JPH06184569A - High-temperature cwm feeder - Google Patents
High-temperature cwm feederInfo
- Publication number
- JPH06184569A JPH06184569A JP34062692A JP34062692A JPH06184569A JP H06184569 A JPH06184569 A JP H06184569A JP 34062692 A JP34062692 A JP 34062692A JP 34062692 A JP34062692 A JP 34062692A JP H06184569 A JPH06184569 A JP H06184569A
- Authority
- JP
- Japan
- Prior art keywords
- cwm
- coal
- slurry
- transfer pipe
- discharge
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Liquid Carbonaceous Fuels (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は石炭と水をスラリ化した
CWMを加熱して噴流床式石炭ガス化炉に供給する高温
CWM供給装置に係り、特に、石炭ガス化炉を停止した
りして圧力が急激に低下した際に、CWMが装置内に詰
まるのを防止した高温CWM供給装置に関するものであ
る。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a high temperature CWM feeder for heating a CWM obtained by slurrying coal and water and supplying it to a spouted bed type coal gasification furnace, and more particularly to shutting down the coal gasification furnace. The present invention relates to a high temperature CWM supply device that prevents the CWM from being clogged in the device when the pressure suddenly drops.
【0002】[0002]
【従来の技術】従来、噴流床式ガス化炉には石炭と水を
スラリ化したCWMを加熱して供給する高温CWM供給
装置が備えられている。この高温CWM供給装置は粒径
が0.1mm以下に細粉化した石炭と水を混合させて流動
化した石炭・水スラリ(以下CWMという)を加熱して
噴流床式ガス化炉に供給するものであり、図2に示すよ
うにCWMを貯蔵するためのCWMタンクaと、このC
WMタンクa内のCWMを圧送するチャージポンプb
と、このチャージポンプbの下流側に接続され、CWM
を加熱するスラリヒータcと、このスラリヒータcで加
熱されたCWMを噴流床式ガス化炉dに移送する移送配
管eとから主に構成されている。2. Description of the Related Art Conventionally, a spouted bed gasification furnace is provided with a high temperature CWM supply device for heating and supplying a CWM obtained by converting coal and water into a slurry. This high-temperature CWM feeder heats coal-water slurry (hereinafter referred to as CWM) fluidized by mixing coal and water pulverized to a particle size of 0.1 mm or less and supplies it to a jet-bed gasifier. As shown in FIG. 2, the CWM tank a for storing the CWM and the CWM tank a
Charge pump b for pumping CWM in WM tank a
Connected to the downstream side of this charge pump b,
And a transfer pipe e for transferring the CWM heated by the slurry heater c to the spouted bed gasification furnace d.
【0003】この噴流床式ガス化炉dはCWMと酸素、
水蒸気等のガス化剤を高温で反応させて水素や一酸化炭
素などを生成するものであり、ガス化処理能力を高める
ために内部は15〜45Kgf/cm2 程度の高圧に加圧され
ている。また、スラリヒータcは水蒸気等の加熱用流体
によってこれを通過するCWMを50〜200℃の範囲
で加熱している。This spouted bed type gasification furnace d is composed of CWM and oxygen,
It produces hydrogen and carbon monoxide by reacting a gasifying agent such as water vapor at a high temperature, and the inside is pressurized to a high pressure of about 15 to 45 Kgf / cm 2 to enhance the gasification treatment capacity. . Further, the slurry heater c heats the CWM passing therethrough in the range of 50 to 200 ° C. by a heating fluid such as steam.
【0004】この高温CWM供給装置の運転方法につい
て説明すると、先ず、起動時には常温のCWMをチャー
ジポンプbによって噴流床式ガス化炉d側に供給する。
次に、石炭ガス化炉dの内圧が所定の圧力まで上昇して
からスラリヒータcに水蒸気等の加熱用流体を流し始
め、これを通過するCWMを50〜200℃の範囲で加
熱する。そしてCWMの供給を停止する場合にはスラリ
ヒータを止めてCWMの温度を徐々に下げ、常温に戻し
た後ガス化炉を停止することになる。Explaining how to operate this high-temperature CWM supply device, first, at startup, the room temperature CWM is supplied to the jet bed gasification furnace d side by the charge pump b.
Next, after the internal pressure of the coal gasification furnace d rises to a predetermined pressure, a heating fluid such as steam is started to flow through the slurry heater c, and the CWM passing through this is heated in the range of 50 to 200 ° C. When the supply of CWM is stopped, the slurry heater is stopped, the temperature of CWM is gradually lowered, and after returning to room temperature, the gasification furnace is stopped.
【0005】すなわち、このCWMタンクa内のCWM
は通常、石炭65%、水35%程度の割合で混合されて
おり、その粘度は約1000cpとなっているが、石炭
の割合が数%上昇するとその粘度が急激に上昇して流動
性が低下し、スラリヒータcや移送配管e内に詰まって
しまう。一方、CWMの粘度を低下させるために水の割
合を多くすると、噴流床式ガス化炉d内でのガス化効率
が低下する欠点がある。これに対しCWMはその温度が
高くなるにつれ粘度を低下する特性がある。そこで、こ
の高温CWM供給装置はスラリヒータcによってCWM
を加熱することでCWMの粘度を下げ得るので、通常よ
り高い濃度のCWMを使用することができ、ガス化効率
を高めることが可能となる。That is, the CWM in this CWM tank a
Is usually mixed at a ratio of 65% coal and 35% water, and its viscosity is about 1000 cp, but when the ratio of coal increases by a few%, its viscosity sharply increases and the fluidity decreases. However, the slurry heater c and the transfer pipe e are clogged. On the other hand, if the proportion of water is increased to reduce the viscosity of the CWM, there is a drawback that the gasification efficiency in the spouted bed gasification furnace d is reduced. On the other hand, CWM has the property of decreasing the viscosity as the temperature increases. Therefore, this high temperature CWM supply device uses the slurry heater c to
Since the viscosity of the CWM can be lowered by heating the CWM, it is possible to use a CWM having a higher concentration than usual, and it is possible to enhance the gasification efficiency.
【0006】[0006]
【発明が解決しようとする課題】ところで、上述した高
温CWM供給装置では、何等かの原因で噴流床式ガス化
炉dの内圧が急激に低下した場合、スラリヒータcや移
送配管eの内圧も同時に急激に減圧するため、これを流
れるCWM中の水がフラッシュしてCWMの石炭分のみ
が残って、これがスラリヒータcや移送配管e内に詰ま
って閉塞状態を招いてしまうことになる。従って、この
場合には、高温CWM供給装置を全て分解して詰まって
いる石炭分を除去するか、それが不可能な場合は高温C
WM供給装置を新たに作り直さなくてはならず、経済
的、時間的に大変なロスとなっていた。By the way, in the above-mentioned high temperature CWM supply apparatus, when the internal pressure of the spouted bed gasification furnace d is suddenly lowered for some reason, the internal pressures of the slurry heater c and the transfer pipe e are simultaneously decreased. Since the pressure is rapidly reduced, the water in the CWM flowing therethrough is flushed and only the coal content of the CWM remains, which is clogged in the slurry heater c and the transfer pipe e and causes a blockage state. Therefore, in this case, the high temperature CWM feeder is completely decomposed to remove the clogged coal, or if it is impossible,
The WM feeder had to be recreated, which was a great financial and time loss.
【0007】そこで、本発明はこれらの欠点を有効に解
決するために案出されたものであり、その目的は噴流床
式ガス化炉の内圧が急激に低下しても、スラリヒータや
移送配管を流れるCWM中の石炭分が内部に詰まって閉
塞状態となるのを未然に防止することを達成した高温C
WM供給装置を提供するものである。Therefore, the present invention has been devised in order to effectively solve these drawbacks, and its purpose is to provide a slurry heater and a transfer pipe even if the internal pressure of a jet bed gasification furnace drops sharply. High-temperature C that has achieved the prevention of clogging due to clogging of coal in flowing CWM.
A WM supply device is provided.
【0008】[0008]
【課題を解決するための手段】上記目的を達成するため
に本発明は、石炭と水を混合した石炭・水スラリを貯蔵
するCWMタンクと、該CWMタンク内の石炭・水スラ
リを圧送するチャージポンプと、該チャージポンプの下
流側に接続され、上記石炭・水スラリを加熱するスラリ
ヒータと、該スラリヒータで加熱した石炭・水スラリを
噴流床式ガス化炉に移送する移送配管とを備え、上記C
WMタンク内の石炭・水スラリを加熱して噴流床式ガス
化炉に供給する高温CWM供給装置において、上記移送
配管の下流側に石炭・水スラリの流れを遮断するCWM
遮断弁を設けると共に、該CWM遮断弁の上流の移送配
管にこれより分岐して該移送配管内及びスラリヒータ内
の石炭・水スラリを高圧に保持したまま外部に排出する
CWM排出部を設けたものである。To achieve the above object, the present invention provides a CWM tank for storing a coal / water slurry in which coal and water are mixed, and a charge for pumping the coal / water slurry in the CWM tank. A pump, a slurry heater connected to the downstream side of the charge pump for heating the coal / water slurry, and a transfer pipe for transferring the coal / water slurry heated by the slurry heater to a jet bed gasifier. C
In a high temperature CWM supply device that heats coal / water slurry in a WM tank and supplies it to a spouted bed gasifier, a CWM that blocks the flow of coal / water slurry downstream of the transfer pipe.
A cut-off valve is provided, and a CWM discharge section is provided to branch to a transfer pipe upstream of the CWM cut-off valve to discharge the coal / water slurry in the transfer pipe and in the slurry heater to the outside while maintaining the high pressure. Is.
【0009】[0009]
【作用】本発明は以上のように構成したため、噴流床式
ガス化炉の内圧が急激に低下した場合、CWM遮断弁が
閉作動して、移送配管内以下を密閉して、減圧を防ぐこ
とになり、また、これと同時に、移送配管内等の石炭・
水スラリはCWM排出部に流れて、この移送配管内等か
ら順次排出されることになる。従って、CWM遮断弁の
下流側の移送配管内等ではフラッシュが発生しなくなっ
て、石炭分が詰まることがなくなり、移送配管内等の分
解清掃といった煩わしい作業が省略できるる。Since the present invention is configured as described above, when the internal pressure of the spouted bed type gasification furnace suddenly drops, the CWM shut-off valve closes to seal the inside of the transfer pipe and prevent depressurization. At the same time, the amount of coal
The water slurry flows to the CWM discharge part and is sequentially discharged from the inside of the transfer pipe. Therefore, flushing does not occur in the transfer pipe downstream of the CWM shutoff valve and the coal is not clogged, and troublesome work such as disassembling and cleaning the transfer pipe can be omitted.
【0010】[0010]
【実施例】以下、本発明の一実施例を説明する。EXAMPLE An example of the present invention will be described below.
【0011】図1は本発明の高温CWM供給装置を示し
たものである。図示するように、この高温CWM供給装
置は石炭と水を混合したCWMを貯蔵するCWMタンク
1と、このCWMタンク1内のCWMを加圧して移送す
るチャージポンプ2と、このチャージポンプ2の下流側
に接続され、CWMを加熱するスラリヒータ3と、この
スラリヒータ3で加熱したCWMを噴流床式ガス化炉4
のバーナ部4aに移送する移送配管5と、この移送配管
5の下流であって、これと分岐して設けられたCWM排
出部6とから主に構成されている。FIG. 1 shows a high temperature CWM supply apparatus according to the present invention. As shown in the figure, this high-temperature CWM feeder is a CWM tank 1 for storing CWM in which coal and water are mixed, a charge pump 2 for pressurizing and transferring the CWM in the CWM tank 1, and a downstream of the charge pump 2. Connected to the side of the slurry heater 3 for heating the CWM, and the CWM heated by the slurry heater 3 is connected to the jet bed gasification furnace 4
It mainly comprises a transfer pipe 5 for transferring to the burner part 4a, and a CWM discharge part 6 provided downstream of the transfer pipe 5 and branched therefrom.
【0012】この噴流床式ガス化炉は上述したように、
CWMと酸素、水蒸気等のガス化剤を高温で反応させて
水素や一酸化炭素などを生成するものであり、ガス化処
理能力を高めるために内部は15〜45Kgf/cm2 程度の
高圧に加圧されている。As described above, the jet bed gasifier has the following features.
CWM is reacted with a gasifying agent such as oxygen or water vapor at high temperature to generate hydrogen or carbon monoxide. The inside is subjected to a high pressure of about 15 to 45 Kgf / cm 2 to enhance the gasification treatment capacity. Is under pressure.
【0013】チャージポンプ2はCWMタンク1内のC
WMを払い出すと共に、スラリヒータ3及び移送配管5
を介して噴流床式ガス化炉4のバーナ部4a側に約30
Kgf/cm2 程度に加圧して移送している。The charge pump 2 is a C in the CWM tank 1.
While paying out WM, slurry heater 3 and transfer pipe 5
To the burner section 4a side of the spouted bed gasification furnace 4 through
It is transferred after being pressurized to about Kgf / cm 2 .
【0014】スラリヒータ3はチャージポンプ2から圧
送されたCWMを通過させると共に、これを水蒸気等の
高温加熱用流体Sによって50〜200℃の範囲で加熱
して、その粘度を低下させて流動性及び噴流床式ガス化
炉4での反応効率を向上させている。尚、CWMを加熱
して温度が下がった加熱用流体Sは凝縮水Wとなってス
ラリヒータ3から排出され、図示しない加熱装置によっ
て再び加熱されて水蒸気となり、加熱用流体Sとして再
利用されようになっている。The slurry heater 3 allows the CWM pressure-fed from the charge pump 2 to pass through, and heats the CWM in the range of 50 to 200 ° C. by a high temperature heating fluid S such as steam to reduce its viscosity and improve fluidity and fluidity. The reaction efficiency in the spouted bed gasification furnace 4 is improved. It should be noted that the heating fluid S whose temperature has been lowered by heating the CWM becomes condensed water W, is discharged from the slurry heater 3, is heated again by a heating device (not shown) to become steam, and is reused as the heating fluid S. Has become.
【0015】また、上記移送配管5とCWM排出部6の
分岐部からは、一端がCWMタンク1に接続されたCW
M回収管7が分岐して設けられており、CWMが加熱さ
れていない場合は移送配管5側に設けられた回収用遮断
弁8を制御することで移送配管5内を流れるCWMを導
入してCWMタンク1内に回収することができるように
なっている。From the branch portion of the transfer pipe 5 and the CWM discharge portion 6, one end is connected to the CWM tank 1 and the CW is connected.
If the M recovery pipe 7 is provided in a branched manner and the CWM is not heated, the CWM flowing in the transfer pipe 5 is introduced by controlling the recovery cutoff valve 8 provided on the transfer pipe 5 side. It can be collected in the CWM tank 1.
【0016】また、噴流床式ガス化炉4のバーナ部4a
側に接続されている移送配管5には、これを流れるCW
Mの流通を瞬時に遮断する2つのCWM遮断弁15,1
5´が並列に設けられており、これらは連動している。
そして、このCWM遮断弁15,15´は噴流床式ガス
化炉4が何らかの理由で緊急に停止した場合は、自動的
に瞬時にかつ同時に閉作動するようになっている。これ
により移送配管5内は密閉され急激な圧力低下は起らな
いようになっている。The burner section 4a of the jet bed gasification furnace 4
The transfer pipe 5 connected to the
Two CWM shut-off valves 15 and 1 that instantly shut off the flow of M
5'is provided in parallel, and these are interlocked.
The CWM shutoff valves 15 and 15 'are adapted to automatically and instantaneously and simultaneously close when the jet bed gasifier 4 is urgently stopped for some reason. As a result, the inside of the transfer pipe 5 is hermetically closed so that no sudden pressure drop occurs.
【0017】尚、このCWM遮断弁15,15´を2個
設けた理由としては、移送配管5内のCWMの流れを完
全に遮断するためである。すなわち、上述したように移
送配管5内のCWMはスラリヒータ3で加熱されること
により、非常に高圧となっているため、一つの遮断弁の
みでは、完全にCWMの流れを遮断することができない
場合があって多少のCWMの洩れが生ずることがあるか
らである。従って、遮断性能が高く高圧のCWMの流れ
を完全に遮断することができる高性能の遮断弁であれ
ば、一つでも良いことは勿論である。The reason for providing the two CWM shutoff valves 15 and 15 'is to completely shut off the flow of the CWM in the transfer pipe 5. That is, as described above, since the CWM in the transfer pipe 5 is heated to a very high pressure by the slurry heater 3, it is impossible to completely shut off the CWM flow with only one shutoff valve. Therefore, some leakage of CWM may occur. Therefore, it goes without saying that only one high-performance shut-off valve having a high shut-off performance and capable of completely shutting off the flow of the high-pressure CWM may be used.
【0018】CWM排出部6は、CWM遮断弁15の上
流側の移送配管5から分岐されたCWM排出管9と、C
WM排出管9の移送配管5側に設けられた排出用第一遮
断弁10と、この排出用第一遮断弁10の下流側のCW
M排出管9途中に設けられ、冷却水を導入する冷却水導
入弁17を備えた混合器11と、CWM排出管9の他端
側に設けられた減圧弁12及び排出用第二遮断弁13
と、CWM排出管9の他端部に設けられたスラリ排出槽
14とから構成されており、上述したように、噴流床式
ガス化炉が停止してCWM遮断弁15,15´が遮断し
たときに、移送配管5内の高温高圧のCWMを導入して
圧力を保持したまま冷却し外部に排出するようになって
いる。The CWM discharge part 6 includes a CWM discharge pipe 9 branched from the transfer pipe 5 on the upstream side of the CWM shutoff valve 15, and a CWM discharge pipe 9.
A discharge first cutoff valve 10 provided on the transfer pipe 5 side of the WM discharge pipe 9, and a CW on the downstream side of the discharge first cutoff valve 10.
Mixer 11 provided in the middle of M discharge pipe 9 and having a cooling water introduction valve 17 for introducing cooling water, pressure reducing valve 12 and second discharge cutoff valve 13 provided at the other end of CWM discharge pipe 9.
And a slurry discharge tank 14 provided at the other end of the CWM discharge pipe 9, and as described above, the jet bed gasification furnace is stopped and the CWM cutoff valves 15 and 15 'are shut off. At this time, the high temperature and high pressure CWM in the transfer pipe 5 is introduced, cooled while maintaining the pressure, and discharged to the outside.
【0019】また、上記回収用遮断弁8,排出用第一遮
断弁10はCWM遮断弁15,15´と連動しており、
CWM遮断弁15,15´が開いている場合には、回収
用遮断弁8と排出用第一遮断弁10のいずれも閉じた状
態となっており、また、CWM遮断弁15,15´が閉
じた場合には回収用遮断弁8と排出用第一遮断弁10の
いずれ一方が開いて、移送配管5内のCWMがCWM回
収管7側又はCWM排出管9側に流れるようになってい
る。すなわち、本実施例においてはCWM遮断弁15,
15´が瞬時に閉じた時に、移送配管5内のCWMが比
較的低温(例えば80℃以下)で、減圧してもCWMが
フラッシュしない状態の場合には回収用遮断弁8側のみ
を開いて、移送配管5内のCWMをCWM回収管7側に
流し、反対にCWMが高温(80℃以上)状態で、これ
を減圧した場合にフラッシュが起きやすい状態のときに
は排出用第一遮断弁10側のみを開いてCWM排出管9
側に流すようになっている。また、排出用第二遮断弁1
3,減圧弁12,冷却水導入弁17は排出用第一遮断弁
10と連動しており、排出用第一遮断弁10の開閉動作
と原則的に一致している。また、排出用第一遮断弁10
が閉じているときには冷却水導入弁17から導入された
冷却水によってCWM排出管9内に7kg/cm2 の水圧の
冷却水が封入されている。The recovery shutoff valve 8 and the discharge first shutoff valve 10 are interlocked with the CWM shutoff valves 15 and 15 '.
When the CWM cutoff valves 15 and 15 'are open, both the collection cutoff valve 8 and the discharge first cutoff valve 10 are closed, and the CWM cutoff valves 15 and 15' are closed. In this case, one of the recovery cutoff valve 8 and the discharge first cutoff valve 10 is opened, and the CWM in the transfer pipe 5 flows to the CWM recovery pipe 7 side or the CWM discharge pipe 9 side. That is, in this embodiment, the CWM shutoff valve 15,
When the CWM in the transfer pipe 5 is at a relatively low temperature (for example, 80 ° C. or less) when the 15 ′ is instantly closed and the CWM does not flash even when the pressure is reduced, only the recovery cutoff valve 8 side is opened. When the CWM in the transfer pipe 5 is made to flow to the CWM recovery pipe 7 side, and the CWM is at a high temperature (80 ° C. or higher), and the flash is likely to occur when decompressing this, the first shutoff valve 10 side for discharge Open only CWM discharge pipe 9
It is designed to run to the side. In addition, the second shutoff valve for discharge 1
3, the pressure reducing valve 12 and the cooling water introduction valve 17 are interlocked with the first discharge shutoff valve 10, and in principle coincide with the opening / closing operation of the first discharge shutoff valve 10. In addition, the first shutoff valve 10 for discharge
When is closed, cooling water having a water pressure of 7 kg / cm 2 is sealed in the CWM discharge pipe 9 by the cooling water introduced from the cooling water introduction valve 17.
【0020】次に、本実施例の作用を説明する。Next, the operation of this embodiment will be described.
【0021】先ず、噴流式ガス化炉4の起動前にCWM
回収管7の回収用遮断弁8を開き、所要のCWMを流し
ておき、点火時に回収用遮断弁8を閉じCWM遮断弁1
5,15´を開いて噴流床式ガス化炉4にCWMを送っ
てガス化を始め、その内圧を上昇させる。次に、噴流床
式ガス化炉4の内圧が約20Kgf/cm2 まで上昇したなら
ばスラリヒータ3に水蒸気等の加熱用流体Sを流し始
め、これを通過するCWMを50〜200℃の範囲で加
熱する。高濃度のCWMを使用した場合、スラリヒータ
3でCWMを加熱しないと移送配管5及びスラリヒータ
3での圧力損失が大きくなりチャージポンプ2出口の圧
力が高くなり過ぎることがある。この場合は、噴流床式
ガス化炉4の内圧を約15kgf/cm2 で一旦保持しCWM
の加熱に入った後、噴流床式ガス化炉4の内圧を所要の
20kgf/cm2 迄上昇させる。このような操作方法をとる
ことにより、噴流床式ガス化炉での反応効率を良くでき
る高濃度のCWMを供給することになる。そして、この
CWMの供給を停止する場合にはスラリヒータ3による
加熱温度を下げて移送配管5内の圧力が低下してもCW
Mがフラッシュしない状態にしてから、その供給を停止
することになる。First, before starting the jet gasification furnace 4, the CWM is used.
The recovery cutoff valve 8 of the recovery pipe 7 is opened, a required CWM is allowed to flow, and the recovery cutoff valve 8 is closed at the time of ignition.
5, 15 'are opened, CWM is sent to the fluidized bed gasification furnace 4, gasification is started, and the internal pressure is raised. Next, when the internal pressure of the spouted bed gasification furnace 4 rises to about 20 Kgf / cm 2 , the heating fluid S such as steam is started to flow through the slurry heater 3 and the CWM passing through this is within the range of 50 to 200 ° C. To heat. When a high-concentration CWM is used, unless the CWM is heated by the slurry heater 3, the pressure loss at the transfer pipe 5 and the slurry heater 3 becomes large, and the pressure at the outlet of the charge pump 2 may become too high. In this case, the internal pressure of the jet bed gasification furnace 4 is maintained at about 15 kgf / cm 2 and the CWM is maintained.
After the start of heating, the internal pressure of the spouted bed gasification furnace 4 is raised to the required 20 kgf / cm 2 . By adopting such an operation method, it is possible to supply a high-concentration CWM capable of improving the reaction efficiency in the spouted bed gasification furnace. When the supply of CWM is stopped, the heating temperature of the slurry heater 3 is lowered to reduce the CW even if the pressure in the transfer pipe 5 is lowered.
The supply of the M will be stopped after the M is not flushed.
【0022】ところが、何等かの原因で噴流床式ガス化
炉4が急に停止する場合および圧力が急激に低下した場
合は、瞬時にCWM遮断弁15,15´を同時に作動し
て移送配管5内を密閉して移送配管5内圧力が急激に低
下するのを防ぐことになる。すると、これと連動して回
収用遮断弁8,排出用第一遮断弁10のいずれか一方を
開いて移送配管5内の高温のCWMを循環回収、または
外部へ排出することになる。すなわち、この時移送配管
5内のCWMの温度が80℃以下で、多少圧力を下げて
もフラッシュが起きにくい状態である場合は、回収用遮
断弁8側を開いてこのCWMをCWM回収管7側に流す
と共に、上述した噴流床式ガス化炉4の運転停止時と同
様にスラリヒータ3による加熱温度を下げてCWMが移
送配管5内に詰まらない状態にしてから、その供給を停
止することになる。However, when the fluidized bed gasification furnace 4 suddenly stops for some reason or when the pressure drops sharply, the CWM shut-off valves 15 and 15 'are instantaneously activated simultaneously to transfer the pipe 5 The inside is sealed to prevent the pressure inside the transfer pipe 5 from dropping sharply. Then, in conjunction with this, either one of the collection shutoff valve 8 and the discharge first shutoff valve 10 is opened to circulate and collect the high temperature CWM in the transfer pipe 5 or discharge it to the outside. That is, at this time, when the temperature of the CWM in the transfer pipe 5 is 80 ° C. or less and the flush is difficult to occur even if the pressure is lowered to some extent, the recovery cutoff valve 8 side is opened and the CWM is transferred to the CWM recovery pipe 7. And to stop the supply of the CWM in the transfer pipe 5 after the temperature is lowered by the slurry heater 3 in the same manner as when the jet bed gasification furnace 4 is stopped. Become.
【0023】しかしながら、CWMの温度が80℃以上
である場合は、CWMが高圧であるため、これをCWM
回収管7側に流すと、フラッシュ現象が起きて移送配管
5及びCWM回収管7に詰まってしまう。従って、CW
Mの温度が80℃以上である場合はCWM排出部6の排
出用第一遮断弁10のみを開いて、これをCWM排出部
6に流すことになる。CWM排出部6においては、排出
用第一遮断弁10を通過してCWM排出管9を流れてき
た高温のCWMは、冷却水導入弁17を備えた混合器1
1内で冷却水導入弁17と混合されて冷却された後、こ
の冷却水と共にCWM排出管9をさらに通過し、減圧弁
13を通過して減圧され、その後、排出用第二遮断弁1
2を通過してその端部からスラリ排出槽14に排出され
ることになる。また、この時、CWM排出部6のCWM
排出管9内は、予め封入されている冷却水、及び減圧弁
13によって高圧に保たれているため、排出用第一遮断
弁10、排出用第二遮断弁12を開いてCWM排出管9
をCWMを通過させても移送配管5内が急激に減圧する
ことはなく、移送配管5内においてCWMのフラッシュ
が起きる心配はない。そして、上述した噴流床式ガス化
炉4の運転停止時と同様にスラリヒータ3による加熱温
度を下げて移送配管5内のCWMがフラッシュを起こさ
ない状態にしてから、その供給を停止する。そして、こ
れと同時に、排出用第一遮断弁10を閉じてCWM排出
管9内へのCWMの流れを停止し、その後、冷却水導入
弁17からの冷却水の供給を続けて排出用第一遮断弁1
0の下流側のCWM排出管9及び混合器11内にある残
りのCWMをスラリ排出槽14に排出した後、排出用第
二遮断弁12を閉じてCWM排出管9内を密閉し、CW
M排出管9内の水圧が所定圧になった後、冷却水導入弁
17を閉じて所定圧の冷却水をCWM排出管9内に封入
することになる。However, when the temperature of the CWM is 80 ° C. or higher, the CWM has a high pressure.
When flowing to the recovery pipe 7 side, a flush phenomenon occurs and the transfer pipe 5 and the CWM recovery pipe 7 are clogged. Therefore, CW
When the temperature of M is 80 ° C. or higher, only the discharge first cutoff valve 10 of the CWM discharge part 6 is opened and this is made to flow to the CWM discharge part 6. In the CWM discharge section 6, the high temperature CWM flowing through the CWM discharge pipe 9 after passing through the discharge first shut-off valve 10 includes the mixer 1 equipped with the cooling water introduction valve 17.
After being mixed with the cooling water introducing valve 17 in 1 and cooled, the cooling water further passes through the CWM discharge pipe 9 and the pressure reducing valve 13 to reduce the pressure, and then the second discharge shutoff valve 1
After passing through 2, the slurry is discharged from the end to the slurry discharge tank 14. Also, at this time, the CWM of the CWM discharge unit 6
Since the inside of the discharge pipe 9 is kept at a high pressure by the cooling water that has been sealed in advance and the pressure reducing valve 13, the first discharge shutoff valve 10 and the discharge second shutoff valve 12 are opened to open the CWM discharge pipe 9.
Through the CWM, the pressure in the transfer pipe 5 does not suddenly decrease, and there is no concern that the CWM will be flushed in the transfer pipe 5. Then, as in the case where the operation of the above-mentioned jet bed gasification furnace 4 is stopped, the heating temperature by the slurry heater 3 is lowered so that the CWM in the transfer pipe 5 does not cause a flush, and then the supply thereof is stopped. At the same time, the first shutoff valve 10 for discharge is closed to stop the flow of CWM into the CWM discharge pipe 9, and thereafter, the supply of the cooling water from the cooling water introduction valve 17 is continued and the first discharge water is discharged. Shut-off valve 1
After discharging the remaining CWM in the CWM discharge pipe 9 and the mixer 11 on the downstream side of 0 to the slurry discharge tank 14, the second discharge cutoff valve 12 is closed to seal the inside of the CWM discharge pipe 9,
After the water pressure in the M discharge pipe 9 reaches a predetermined pressure, the cooling water introduction valve 17 is closed to fill the CWM discharge pipe 9 with the predetermined pressure of cooling water.
【0024】このように、本発明は移送配管5の下流側
に、CWMの流れを遮断するCWM遮断弁15,15´
を設けると共に、このCWM遮断弁15,15´の上流
の移送配管5にこれより分岐してこの移送配管5内及び
スラリヒータ3内の高温高圧のCWMを外部に排出する
CWM排出部6を設けたことにより、装置内でのCWM
のフラッシュが未然に防止され、これが詰まって閉塞状
態になるのを防止することができるようになる。従っ
て、装置の分解清掃作業等の煩わしい作業を行う必要が
なくなると共に、装置を新たに作り直すといった費用や
時間的コストが低減されることになる。As described above, according to the present invention, the CWM shutoff valves 15, 15 'for shutting off the CWM flow are provided downstream of the transfer pipe 5.
In addition to the above, a CWM discharge portion 6 for branching the transfer pipe 5 upstream of the CWM cutoff valves 15 and 15 'from the transfer pipe 5 and discharging the high temperature and high pressure CWM in the transfer pipe 5 and the slurry heater 3 to the outside is provided. By doing so, the CWM in the device
Is prevented from being flushed, and it is possible to prevent it from becoming clogged and blocked. Therefore, it is not necessary to perform troublesome work such as disassembling and cleaning work of the device, and the cost and time cost of newly rebuilding the device are reduced.
【0025】[0025]
【発明の効果】以上、要するに本発明によれば、装置内
にCWMが詰まって閉塞状態になるのを防止することが
可能となるため、分解清掃作業等の煩わしい作業を行う
必要がなくなると共に、装置を新たに作り直すといった
費用や時間的コストが低減されて装置の信頼性、耐久性
が向上するといった優れた効果を有する。As described above, in short, according to the present invention, it is possible to prevent the CWM from being clogged in the device to be in a closed state, so that it is not necessary to carry out a troublesome work such as disassembling and cleaning work. It has an excellent effect that the cost and time cost of remaking the device are reduced and the reliability and durability of the device are improved.
【図1】本発明の一実施例を示す全体概略図である。FIG. 1 is an overall schematic diagram showing an embodiment of the present invention.
【図2】従来の高温CWM供給装置を示す全体概略図で
ある。FIG. 2 is an overall schematic view showing a conventional high temperature CWM supply device.
1 CWMタンク 2 チャージポンプ 3 スラリヒータ 4 噴流床式ガス化炉 5 移送配管 6 CWM排出部 15,15´ CWM遮断弁 1 CWM tank 2 Charge pump 3 Slurry heater 4 Jet bed gasifier 5 Transfer pipe 6 CWM discharge part 15,15 'CWM shutoff valve
───────────────────────────────────────────────────── フロントページの続き (72)発明者 阿部 高之 東京都江東区豊洲三丁目2番16号 石川島 播磨重工業株式会社豊洲総合事務所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Takayuki Abe 3-2-16 Toyosu, Koto-ku, Tokyo Ishikawajima Harima Heavy Industries Co., Ltd. Toyosu General Office
Claims (1)
蔵するCWMタンクと、該CWMタンク内の石炭・水ス
ラリを圧送するチャージポンプと、該チャージポンプの
下流側に接続され、上記石炭・水スラリを加熱するスラ
リヒータと、該スラリヒータで加熱した石炭・水スラリ
を噴流床式ガス化炉に移送する移送配管とを備え、上記
CWMタンク内の石炭・水スラリを加熱して噴流床式ガ
ス化炉に供給する高温CWM供給装置において、上記移
送配管の下流側に石炭・水スラリの流れを遮断するCW
M遮断弁を設けると共に、該CWM遮断弁の上流側の移
送配管にこれより分岐して該移送配管内及びスラリヒー
タ内の石炭・水スラリを高圧に保持したまま外部に排出
するCWM排出部を設けたことを特徴とする高温CWM
供給装置。1. A CWM tank for storing a coal / water slurry in which coal and water are mixed, a charge pump for pumping the coal / water slurry in the CWM tank, and a downstream side of the charge pump, which is connected to the coal. A slurry heater for heating the water slurry, and a transfer pipe for transferring the coal / water slurry heated by the slurry heater to the jet bed gasification furnace, and the coal / water slurry in the CWM tank is heated to form the jet bed type In a high temperature CWM supply device for supplying to a gasification furnace, a CW for cutting off the flow of coal / water slurry downstream of the transfer pipe
An M cutoff valve is provided, and a CWM discharge unit is provided to branch to a transfer pipe upstream of the CWM cutoff valve to discharge coal / water slurry in the transfer pipe and in the slurry heater to the outside while maintaining high pressure. High temperature CWM characterized by
Supply device.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP34062692A JP3556961B2 (en) | 1992-12-21 | 1992-12-21 | High temperature CWM supply device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP34062692A JP3556961B2 (en) | 1992-12-21 | 1992-12-21 | High temperature CWM supply device |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH06184569A true JPH06184569A (en) | 1994-07-05 |
JP3556961B2 JP3556961B2 (en) | 2004-08-25 |
Family
ID=18338781
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP34062692A Expired - Fee Related JP3556961B2 (en) | 1992-12-21 | 1992-12-21 | High temperature CWM supply device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3556961B2 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0770572A (en) * | 1993-09-02 | 1995-03-14 | Nippon Com Kk | Method for taking out slurry |
CN104199413A (en) * | 2014-08-29 | 2014-12-10 | 中国神华能源股份有限公司 | Emergency interlocking shutdown method for water-coal-slurry gasifying process system |
-
1992
- 1992-12-21 JP JP34062692A patent/JP3556961B2/en not_active Expired - Fee Related
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0770572A (en) * | 1993-09-02 | 1995-03-14 | Nippon Com Kk | Method for taking out slurry |
CN104199413A (en) * | 2014-08-29 | 2014-12-10 | 中国神华能源股份有限公司 | Emergency interlocking shutdown method for water-coal-slurry gasifying process system |
Also Published As
Publication number | Publication date |
---|---|
JP3556961B2 (en) | 2004-08-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6256975B1 (en) | Method for reliably removing liquid fuel from the fuel system of a gas turbine, and a device for carrying out the method | |
TW576906B (en) | Natural gas supply apparatus | |
JP2011522990A (en) | Method for cleaning a fuel system of a gas turbine and the fuel system | |
CN112460635B (en) | Air-entraining purging method for dual-fuel gas turbine | |
JPH06184569A (en) | High-temperature cwm feeder | |
JP3862251B2 (en) | Hot water generator | |
JP4372183B2 (en) | Coal / water paste production and supply method and equipment | |
JP3555235B2 (en) | Fuel purge method for pressurized fluidized bed boiler | |
JP2855874B2 (en) | High temperature CWM supply device | |
JPH08291291A (en) | Gasifying plant and gasification power plant | |
JP3807273B2 (en) | Power plant equipped with heavy oil reformer and operation method thereof | |
JP2013174239A (en) | Fuel purging system for turbine assembly | |
RU2576398C2 (en) | Fuel system of gas-steam-turbine plant and method of its washing | |
JP3389114B2 (en) | Fuel slurry supply apparatus, purge method thereof, and fuel slurry supply method | |
JPS59219599A (en) | Suppression of gas in cryogenic liquidized gas tank | |
JP4685644B2 (en) | Heavy oil reformer, heavy oil reformer shutdown method, and gas turbine equipped with heavy oil reformer | |
JPH04325593A (en) | Apparatus for preventing high-temperature cwm feeding apparatus from causing drastic pressure rise | |
JP4715742B2 (en) | Reformed fuel-fired gas turbine power generation system | |
CN110776055B (en) | Application system of supercritical water oxidation reaction product | |
JP5554508B2 (en) | Slag discharge device and slag discharge method | |
JP4076004B2 (en) | Paste fuel production apparatus and method | |
JP3474215B2 (en) | CWM manufacturing equipment | |
CN117844537A (en) | Ground coal gasifier lime-ash continuous conveying processing system | |
JPH05125958A (en) | Liquid fuel supply device | |
JPH06257719A (en) | Fluidized bed boiler |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A131 | Notification of reasons for refusal |
Effective date: 20040113 Free format text: JAPANESE INTERMEDIATE CODE: A131 |
|
A521 | Written amendment |
Effective date: 20040312 Free format text: JAPANESE INTERMEDIATE CODE: A523 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20040420 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20040514 |
|
R150 | Certificate of patent (=grant) or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313117 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080521 Year of fee payment: 4 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080521 Year of fee payment: 4 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Year of fee payment: 4 Free format text: PAYMENT UNTIL: 20080521 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090521 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Year of fee payment: 5 Free format text: PAYMENT UNTIL: 20090521 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100521 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100521 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110521 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Year of fee payment: 8 Free format text: PAYMENT UNTIL: 20120521 |
|
LAPS | Cancellation because of no payment of annual fees |