is set in parallel with the projection surface of a polariscope 12 while making two main axes directions an (x)-axis direction and (y)-axis direction. The polariscope 12 makes picture light emitted from the picture element of the picture display unit 11 linearly polarized light having the axis of polarization in either the (x)-axis direction or the (y)-axis direction by each picture element. That is, in this case, the light emitted from the picture element displaying a short range view out of the picture elements displayed on the unit 11 is made to be the linearly polarized light in the (x)-axis direction and the light emitted from the picture element displaying a distant view out of them is made to be the linearly polarized light in the (y)-axis direction.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、2次元画像から3次元
像を形成する立体画像装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a stereoscopic image device for forming a three-dimensional image from a two-dimensional image.

【0002】[0002]

【従来の技術】従来この種の立体画像装置には、複数の
液晶表示パネルを積層した構造を持ち平面内の輝点走査
とパネルの選択による垂直方向の走査によって立体像を
形成する方法、二方向からのレーザービームを結晶内で
交差させ交点での光励起による発光を用いる方法、画像
表示器や光路上の鏡を動かして光路長を変化させる方
法、光路長の違う複数の画像をハーフミラーで合成する
方法などがある。(例えば特開昭62-122494、特開昭62-
194233、特開昭63-100898号公報参照)
2. Description of the Related Art Conventionally, a stereoscopic image device of this type has a structure in which a plurality of liquid crystal display panels are laminated, and a method of forming a stereoscopic image by scanning bright spots in a plane and vertical scanning by selecting the panel. A method of crossing a laser beam from a direction in the crystal and using light emission by optical excitation at the intersection, a method of changing the optical path length by moving an image display or a mirror on the optical path, a half mirror for multiple images with different optical path lengths There is a method of combining. (For example, JP-A-62-122494, JP-A-62-122494
194233, see JP-A-63-100898)

【0003】[0003]

【発明が解決しようとする課題】上記立体画像装置につ
いての従来技術において、液晶パネル式についてはTN
型液晶パネルを用いた場合にはカラー化についての困難
を有し、GH型液晶パネルを用いた場合には応答速度の
点で困難がある。レーザービーム式では、カラー化が困
難で、鏡を動かす方法においては、機械的可動部分があ
るため動作速度や安定度に問題がある。またハーフミラ
ーで合成する方法では、装置が大型化することや、画像
の重ね合わせの際のずれの解消等に難点を有する。
In the prior art of the above-mentioned stereoscopic image device, the TN for the liquid crystal panel type is used.
When a liquid crystal panel of the GH type is used, there is a difficulty in colorization, and when a liquid crystal panel of the GH type is used, it is difficult in terms of response speed. The laser beam method is difficult to colorize, and the method of moving the mirror has a problem in operating speed and stability because there are mechanically movable parts. In addition, the method of combining with a half mirror has problems such as an increase in size of the apparatus and elimination of misalignment when superimposing images.

【0004】本発明は、機械的可動部分を持たずカラー
表示が可能な立体画像装置の実現を目的としている。
It is an object of the present invention to realize a stereoscopic image device which does not have a mechanically movable part and can display in color.

【0005】[0005]

【課題を解決するための手段】上記目的を達成するため
に、本発明の立体画像装置においては、各画素ごとに出
射光の偏光状態を制御可能な画像表示器の前面または光
路上に、異方性光学媒体を屈折率の異なる二本の主軸
(以下x軸及びy軸と呼ぶ)を含む平行平面でカットし
た光学素子、以下単に異方性光学素子と呼ぶ、を設置す
ることを特徴とする。
In order to achieve the above object, in the stereoscopic image device of the present invention, a different image is formed on the front surface of the image display or on the optical path of the image display capable of controlling the polarization state of the emitted light for each pixel. An optical element, in which an isotropic optical medium is cut by a parallel plane including two principal axes (hereinafter, referred to as x axis and y axis) having different refractive indexes, hereinafter referred to simply as an anisotropic optical element, is provided. To do.

【0006】ここでx軸、y軸と互いに垂直な方向をz
軸とする。
Here, the direction perpendicular to the x-axis and the y-axis is z
The axis.

【0007】上記異方性光学素子では、進行方向がz軸
方向でx軸方向に電場の振動面を有する直線偏光に対す
る屈折率η(x)と、進行方向がz軸方向でy軸方向に電
場の振動面を有する直線偏光に対する屈折率η(y)が異
なる。
In the above anisotropic optical element, the refractive index η (x) for linearly polarized light having a z-axis traveling direction and an electric field vibrating plane in the x-axis direction, and the traveling direction is the z-axis direction and the y-axis direction. The refractive index η (y) for linearly polarized light having a vibration plane of the electric field is different.

【0008】したがって、この異方性光学素子をとおし
てみると、同一位置の点光源から発せられた光でも、x
軸方向の直線偏光の場合とy軸方向の直線偏光の場合で
は像の位置がz軸方向に異なる。
Therefore, through this anisotropic optical element, even if the light emitted from the point light source at the same position is x
The image position differs in the z-axis direction between the case of the linearly polarized light in the axial direction and the case of the linearly polarized light in the y-axis direction.

【0009】本発明はこの原理を用いて画像表示器の画
素を視線方向に移動させ、遠近の画像を形成することを
特徴とする。つまり画像表示器の各画素から射出する光
をx軸方向の直線偏光にするかy軸方向の直線偏光にす
るかで、輝点の位置を視線方向に移動させることで遠近
の画像を形成する。
The present invention is characterized in that the pixels of the image display are moved in the direction of the line of sight using this principle to form a perspective image. That is, a perspective image is formed by moving the position of the bright spot in the line-of-sight direction depending on whether the light emitted from each pixel of the image display device is linearly polarized light in the x-axis direction or linearly polarized light in the y-axis direction. .

【0010】各画素ごとに射出光の偏光状態を制御可能
な画像表示器としては、CRTや液晶画像表示器等の画
像表示器の画面の前面に、該画像表示器の各画素からの
画像光を直線偏光とし、かつその偏光軸を互いに垂直な
二方向に切り換える偏光器(以下単に偏光器と呼ぶ)を
設置したものが挙げられる。
As an image display device capable of controlling the polarization state of emitted light for each pixel, an image light from each pixel of the image display device is provided on the front surface of the screen of the image display device such as a CRT or a liquid crystal image display device. Is a linearly polarized light, and a polarizer (hereinafter, simply referred to as a polarizer) that switches the polarization axes thereof in two directions perpendicular to each other is installed.

【0011】偏光器にはTN型の液晶板を用いたものが
考えられる。この際必要に応じて画面と液晶セルの間に
偏光板を設置する。また該TN液晶板の電極構造を適当
に取り、画像表示器の各画素からの出射光の旋転角を画
素ごとに制御することで本発明に必要な特性を有する、
各画素ごとに射出光の偏光状態を制御可能な画像表示器
が構成される。またTN液晶板の代りに強誘電液晶板や
電気光学素子やファラデー素子等を用いることもでき
る。
A polarizer using a TN type liquid crystal plate can be considered. At this time, a polarizing plate is installed between the screen and the liquid crystal cell as needed. Further, by appropriately taking the electrode structure of the TN liquid crystal plate and controlling the rotation angle of the emitted light from each pixel of the image display for each pixel, the characteristics required for the present invention are obtained.
An image display capable of controlling the polarization state of emitted light is configured for each pixel. A ferroelectric liquid crystal plate, an electro-optical element, a Faraday element, or the like can be used instead of the TN liquid crystal plate.

【0012】本発明においては、像の移動量が小さいと
いう欠点がある。これを改善する方法として、異方性光
学素子と観察者の間に、焦点を一致させて設置した二枚
のレンズからなる拡大光学系またはこれと等価な光学系
を設置することで、像の位置の移動量を拡大することが
できる。
The present invention has the drawback that the amount of movement of the image is small. As a method to improve this, by installing a magnifying optical system consisting of two lenses installed with their focal points aligned or an optical system equivalent to this between the anisotropic optical element and the observer, The amount of movement of the position can be expanded.

【0013】またバーチャルリアリズムシステム等で用
いられている3Dゴーグルのような、視差のある右目用
画像と左目用画像をそれぞれ対応する目のみに視認させ
る装置において、画像表示用に本発明の立体画像表示装
置を左右各一組用いることで、視差及び遠近感を有する
立体像が得られる3Dシステムが構成できる。
Further, in a device such as a 3D goggles used in a virtual realism system or the like, in which a right-eye image and a left-eye image having parallax are visually recognized only by their corresponding eyes, the stereoscopic image of the present invention is displayed for image display. By using a pair of left and right display devices, a 3D system that can obtain a stereoscopic image with parallax and perspective can be configured.

【0014】[0014]

【作用】ここで本発明に用いた原理について簡単に記
す。
The principle used in the present invention will be briefly described.

【0015】上記異方性光学素子内では、z軸方向へ向
かう光線はx軸方向に電場の振動面を有するx偏波とy
軸方向に電場の振動面を有するy偏波に分解され、x偏
波成分に対する屈折率η(x)とy偏波成分に対する屈折
率η(y)は異なる。これからこの異方性光学素子はz軸
方向への入射光に対し近似的に、x軸方向の直線偏光に
は屈折率η(x)、y軸方向の直線偏光には屈折率η(y)の
光学媒体として振る舞う。
In the above anisotropic optical element, a light beam traveling in the z-axis direction has an x-polarized wave and a y-polarized wave having a vibration plane of an electric field in the x-axis direction.
It is decomposed into y-polarized light having an oscillation plane of an electric field in the axial direction, and the refractive index η (x) for the x-polarized component and the refractive index η (y) for the y-polarized component are different. From this, this anisotropic optical element approximates to the incident light in the z-axis direction, the refractive index η (x) for the linear polarized light in the x-axis direction and the refractive index η (y) for the linear polarized light in the y-axis direction. Behave as an optical medium.

【0016】また幾何光学を用いると、光路上に置いた
厚さd、屈折率ηの光学媒体の屈折率をδだけ変化させ
た時、像の見かけの位置は−dδ/(η^2)だけ変化す
る。ここで、η^2はηの2乗を示し以下も同様に用い
る。また、負号は移動方向がδ>0の時、観察者に近付
く方向であることを示す。
When geometrical optics is used, when the refractive index of an optical medium having a thickness d and a refractive index η placed on the optical path is changed by δ, the apparent position of the image is -dδ / (η ^ 2). Only changes. Here, η ^ 2 indicates the square of η, and the following is used similarly. Further, the negative sign indicates that when the moving direction is δ> 0, it is a direction approaching the observer.

【0017】上記二点を念頭に、同一の点光源から発せ
られたx軸方向の直線偏光と、y軸方向の直線偏光が厚
さdの前記異方性光学素子を通過する場合を考える。す
ると二つの像はだいたい d|η(x)−η(y)|/(η(x)
^2) だけ視線方向にずれた位置に見える。
With the above two points in mind, consider the case where the linearly polarized light in the x-axis direction and the linearly polarized light in the y-axis direction emitted from the same point light source pass through the anisotropic optical element having the thickness d. Then the two images are roughly d | η (x) −η (y) | / (η (x)
^ 2) It appears to be displaced in the direction of the line of sight.

【0018】本発明における画像形成について述べるImage formation in the present invention will be described.

【0019】説明のため、異方性光学素子の屈折率はη
(x)>η(y)と仮定する。(逆の場合はη(x)とη(y)を入
れ換える)
For the purpose of explanation, the refractive index of the anisotropic optical element is η
It is assumed that (x)> η (y). (In the opposite case, swap η (x) and η (y))

【0020】画像表示器に表示した画像のなかで、近景
を表示する画素の出射光はx方向の直線偏光とし、遠景
を表示する画素の出射光はy軸方向の直線偏光とする。
In the image displayed on the image display, the emitted light of the pixel displaying the near view is linearly polarized in the x direction, and the emitted light of the pixel displaying the distant view is linearly polarized in the y axis direction.

【0021】これを前記異方性光学素子を通すと、該異
方性光学素子は近景を表示する画素については屈折率η
(x)、遠景を表示する画素については屈折率η(y)として
振る舞うため、遠景画素は近景画素に対して d|η
(x)−η(y)|/(η(x)^2) だけ遠方に見える。ここでd
は異方性光学素子の厚さとする。
When this is passed through the anisotropic optical element, the anisotropic optical element causes the refractive index η for a pixel displaying a near view.
(x), a pixel displaying a distant view behaves as a refractive index η (y).
Only (x) −η (y) | / (η (x) ^ 2) looks distant. Where d
Is the thickness of the anisotropic optical element.

【0022】こうして遠近感のある画像表示が可能とな
る。
In this way, it is possible to display images with a sense of perspective.

【0023】異方性光学素子に用いる光学媒体として
は、方解石のように二つの主軸方向の屈折率が大きく異
なるものを用いると効果的である。方解石では η(e)
=1.486η(o)=1.658 であるから厚さ10mmのものを用
いれば、約1mmの像の移動が得られる。
As an optical medium used in the anisotropic optical element, it is effective to use a medium such as calcite having a great difference in refractive index in the two principal axis directions. In calcite η (e)
= 1.486 η (o) = 1.658, so if you use the one with a thickness of 10 mm, you can obtain the image movement of about 1 mm.

【0024】光学系を用いた像の移動量の拡大について
記す。焦点距離f1のレンズ34と焦点距離f2のレンズ35を
用い、双方の焦点を一致させた拡大光学系(図3)で
は、物体を距離aだけ移動した時の像の位置の移動量は
a(f2/f1)^2 像の拡大率はf2/f1 となる。こうして
像の視線方向の移動量を拡大することができる。
The expansion of the amount of movement of the image using the optical system will be described. In the magnifying optical system (FIG. 3) in which the lens 34 having the focal length f1 and the lens 35 having the focal length f2 are used to match the focal points of both, the amount of movement of the image position when the object is moved by the distance a is a ( f2 / f1) ^ 2 The magnification of the image is f2 / f1. In this way, the amount of movement of the image in the line-of-sight direction can be increased.

【0025】また上記二枚のレンズからなる拡大光学系
を複数組み合わせたり、より複雑な光学系を用いること
で、より効果的に像の移動量を拡大することもできる。
Further, by combining a plurality of magnifying optical systems composed of the above two lenses or by using a more complicated optical system, it is possible to magnify the amount of movement of the image more effectively.

【0026】[0026]

【実施例】実施例について図面を用いて説明する。EXAMPLES Examples will be described with reference to the drawings.

【0027】図1は一般の画像表示器11と、画像表示器
の各画素からの出射光の偏光特性を制御する偏光器12及
び異方性光学素子13から成る本発明の一例で、異方性光
学素子13は異方性光学媒体を屈折率の異なる二本の主軸
を含む平行平面でカットしたもので、この二本の主軸方
向をx軸とy軸としx−y平面を偏光器12の出射面に平
行に設置する。
FIG. 1 shows an example of the present invention comprising a general image display 11, a polarizer 12 for controlling the polarization characteristics of light emitted from each pixel of the image display, and an anisotropic optical element 13. The optical element 13 is obtained by cutting an anisotropic optical medium with a parallel plane including two principal axes having different refractive indexes. The two principal axes are defined as x-axis and y-axis, and the xy plane is a polarizer 12. Install parallel to the exit surface of.

【0028】偏光器12は画像表示器11の画素から射出さ
れる画像光を各画素ごとにx軸またはy軸のどちらか一
方向に偏光軸を持つ直線偏光とする。
The polarizer 12 converts the image light emitted from the pixel of the image display 11 into linearly polarized light having a polarization axis in either one of the x axis and the y axis for each pixel.

【0029】図2は、画像表示器としてアクティブマト
リクス型カラー液晶表示器を、偏光器としてアクティブ
マトリクス型液晶板を用いた本発明の一実施例で、200
は異方性光学素子、x軸とy軸はその屈折率の異なる互
いに垂直な二本の主軸方向、z軸はこれらに垂直な方向
を示す。図中210〜260はアクティブマトリクス型カラー
液晶表示器を構成するパーツ、270〜290が偏光器を構成
するパーツである。
FIG. 2 shows an embodiment of the present invention in which an active matrix type color liquid crystal display is used as an image display and an active matrix type liquid crystal plate is used as a polarizer.
Is an anisotropic optical element, the x-axis and the y-axis are directions of two mutually perpendicular principal axes having different refractive indices, and the z-axis is a direction perpendicular to these. In the figure, 210 to 260 are parts constituting an active matrix type color liquid crystal display, and 270 to 290 are parts constituting a polarizer.

【0030】210、220は偏光板。231〜233、240は透明
電極。250はTN液晶。260はカラーフィルター。270、2
81〜283は透明電極。290はTN液晶。
210 and 220 are polarizing plates. 231 to 233 and 240 are transparent electrodes. 250 is TN liquid crystal. 260 is a color filter. 270, 2
81 to 283 are transparent electrodes. 290 is TN liquid crystal.

【0031】ここでTN液晶290の入射側ディレクター
の方向は偏光板220の偏光軸と平行な方向に取る。
Here, the direction of the incident side director of the TN liquid crystal 290 is taken to be parallel to the polarization axis of the polarizing plate 220.

【0032】また、x軸とy軸の一方を偏光板220の偏
光軸に平行となるように設置する。以下の説明では、x
軸が偏光板220の偏光軸に平行であるとし、また偏光素
子200はx軸方向の直線偏光に対する屈折率η(x)がy軸
方向の直線偏光に対する屈折率η(y)より大であるとす
る。
Further, one of the x-axis and the y-axis is installed so as to be parallel to the polarization axis of the polarizing plate 220. In the following description, x
The axis is parallel to the polarization axis of the polarizing plate 220, and the polarizing element 200 has a refractive index η (x) for linearly polarized light in the x-axis direction that is larger than a refractive index η (y) for linearly polarized light in the y-axis direction. And

【0033】カラー液晶表示器への画像表示は通常の場
合と全く同様に行なう。
Image display on the color liquid crystal display is performed in exactly the same manner as in the usual case.

【0034】カラー画像表示器からの画像光は偏光板22
0によりx軸方向の直線偏光となっている。ここで電極2
81と電極270間が同電位の場合、液晶290の旋転性から電
極281を通過する光はy軸方向の直線偏光となり、電極2
81と電極270間に液晶の敷居値Vt以上の電圧が印加され
ていれば、液晶290のこの領域の旋転性は消失しこの領
域の出射光はx軸方向の直線偏光となる。こうして各画
素の出射光をx軸方向とy軸方向の直線偏光に切り換え
られる。
Image light from the color image display is polarized by the polarizing plate 22.
A value of 0 results in linearly polarized light in the x-axis direction. Electrode 2 here
When the potential between 81 and the electrode 270 is the same, the light passing through the electrode 281 becomes linearly polarized light in the y-axis direction due to the rotation of the liquid crystal 290, and the electrode 2
If a voltage equal to or higher than the threshold value Vt of the liquid crystal is applied between the electrode 81 and the electrode 270, the rotatory property of this region of the liquid crystal 290 disappears and the emitted light in this region becomes linearly polarized light in the x-axis direction. In this way, the light emitted from each pixel can be switched to linearly polarized light in the x-axis direction and the y-axis direction.

【0035】電極281と電極270間が等電位ならばこの領
域の画素は異方性光学素子200を通すと遠くに見え、電
極281と電極270間にVt以上の電圧が印加されていれば近
くに見える。
If the potential between the electrode 281 and the electrode 270 is equipotential, the pixel in this region looks distant when the anisotropic optical element 200 is passed, and if the voltage of Vt or more is applied between the electrode 281 and the electrode 270, the pixel is close. Looks like.

【0036】こうして平面画像から遠近間のある立体像
が得られる。
Thus, a stereoscopic image with a perspective is obtained from the plane image.

【0037】図3に、二枚のレンズからなる拡大光学系
を用いた実施例の構造を模式的に示した。31は画像表示
器、32は偏光素子、33は異方性光学素子、34は焦点距離
f1のレンズ、35は焦点距離f2のレンズで、この二枚のレ
ンズをf1+f2の間隔で設置する。これにより、像の移動
量を(f2/f1)^2倍に拡大することができる。一般にはレ
ンズ34に凹レンズ(f1<0)、レンズ35に凸レンズ(f2>
0)でf1+f2>0となるものを用いるのが効果的であ
る。
FIG. 3 schematically shows the structure of an embodiment using a magnifying optical system consisting of two lenses. 31 is an image display, 32 is a polarizing element, 33 is an anisotropic optical element, and 34 is a focal length.
f1 lens, 35 is a focal length f2 lens, and these two lenses are installed at an interval of f1 + f2. As a result, the amount of movement of the image can be expanded by (f2 / f1) ^ 2 times. Generally, the lens 34 is a concave lens (f1 <0) and the lens 35 is a convex lens (f2>).
It is effective to use one in which f1 + f2> 0 in 0).

【0038】図4は、図3に示した立体画像装置を右目
用と左目用に各一組ずつ有する実施例の上から見た模式
図。
FIG. 4 is a schematic view of the stereoscopic image device shown in FIG. 3 as viewed from above, in an embodiment having one set for the right eye and one set for the left eye.

【0039】41は右目用画像表示器、42は右目用偏光素
子、43は右目用異方性光学素子、44、45は右目用拡大光
学系を構成するレンズ。46は左目用画像表示器、47は左
目用偏光素子、48は左目用異方性光学素子、49、50は左
目用拡大光学系を構成するレンズである。
Reference numeral 41 is a right-eye image display, 42 is a right-eye polarizing element, 43 is a right-eye anisotropic optical element, and 44 and 45 are lenses forming a right-eye magnifying optical system. Reference numeral 46 is an image display for the left eye, 47 is a polarizing element for the left eye, 48 is an anisotropic optical element for the left eye, and 49 and 50 are lenses forming a magnifying optical system for the left eye.

【0040】この装置を用いると、右近景は右目に手前
に、また左近景は左目に手前に視認される。遠景につい
ても同様で、これにより視差だけでなく、遠近感も伴っ
た立体像が視認される。
When this apparatus is used, the right near view is viewed in front of the right eye, and the left near view is viewed in front of the left eye. The same applies to the distant view, whereby a stereoscopic image with not only parallax but also perspective is visually recognized.

【0041】[0041]

【発明の効果】本発明は以上に説明したように構成され
ているため、以下に記するような効果を有する。
Since the present invention is constructed as described above, it has the following effects.

【0042】本発明においては、単一の画像表示器を用
いるため、ミラーによる画像合成法で問題となる視点の
移動に伴う全景と背景の画像の重なりの問題は起こら
ず、装置も小型である。
In the present invention, since a single image display is used, there is no problem of overlapping the whole view and background images due to the movement of the viewpoint, which is a problem in the image combining method using the mirror, and the apparatus is small. .

【0043】また液晶パネルを積層した方式で問題とな
るカラー化に対する困難も起こらず容易にカラー画像を
扱える。
Further, in the system in which the liquid crystal panels are laminated, there is no difficulty in colorization, which is a problem, and a color image can be easily handled.

【0044】また適当な光学系と組み合わせることで、
視線方向の像位置の移動量を実用上十分な値まで拡大す
ることができる。
By combining with an appropriate optical system,
The amount of movement of the image position in the line-of-sight direction can be expanded to a practically sufficient value.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の構造を示す模式図FIG. 1 is a schematic diagram showing the structure of the present invention.

【図2】画像表示器としてアクティブマトリクス型カラ
ー液晶表示器を、偏光器としてアクティブマトリクス型
液晶板を用いた本発明の実施例の部分断面模式図
FIG. 2 is a schematic partial cross-sectional view of an embodiment of the present invention using an active matrix type color liquid crystal display as an image display and an active matrix type liquid crystal plate as a polarizer.

【図3】拡大光学系を有する本発明の実施例の模式図。FIG. 3 is a schematic diagram of an embodiment of the present invention having a magnifying optical system.

【図4】右目用と左目用に各一、本発明を用いた実施例
の模式図
FIG. 4 is a schematic diagram of an embodiment using the present invention, one for the right eye and one for the left eye.

【符号の説明】[Explanation of symbols]

11 画像表示器 12 偏光器 13 異方性光学素子 14 観察者 231、232、233 アクティブマトリクス型カラー液晶表
示器用1次電極 240 アクティブマトリクス型カラー液晶表示器用2次
電極 250、290 液晶 270 偏光器用アクティブマトリクス型液晶1次電極 281、282、283 偏光器用アクティブマトリクス型液晶
2次電極 34、35 レンズ
11 Image display 12 Polarizer 13 Anisotropic optical element 14 Observer 231, 232, 233 Primary electrode for active matrix type color liquid crystal display 240 Secondary electrode for active matrix type color liquid crystal display 250, 290 Liquid crystal 270 Active for polarizer Matrix type liquid crystal primary electrode 281, 282, 283 Active matrix type liquid crystal secondary electrode for polarizers 34, 35 Lens

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 各画素ごとに出射光の偏光状態を制御可
能な画像表示器の前面または光路上に、異方性光学媒体
を屈折率の異なる二本の主軸を含む平行平面でカットし
た光学素子を設置することを特徴とする立体画像装置
1. An optical system in which an anisotropic optical medium is cut in a parallel plane including two principal axes having different refractive indexes on the front surface or the optical path of an image display capable of controlling the polarization state of outgoing light for each pixel. Stereoscopic imager characterized by installing elements
【請求項2】 各画素ごとに出射光の偏光状態を制御可
能な画像表示器の前面または光路上に、異方性光学媒体
を屈折率の異なる二本の主軸を含む平行平面でカットし
た光学素子と光学系を設置することを特徴とする立体画
像装置
2. An optical system in which an anisotropic optical medium is cut by a parallel plane including two principal axes having different refractive indexes on the front surface or the optical path of an image display capable of controlling the polarization state of outgoing light for each pixel. Stereoscopic imager characterized by installing elements and optical system
【請求項3】 右目用と左目用に各一組、請求項1又は
2記載の立体画像装置を有する立体画像装置
3. A stereoscopic image device having the stereoscopic image device according to claim 1 or 2 each for the right eye and the left eye.
【請求項4】 各画素ごとに出射光の偏光状態を制御可
能な画像表示器は、画像表示器と、該画像表示器の各画
素からの画像光を直線偏光とし、かつこの偏光軸を互い
に垂直な二方向に切り換える偏光器から成る請求項1、
2又は3記載の立体画像装置
4. An image display device capable of controlling the polarization state of emitted light for each pixel, wherein the image display device and the image light from each pixel of the image display device are linearly polarized light, and their polarization axes are mutually 2. A polarizer that switches in two vertical directions.
2 or 3 stereoscopic image device
【請求項5】 画像表示器の各画素からの画像光を直線
偏光とし、かつその偏光軸を互いに垂直な二方向に切り
換える偏光器はTN液晶板から成る請求項1、2、3又
は4記載の立体画像装置
5. A polarizer for linearly polarizing the image light from each pixel of the image display and switching the polarization axis between the two directions perpendicular to each other is composed of a TN liquid crystal plate. Stereoscopic image device
JP4354717A 1992-12-17 1992-12-17 Stereoscopic picture device Pending JPH06186500A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4354717A JPH06186500A (en) 1992-12-17 1992-12-17 Stereoscopic picture device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4354717A JPH06186500A (en) 1992-12-17 1992-12-17 Stereoscopic picture device

Publications (1)

Publication Number Publication Date
JPH06186500A true JPH06186500A (en) 1994-07-08

Family

ID=18439430

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4354717A Pending JPH06186500A (en) 1992-12-17 1992-12-17 Stereoscopic picture device

Country Status (1)

Country Link
JP (1) JPH06186500A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013536449A (en) * 2010-06-25 2013-09-19 フロント、ストリート、インベストメント、マネジメント、インコーポレイテッド、アズ、マネジャー、フォー、フロント、ストリート、ダイバーシファイド、インカム、クラス Method and apparatus for generating three-dimensional image information

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013536449A (en) * 2010-06-25 2013-09-19 フロント、ストリート、インベストメント、マネジメント、インコーポレイテッド、アズ、マネジャー、フォー、フロント、ストリート、ダイバーシファイド、インカム、クラス Method and apparatus for generating three-dimensional image information

Similar Documents

Publication Publication Date Title
KR100770062B1 (en) Image display
KR101122199B1 (en) 2D-3D switchable autostereoscopic display apparatus
RU2544254C2 (en) Multi-aspect display device
JPH0658596B2 (en) Display method of cursor for 3D image
JP3269823B2 (en) Optical system for two-dimensional and three-dimensional display of information
JPH0772446A (en) Display system
JP2004151645A (en) Image display device
JP3083635B2 (en) 3D stereoscopic image / 2D image coexistence type display device
JP3136178B2 (en) Display device
KR100586221B1 (en) 3-d image display device using flat display unit
JPH06123853A (en) Optical device
Roese et al. Stereoscopic viewing with PLZT ceramics
JP2002296540A (en) Stereoscopic image display device without spectacles
JPH09138371A (en) Polarizing spectacle type stereoscopic video display device
KR100603607B1 (en) 3D image display apparatus according to the variable observation distance
RU183810U1 (en) Device for creating dynamic holographic images in space
JPH1198537A (en) Stereoscopic eyeglass
JPH06186500A (en) Stereoscopic picture device
CN117321478A (en) Method for operating 3D display and 3D display assembly
KR20140147542A (en) Apparatus for displaying 2d/3d image
JP3825414B2 (en) 3D display device
KR100558880B1 (en) Liquid display apparatus for wide viewing angle 3D image display of polarizing method
Zhang et al. A novel spatio-temporal multiplexing multi-view 3D display
JP3422760B2 (en) 3D display method
JP2983846B2 (en) 3D display device