JPH06184962A - Steel cord for reinforcing rubber article - Google Patents

Steel cord for reinforcing rubber article

Info

Publication number
JPH06184962A
JPH06184962A JP33070692A JP33070692A JPH06184962A JP H06184962 A JPH06184962 A JP H06184962A JP 33070692 A JP33070692 A JP 33070692A JP 33070692 A JP33070692 A JP 33070692A JP H06184962 A JPH06184962 A JP H06184962A
Authority
JP
Japan
Prior art keywords
wire
tensile strength
steel cord
wire drawing
fatigue resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP33070692A
Other languages
Japanese (ja)
Other versions
JP2975223B2 (en
Inventor
Akihiro Kaneda
章弘 金田
Koichi Yokota
浩一 横田
Masao Nakamura
昌生 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bridgestone Metalpha Corp
Original Assignee
Bridgestone Metalpha Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bridgestone Metalpha Corp filed Critical Bridgestone Metalpha Corp
Priority to JP4330706A priority Critical patent/JP2975223B2/en
Publication of JPH06184962A publication Critical patent/JPH06184962A/en
Priority to US08/383,178 priority patent/US5609013A/en
Application granted granted Critical
Publication of JP2975223B2 publication Critical patent/JP2975223B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B1/00Constructional features of ropes or cables
    • D07B1/06Ropes or cables built-up from metal wires, e.g. of section wires around a hemp core
    • D07B1/0606Reinforcing cords for rubber or plastic articles
    • D07B1/062Reinforcing cords for rubber or plastic articles the reinforcing cords being characterised by the strand configuration
    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B2201/00Ropes or cables
    • D07B2201/20Rope or cable components
    • D07B2201/2001Wires or filaments
    • D07B2201/2006Wires or filaments characterised by a value or range of the dimension given

Landscapes

  • Ropes Or Cables (AREA)

Abstract

PURPOSE:To attain lightening of a rubber composite and improvement of durability thereof by providing high tensile strength and fatigue resistance to steel cord. CONSTITUTION:The steel cord is obtained by twisting plural raw wires made of high carbon steel and the raw wire has a cord structure satisfying the formula T>=230-148logD in relationship between the diameter D (mm) and the tensile strength T (kgf/mm<2>) and being <=80kgf/mm<2> in the difference between tensile strength of the surface part of the raw wire and tensile strength of the inside.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、空気入りタイヤやコ
ンベアベルト等のゴム物品の補強材として用いられるス
チールコードに関し、特にスチールコードに高い引張り
強さと優れた延性を与えることによって、ゴム複合体の
軽量化と耐久性の向上を達成しようとするものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a steel cord used as a reinforcing material for rubber articles such as pneumatic tires and conveyor belts, and particularly to a rubber composite by imparting high tensile strength and excellent ductility to the steel cord. The goal is to reduce weight and improve durability.

【0002】[0002]

【従来の技術】ゴム物品の軽量化には、ゴム物品を補強
するスチールコードの引張り強さを高めて、より少ない
またはより細いスチールコードでゴム物品を補強するこ
と、またゴム物品の耐久性の改善には、特にスチールコ
ードの耐疲労性を向上すること、が有利である。そのた
め、スチールコードの強度および耐疲労性の向上に対す
る要望は益々強くなっている。さらにこのようなスチー
ルコードを経済的に生産するには、スチールコードを構
成する素線の延性を確保して撚線時の断線を防止するこ
とが重要である。
2. Description of the Related Art To reduce the weight of a rubber article, the tensile strength of a steel cord that reinforces the rubber article is increased so that the rubber article is reinforced with a smaller or thinner steel cord. For the improvement, it is particularly advantageous to improve the fatigue resistance of the steel cord. Therefore, the demand for improving the strength and fatigue resistance of steel cords has been increasing. Further, in order to economically produce such a steel cord, it is important to secure the ductility of the wires constituting the steel cord and prevent the breakage during twisting.

【0003】スチールコードの強度を向上する手法とし
ては、スチールコードの原料となる線材の炭素含有量を
一般の線材よりも高めること、或いは伸線加工率を高め
ることなどが提案されている。しかし、素線の炭素含有
量を高めたり、伸線加工率を大きくすると、スチールコ
ードの耐疲労性が損われるという、新たな問題が発生す
る。そこで、コードの耐疲労性を改善するため、スチー
ルコードの原料となる線材の組成を高合金化して組織を
微細パーライトにしたり、線材中に含まれる非金属介在
物を減少する等の試みがなされている。
As a method for improving the strength of the steel cord, it has been proposed to increase the carbon content of the wire material as the raw material of the steel cord more than that of general wire material, or to increase the wire drawing rate. However, if the carbon content of the wire is increased or the wire drawing ratio is increased, a new problem occurs that the fatigue resistance of the steel cord is impaired. Therefore, in order to improve the fatigue resistance of the cord, attempts have been made to make the composition of the wire that is the raw material of the steel cord highly alloyed to make the structure fine pearlite, and to reduce the non-metallic inclusions contained in the wire. ing.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、高価な
元素を使用するため、スチールコードの原料コストが上
昇し、一方線材中の非金属介在物を極力減少するには、
製造工程が複雑になってコスト増をまねくため、いずれ
にしても経済的に不利である。さらにこのような線材を
用いてスチールコードを製造しても、必ずしも高い引張
り強さと耐疲労性とを同時に満足できない場合があっ
た。特に、耐疲労性の低下はタイヤなどの荷重負荷状態
で繰り返し曲げが作用するゴム物品において、繰り返し
曲げによってスチールコードを構成する素線の幾本かが
破断し、それがコード破断に進展し、ひいてはゴム複合
体、すなわちタイヤの疲労破壊につながるため、重大な
問題である。
However, since expensive elements are used, the raw material cost of the steel cord rises, and in order to reduce non-metallic inclusions in the wire rod as much as possible,
In any case, it is economically disadvantageous because the manufacturing process becomes complicated and the cost increases. Further, even if a steel cord is manufactured using such a wire rod, it may not always be possible to satisfy high tensile strength and fatigue resistance at the same time. In particular, the decrease in fatigue resistance is a rubber article that is repeatedly bent under a load condition such as a tire, in which some of the wires constituting the steel cord are broken by repeated bending, and it progresses to a cord break, This is a serious problem because it leads to fatigue failure of the rubber composite, that is, the tire.

【0005】そこでこの発明の目的は、高い引張り強さ
と優れた耐疲労性とを両立した、スチールコードを提供
することにある。
Therefore, an object of the present invention is to provide a steel cord having both high tensile strength and excellent fatigue resistance.

【0006】[0006]

【課題を解決するための手段】発明者らは、スチールコ
ードを構成する素線の引張り強さと耐疲労性との関係に
ついて、スチールコードに通常使用されている線材を用
いて鋭意検討を重ねた結果、スチールコードを構成する
素線の、例えば伸線加工度を大きくして引張り強さを高
めると、高伸線加工度になるほど素線の中心部に比べて
表層部の加工度のほうが高くなり表層部の引張強さが増
大することを見出した。スチールコードを構成する素線
の引張強さをある程度以上に高めると延性が低下するこ
とは知られており、素線の中心部と表層部の引張強さと
延性の関係についても前述の関係が成り立つと思われ、
中心部に比べて表層部の引張強さがある程度以上に増大
すると素線が捩られたとき断線し易くなり、撚線時の断
線による生産性の低下、またゴム製品の使用時における
繰り返し捩れによるスチールコードの耐疲労性の低下に
結び付くことを新たに見出し、この知見を基にこの発明
を完成するに到った。
[Means for Solving the Problems] The inventors of the present invention have made extensive studies on the relationship between the tensile strength and the fatigue resistance of the wires constituting a steel cord by using a wire rod usually used for steel cords. As a result, when the wire forming the steel cord, for example, increases the wire drawing workability to increase the tensile strength, the higher the wire drawing workability, the higher the workability of the surface layer part is compared to the center part of the wire. It was found that the tensile strength of the surface layer increases. It is known that if the tensile strength of the strands that make up a steel cord is increased above a certain level, the ductility decreases, and the above relationship holds for the relation between the tensile strength and the ductility of the core and surface layers of the strand. It seems that
If the tensile strength of the surface layer increases to a certain extent or more compared to the central part, the strands are likely to be broken when twisted, resulting in a decrease in productivity due to breaks in stranded wires, and repeated twisting when using rubber products. The inventors have newly found that the fatigue resistance of the steel cord is reduced, and have completed the present invention based on this finding.

【0007】すなわち、この発明は、高炭素鋼からなる
複数本の素線を撚り合わせたスチールコードであって、
該素線は、その直径D(mm)および引張り強さT(kgf/m
m2) が下記式を満足する関係にあり、かつ素線の表層部
の引張り強さと内部の引張り強さとの差が80kgf/mm2
下であることを特徴とするゴム物品補強用スチールコー
ドである。
That is, the present invention is a steel cord in which a plurality of strands of high carbon steel are twisted together,
The wire has a diameter D (mm) and a tensile strength T (kgf / m
m 2 ) satisfies the following formula, and the difference between the tensile strength of the surface layer of the wire and the internal tensile strength is 80 kgf / mm 2 or less. is there.

【数2】 [Equation 2]

【0008】なお、上記の素線の表層部とは、素線断面
に対し素線の表面から同心円状に素線断面積の20%を占
める円筒部分のことであり、一方内部とは、素線断面に
対し素線の中心から円柱状に素線断面積の80%を占める
円柱部分のことである。より具体的には、素線の直径を
Dとしたとき、
The surface layer portion of the strand is a cylindrical portion concentrically occupying 20% of the cross-sectional area of the strand from the surface of the strand with respect to the cross section of the strand, while the inside is the strand. It is a cylindrical part that occupies 80% of the cross-sectional area of the wire in a column shape from the center of the wire to the wire cross section. More specifically, when the diameter of the wire is D,

【数3】 が表層部に該当し、一方[Equation 3] Corresponds to the surface layer, while

【数4】 が内部に相当する。[Equation 4] Corresponds to the inside.

【0009】[0009]

【作用】スチールコードを構成する素線の引張り強さ
は、主に最終熱処理後の線材の引張り強さとその後の伸
線加工度に依存するのであるが、特に伸線加工度の寄与
が大きく、素線の引張り強さは、ほぼ伸線加工度に比例
すると見做せる。しかし、伸線加工度には上限があり、
それ以上の高加工を行うと伸線途中で断線するため、断
線することなしに高い引張り強さを与え得る伸線は、極
めて狭い範囲に限られてしまう。従って、素線の引張り
強さは素線の直径に比例することになる。
[Function] The tensile strength of the wire constituting the steel cord mainly depends on the tensile strength of the wire after the final heat treatment and the degree of wire drawing after that, but in particular, the contribution of the wire drawing is large, It can be considered that the tensile strength of the wire is almost proportional to the wire drawing workability. However, there is an upper limit to the wire drawing workability,
If higher working is performed, wire breakage occurs during wire drawing, so wire drawing that can give high tensile strength without wire breaking is limited to an extremely narrow range. Therefore, the tensile strength of the wire is proportional to the diameter of the wire.

【0010】図1に素線の直径と引張り強さとの関係を
示すように、製品化されているコードを構成する素線の
引張り強さT(kg/mm2)は、上記のように伸線加工度に上
限のあることから、斜線領域、すなわちT< 230−148l
ogDにある。
As shown in FIG. 1 showing the relationship between the diameter of the wire and the tensile strength, the tensile strength T (kg / mm 2 ) of the wire constituting the commercialized cord is extended as described above. Since there is an upper limit to the line workability, the shaded area, that is, T <230-148l
It is in ogD.

【0011】一方、T≧ 230−148logDの素線が得られ
れば、コードに十分な強力を付与でき、従ってゴム物品
の軽量化を達成できる。そこで、この発明においては、
コードを構成する素線の引張り強さTを、T≧ 230−14
8logDの範囲とする。特にタイヤのような苛酷な使用条
件が課せられるゴム物品に適用する場合は、引張り強さ
Tを、T≧ 240−164logDの範囲とすることが好まし
い。
On the other hand, if a strand of T ≧ 230-148 log D is obtained, sufficient strength can be imparted to the cord, and therefore the weight of the rubber article can be reduced. Therefore, in the present invention,
Set the tensile strength T of the wires that make up the cord to T ≧ 230-14
The range is 8logD. In particular, when applied to rubber articles such as tires that are subject to severe usage conditions, the tensile strength T is preferably in the range of T ≧ 240-164 logD.

【0012】上記のような高い引張り強さを有する素線
は、理論上または実験室的には製造が可能であるが、T
≧ 230−148logDまで引張り強さを高めると、上述した
耐疲労性の劣化が著しいため、工業的規模での製品コー
ドを得るに到っていないのが現状である。すなわち、高
い引張り強さを付与したとしても、実用に足る耐疲労性
が維持できないため、結局は高い引張り強さのコードが
製品化されていないのである。
The above-mentioned wire having high tensile strength can be manufactured theoretically or in the laboratory, but T
When the tensile strength is increased to ≧ 230−148 log D, the fatigue resistance is significantly deteriorated as described above, and therefore the product code on an industrial scale has not yet been obtained. That is, even if a high tensile strength is imparted, practical fatigue resistance cannot be maintained, so that a cord having a high tensile strength has not been commercialized in the end.

【0013】引張り強さを高めると、特にT≧ 230−14
8logDまで引張り強さを高めると、耐疲労性が低下する
現象は、素線表層の傷感受性が高くなることに起因して
いることから、この傷感受性の上昇を抑制する手段につ
いて種々検討した。その結果、素線の表層部の引張り強
さと内部の引張り強さとの差を80kgf/mm2 以下とするこ
とが、傷感受性の低下に極めて有利であることを究明し
た。
When the tensile strength is increased, T ≧ 230-14
Since the phenomenon that the fatigue resistance decreases when the tensile strength is increased to 8 logD is due to the increase in the scratch sensitivity of the surface layer of the wire, various studies were made on the means for suppressing this increase in the scratch sensitivity. As a result, it was clarified that it is extremely advantageous to reduce the scratch sensitivity by setting the difference between the tensile strength of the surface layer of the wire and the internal tensile strength of 80 kgf / mm 2 or less.

【0014】すなわち、伸線加工後の素線は、その表層
部の引張り強さが内部のそれよりも高くなるのが通例で
あるが、この両者の引張り強さの差が大きくなると、上
記した傷感受性も高くなる。そして、この引張り強さの
差が80kgf/mm2 をこえると、傷感受性の上昇による耐疲
労性の劣化が顕著に現れるため、その差を80kgf/mm2
下に規制する必要がある。
That is, the wire rod after wire drawing usually has a higher tensile strength at the surface layer than that at the inner portion, but when the difference in the tensile strength between the two becomes large, the above-mentioned is mentioned. It also increases the susceptibility to scratches. If the difference in tensile strength exceeds 80 kgf / mm 2 , the fatigue resistance is markedly deteriorated due to the increase in scratch susceptibility, so it is necessary to regulate the difference to 80 kgf / mm 2 or less.

【0015】ここで、素線表層部の引張り強さは、まず
素線の引張り強さを測定し、次いで素線の表層部を6%
硝酸水溶液で素線全体の20%体積%相当を溶解し、表層
部を溶解した素線の引張り強さとを測定し、溶解処理前
の引張り強さと溶解処理後の引張り強さとの差として求
めた。
Here, regarding the tensile strength of the surface layer portion of the wire, first, the tensile strength of the wire is measured, and then the surface layer portion of the wire is 6%.
20% volume% of the entire wire was dissolved in a nitric acid aqueous solution, and the tensile strength of the wire in which the surface layer was dissolved was measured, and it was determined as the difference between the tensile strength before the dissolution treatment and the tensile strength after the dissolution treatment. .

【0016】次に、表層部と内部との引張り強さの差を
80kgf/mm2 以下とする具体的手法は、最終伸線を湿式連
続伸線により行うと良い。まず、潤滑液中で伸線を行う
ことによって、伸線加工に伴う発熱による、素線の温度
上昇を抑える。さらに、最終伸線の伸線加工条件を、次
のように規制することにより、高い引張り強さをそな
え、かつ耐疲労性に優れる素線の製造が可能となる。
Next, the difference in tensile strength between the surface layer and the inside is calculated.
As a specific method for setting 80 kgf / mm 2 or less, the final wire drawing may be performed by wet continuous wire drawing. First, wire drawing is performed in a lubricating liquid to suppress an increase in temperature of the wire due to heat generated during wire drawing. Furthermore, by controlling the wire drawing conditions of the final wire drawing as follows, it is possible to manufacture a wire having high tensile strength and excellent fatigue resistance.

【0017】すなわち、素線の伸線加工度は、各ダイス
における減面率と各ダイスのアプローチ角度αによって
変化するため、素線の表層部と内部との伸線加工度を均
一化するには、上記の減面率とアプローチ角度とを考慮
した、伸線加工深度を調整することが有利である。
That is, since the wire drawing workability of the wire changes depending on the area reduction rate of each die and the approach angle α of each die, it is necessary to make the wire workability of the surface layer portion and the inside of the wire uniform. It is advantageous to adjust the wire drawing depth in consideration of the area reduction ratio and the approach angle.

【0018】この伸線加工深度とは、伸線加工におい
て、図2に示すように、ダイスを出た線材の表面から線
材中心までの距離をYとし、アプローチ角度αのダイス
のアプローチ部に線材が接している部分を底辺とする2
等辺三角形の頂点からダイス出側の線材表面までの距離
をXとしたとき、(X/Y)×100 で示されるものであ
る。この伸線加工深度は、線材が伸線加工時に変形を受
ける度合を簡易的に推定する尺度となる。例えば、アプ
ローチ角度αが 4.5°で減面率が 27.06%の場合、伸線
加工深度は 100%となる。
In the wire drawing process, as shown in FIG. 2, the wire drawing depth is defined as Y, which is the distance from the surface of the wire that has exited the die to the center of the wire, and the wire is attached to the approach part of the die with an approach angle α. 2 where the bottom is the part that touches
When the distance from the apex of the equilateral triangle to the surface of the wire on the die exit side is X, it is represented by (X / Y) × 100. The wire drawing depth is a measure for simply estimating the degree to which the wire rod is deformed during wire drawing. For example, if the approach angle α is 4.5 ° and the area reduction rate is 27.06%, the wire drawing depth is 100%.

【0019】素線の表層部の引張り強さと内部の引張り
強さとの差を80kgf/mm2 以下とするには、各ダイスにお
ける加工深度と伸線加工真歪との関係が、例えば図3お
よび4に示すパスA,C,DおよびEのような、ダイス
パススケジュールに従う、伸線加工を施すことによって
達成し得る。なお、伸線加工真歪εは、
In order to make the difference between the tensile strength of the surface layer of the wire and the internal tensile strength of 80 kgf / mm 2 or less, the relationship between the working depth and the true wire drawing strain in each die is shown in FIG. It can be achieved by performing wire drawing according to the die pass schedule, such as passes A, C, D and E shown in FIG. The true strain ε for wire drawing is

【数5】 で定義される。[Equation 5] Is defined by

【0020】上記の伸線方法により、素線の表層部と内
部はほぼ同等の伸線加工を受けることになり、耐疲労性
に優れたスチールコードを製造できる。
By the above wire drawing method, the surface layer portion and the inside of the wire are subjected to almost the same wire drawing work, and a steel cord having excellent fatigue resistance can be manufactured.

【0021】なお、上記の伸線加工に先立つパテンティ
ング処理の条件ついては特に規制する必要はないが、素
線の引張り強さの向上と傷感受性の低下とを両立するた
めに、パーライト結晶粒度をASTM結晶粒度番号で9以上
とすることが好ましい。また線材表面部の脱炭は極力防
止することが望ましい。
Although there is no particular restriction on the conditions of the patenting treatment prior to the above wire drawing, the pearlite grain size is controlled in order to improve the tensile strength of the wire and reduce the scratch sensitivity. The ASTM grain size number is preferably 9 or more. Further, it is desirable to prevent decarburization on the surface of the wire as much as possible.

【0022】[0022]

【実施例】直径5.5mm のスチールコード用線材を乾式伸
線により所定の線径にまで伸線した後、最終パテンティ
ング処理を施し、次いで連続湿式伸線機により素線を製
造した。線材の炭素含有量および最終パテンティング条
件と、得られた素線の線径、引張り強さおよび回転曲げ
疲労限の調査結果とを、表1にそれぞれ示す。
Example A steel cord wire having a diameter of 5.5 mm was drawn by dry drawing to a predetermined wire diameter, then subjected to final patenting treatment, and then a continuous wet drawing machine was used to produce a wire. Table 1 shows the carbon content of the wire and the final patenting conditions, and the results of investigation of the wire diameter, tensile strength and rotary bending fatigue limit of the obtained wire.

【0023】[0023]

【表1】 [Table 1]

【0024】表1において、実験番号7,8は最終熱処
理後の線材のパーライトブロックサイズを微細化するた
めに、最終パテンティング処理の際、加熱速度: 200℃
/sで 900℃まで加熱して線材を溶体化後、50℃まで急
冷して完全なマルテンサイト組織とした後、引き続き表
1に示す、各種パテンティング処理を施した。湿式伸線
機におけるダイスパススケジュールは、図3および4に
示す、パスA,C,DおよびEに従って行った。また比
較として、同程度の伸線加工深度となるパスBおよびF
に従う伸線加工も行った。
In Table 1, Experiment Nos. 7 and 8 are heating rates at the time of the final patenting treatment: 200 ° C. in order to reduce the pearlite block size of the wire after the final heat treatment.
After heating the wire rod to 900 ° C. at / s for solution treatment, the wire rod was rapidly cooled to 50 ° C. to obtain a complete martensite structure, and subsequently various patenting treatments shown in Table 1 were performed. The die pass schedule in the wet drawing machine was performed according to passes A, C, D and E shown in FIGS. 3 and 4. In addition, as a comparison, paths B and F that have the same wire drawing depth
The wire drawing according to the above was also performed.

【0025】なお、捻回値の測定はJIS G3522
ピアノ線6.2 捩り試験に基づいて、正常な破断をしたも
のについての捻回値を示している。
The twist value is measured according to JIS G3522.
Piano wire 6.2 Based on the torsion test, the twist value is shown for a normal fracture.

【0026】さらに、表1の実験番号1および2の素線
をそれぞれ5本別個に撚り合わせた1×5構造のスチー
ルコードを1000kg製造する試験を実施した。実験番号1
の素線では撚線時の断線は発生しなかったのに対して実
験番号2の素線では断線が多く発生し、経済的にスチー
ルコードを供給できるレベルではなかった。
Further, a test was conducted to manufacture 1000 kg of a steel cord having a 1 × 5 structure in which five strands of Experiment Nos. 1 and 2 in Table 1 are individually twisted together. Experiment number 1
No wire breakage occurred during twisting, but the wire of Experiment No. 2 caused many wire breaks, and it was not at a level at which steel cord could be economically supplied.

【0027】また、ダイスパススケジュールを図3に示
したパスAに設定し、ダイスに正常なものと異常摩耗し
たものとを使用した場合の伸線結果を、表2に示す。表
2から、異常摩耗したダイスは設計上の加工深度と異な
る加工深度となるため、素線の表層部の引張り強さが異
常に高くなり、得られる素線の耐疲労性が低下すること
がわかる。
Table 2 shows the wire drawing results when the die pass schedule is set to pass A shown in FIG. 3 and normal die and abnormal die are used. It can be seen from Table 2 that the die having an abnormal wear has a working depth different from the designed working depth, so that the tensile strength of the surface layer portion of the wire becomes abnormally high, and the fatigue resistance of the obtained wire may deteriorate. Recognize.

【0028】[0028]

【表2】 [Table 2]

【0029】[0029]

【発明の効果】この発明のスチールコードは、高い引張
り強さと優れた耐疲労性を兼ね備えているため、ゴム製
品を軽量化できるとともに耐久性をも向上することがで
き、またスチールコードの素線を伸線する際に用いる装
置や治具は特別なものを使用する必要がなく、経済的に
も有利である。
Since the steel cord of the present invention has both high tensile strength and excellent fatigue resistance, it is possible to reduce the weight of the rubber product and also improve the durability, and the steel cord strands. There is no need to use a special device or jig for wire drawing, which is economically advantageous.

【図面の簡単な説明】[Brief description of drawings]

【図1】素線の直径と引張り強さとの関係を示すグラフ
である。
FIG. 1 is a graph showing the relationship between the diameter of a wire and the tensile strength.

【図2】加工深度の定義を説明する模式図である。FIG. 2 is a schematic diagram illustrating the definition of processing depth.

【図3】湿式伸線時のダイスパススケジュールを示す図
である。
FIG. 3 is a diagram showing a die pass schedule during wet drawing.

【図4】湿式伸線時のダイスパススケジュールを示す図
である。
FIG. 4 is a diagram showing a die pass schedule during wet drawing.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 中村 昌生 栃木県黒磯市下中野800 ブリヂストン・ ベカルト・スチール・コード株式会社栃木 工場内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Masao Nakamura 800 Shimotanakano, Kuroiso City, Tochigi Prefecture Bridgestone Bekaert Steel Cord Co., Ltd. Tochigi Plant

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 高炭素鋼からなる複数本の素線を撚り合
わせたスチールコードであって、該素線は、その直径D
(mm)および引張り強さT(kgf/mm2) が下記式を満足する
関係にあり、かつ素線の表層部の引張り強さと内部の引
張り強さとの差が80kgf/mm2 以下であることを特徴とす
るゴム物品補強用スチールコード。 【数1】
1. A steel cord formed by twisting a plurality of strands of high carbon steel, the strand having a diameter D.
(mm) and tensile strength T (kgf / mm 2 ) satisfy the following formula, and the difference between the tensile strength of the surface layer of the wire and the internal tensile strength is 80 kgf / mm 2 or less. Steel cord for reinforcing rubber articles characterized by [Equation 1]
JP4330706A 1992-12-10 1992-12-10 Steel cord for rubber article reinforcement Expired - Fee Related JP2975223B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP4330706A JP2975223B2 (en) 1992-12-10 1992-12-10 Steel cord for rubber article reinforcement
US08/383,178 US5609013A (en) 1992-12-10 1995-02-03 Steel cords for the reinforcement of rubber articles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4330706A JP2975223B2 (en) 1992-12-10 1992-12-10 Steel cord for rubber article reinforcement

Publications (2)

Publication Number Publication Date
JPH06184962A true JPH06184962A (en) 1994-07-05
JP2975223B2 JP2975223B2 (en) 1999-11-10

Family

ID=18235655

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4330706A Expired - Fee Related JP2975223B2 (en) 1992-12-10 1992-12-10 Steel cord for rubber article reinforcement

Country Status (1)

Country Link
JP (1) JP2975223B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2151769A1 (en) * 1996-09-06 2001-01-01 Bonet Vicente Vidal Lifting or tensile cablee, comprises textile material braided around tube and containing pieces of steel
US6247514B1 (en) * 1994-12-20 2001-06-19 The Goodyear Tire & Rubber Company Tires with high strength reinforcement
US6719030B2 (en) 1995-08-24 2004-04-13 The Goodyear Tire & Rubber Company Pneumatic tire having a single carcass ply reinforced with metallic cords, a high ending ply, turnup and locked bead construction

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6247514B1 (en) * 1994-12-20 2001-06-19 The Goodyear Tire & Rubber Company Tires with high strength reinforcement
US6719030B2 (en) 1995-08-24 2004-04-13 The Goodyear Tire & Rubber Company Pneumatic tire having a single carcass ply reinforced with metallic cords, a high ending ply, turnup and locked bead construction
ES2151769A1 (en) * 1996-09-06 2001-01-01 Bonet Vicente Vidal Lifting or tensile cablee, comprises textile material braided around tube and containing pieces of steel

Also Published As

Publication number Publication date
JP2975223B2 (en) 1999-11-10

Similar Documents

Publication Publication Date Title
KR890003893B1 (en) The manufacture methods of metal cables
EP0144811A2 (en) Improved steel wire with high tensile strength
JP2772627B2 (en) Ultra-high strength steel wire and steel cord for rubber reinforcement
JPH1181168A (en) Steel code for rubber article and pneumatic radial tire
JP5232432B2 (en) Carbon steel wire manufacturing method
JP2975223B2 (en) Steel cord for rubber article reinforcement
JP2920474B2 (en) Ultra-high strength steel wire and steel cord for rubber reinforcement
JP3777166B2 (en) Manufacturing method of high strength extra fine steel wire
JP3037844B2 (en) Steel cord for reinforcing rubber articles and method for producing the same
KR100635328B1 (en) A high tensile steel cord and manufacturing method thereof
JP2906025B2 (en) High strength steel wire and steel cord for reinforcing rubber products and method for producing high strength steel
US5609013A (en) Steel cords for the reinforcement of rubber articles
JP2001220649A (en) High strength extra-fine steel wire excellent in ductility and fatigue characteristic
KR100717150B1 (en) A high tensile steel cord and manufacturing method thereof
JP3037845B2 (en) Steel cord and rubber composite for reinforcing rubber articles
JP3273686B2 (en) Manufacturing method of steel cord for rubber reinforcement
JP2640285B2 (en) Steel cord for reinforcing rubber products
JP5882827B2 (en) Steel wire, method for manufacturing steel wire, and method for evaluating steel wire
JPH07305285A (en) Production of element wire for steel cord for reinforcing rubber article
JP3299857B2 (en) High-strength extra-fine steel wire with excellent fatigue properties and method for producing the same
JPH08291369A (en) High strength extra fine steel wire excellent in fatigue property and its production
KR100635326B1 (en) A high tensile steel cord and manufacturing method thereof
JPH08226085A (en) Ultra-high-strength steel cord and radial tire reinforced therewith
KR100717152B1 (en) A high tensile steel cord and manufacturing method thereof
KR100717151B1 (en) A high tensile steel cord and manufacturing method thereof

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080903

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 9

Free format text: PAYMENT UNTIL: 20080903

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 10

Free format text: PAYMENT UNTIL: 20090903

LAPS Cancellation because of no payment of annual fees