JPH04325593A - Apparatus for preventing high-temperature cwm feeding apparatus from causing drastic pressure rise - Google Patents

Apparatus for preventing high-temperature cwm feeding apparatus from causing drastic pressure rise

Info

Publication number
JPH04325593A
JPH04325593A JP9536591A JP9536591A JPH04325593A JP H04325593 A JPH04325593 A JP H04325593A JP 9536591 A JP9536591 A JP 9536591A JP 9536591 A JP9536591 A JP 9536591A JP H04325593 A JPH04325593 A JP H04325593A
Authority
JP
Japan
Prior art keywords
cwm
pressure
coal
transfer pipe
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9536591A
Other languages
Japanese (ja)
Other versions
JP2855879B2 (en
Inventor
Kokichi Uematsu
宏吉 上松
Mutsuo Kato
加藤 睦男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Priority to JP9536591A priority Critical patent/JP2855879B2/en
Publication of JPH04325593A publication Critical patent/JPH04325593A/en
Application granted granted Critical
Publication of JP2855879B2 publication Critical patent/JP2855879B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Liquid Carbonaceous Fuels (AREA)

Abstract

PURPOSE:To prevent drastic pressure rise when operation is stopped by connecting a pressure-release pipe with a transfer pipe connecting a shut-off valve and a high pressure-receiving drum so as to be branched therefrom and providing a pressure-release drum on another end through a rupture disc. CONSTITUTION:When a heating fluid S at high temp. flows in a heater by mistake under a closed condition of an apparatus wherein operation is stopped and a shut-off valve 7 and a branched shut-off valve 7a are closed, expansion of CWM (a coal-water slurry) in the apparatus occurs by heating and the pressure in the apparatus is abnormally elevated. Then, about 10% of the expanded CWM passes through a pressure-release pipe 21 and breaks a rupture disc 22 to flash into a pressure-release drum 23. As the drum 23 is pressurized with nitrogen gas, water in the expanded CWM cannot be evaporated. Therefore, there is no possibility that clogging may occur in the apparatus caused by the elevation of the viscosity of the expanded CWM.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は石炭と水をスラリ化した
CWMを加熱して噴流床式ガス化炉に供給する高温CW
M供給装置に係り、特に、高温CWM供給装置内のCW
Mの圧力が急激に上昇した際に、これを逃がして装置の
破損などを防止した高温CWM供給装置の過圧防止装置
に関するものである。
[Industrial Application Field] The present invention is a high-temperature CW that heats CWM, which is a slurry of coal and water, and supplies it to an entrained bed gasifier.
Regarding the M supply device, especially the CW in the high temperature CWM supply device.
This invention relates to an overpressure prevention device for a high-temperature CWM supply device that prevents damage to the device by releasing the pressure when the pressure of M suddenly increases.

【0002】0002

【従来の技術】従来、噴流床式ガス化炉には石炭と水を
スラリ化したCWM(石炭・水スラリ)を加熱して供給
する高温CWM供給装置が備えられている。この高温C
WM供給装置は粒径が0.1mm以下に細粉化した石炭
と水を混合させて流動化したCWMを加熱して噴流床式
ガス化炉に供給するものであり、図3に示すようにCW
Mを貯蔵するためのCWMランタンクaと、このCWM
ランタンクa内のCWMを圧送するチャージポンプbと
、このチャージポンプbの下流側に接続され、CWMを
加熱する加熱ヒータcと、この加熱ヒータcで加熱され
たCWMを噴流床式ガス化炉dに移送する移送配管eと
から主に構成されている。
2. Description of the Related Art Conventionally, an entrained bed gasifier is equipped with a high-temperature CWM supply device that heats and supplies CWM (coal-water slurry), which is a slurry of coal and water. This high temperature C
The WM supply device heats CWM that has been fluidized by mixing coal that has been pulverized to a particle size of 0.1 mm or less with water and supplies it to the spouted bed gasifier, as shown in Figure 3. C.W.
A CWM run tank a for storing M and this CWM
A charge pump b that pumps the CWM in the run tank a, a heater c that is connected to the downstream side of the charge pump b and that heats the CWM, and an entrained bed gasifier d that transfers the CWM heated by the heater c. It mainly consists of a transfer piping e for transferring to.

【0003】この噴流床式ガス化炉dは高温CWM供給
装置から供給されたCWMと酸素、水蒸気等のガス化剤
を高温で反応させて水素や一酸化炭素などの可燃ガスを
生成するものであり、ガス化処理能力を高めるために内
部は15〜45Kgf/cm2 程度の高圧に加圧され
ている。
[0003] This spouted bed gasifier d reacts CWM supplied from a high-temperature CWM supply device with a gasifying agent such as oxygen and steam at high temperature to produce combustible gases such as hydrogen and carbon monoxide. The interior is pressurized to a high pressure of about 15 to 45 Kgf/cm2 to increase gasification processing capacity.

【0004】また、加熱ヒータcは水蒸気等の加熱用流
体によってこれを通過するCWMを50〜200℃の範
囲で加熱してCWMの粘度を下げ、CWMが移送配管e
内を良好に流れるように流動性を向上させている。
[0004] Also, the heater c heats the CWM passing through it with a heating fluid such as steam to a temperature in the range of 50 to 200°C to lower the viscosity of the CWM, and the CWM is transferred to the transfer pipe e.
The fluidity has been improved so that it can flow smoothly inside.

【0005】この高温CWM供給装置の運転方法につい
て説明すると、先ず、起動時にはCWMが加熱ヒータc
や移送配管e内に詰まらないように、常温、低濃度、す
なわち石炭の割合が少ない低粘度のCWMをチャージポ
ンプbによって噴流床式ガス化炉d側に供給する。そし
て、石炭ガス化炉dの内圧が所定の圧力まで上昇してか
ら加熱ヒータcに水蒸気等の加熱用流体を流し始め、こ
れを通過するCWMを50〜200℃の範囲で加熱する
。次に、CWMの粘度が1000cpを越えないように
石炭の割合を徐々に増やして濃度を上昇させることにな
る。そして、最後に、このCWMの供給を停止する場合
にはCWM中の石炭の割合を減らして濃度、すなわち粘
度を下げた後、加熱ヒータcの温度を下げて停止するこ
とになる。
[0005] To explain the operating method of this high-temperature CWM supply device, first, at startup, the CWM turns on the heater c.
CWM of low concentration, that is, low viscosity with a small proportion of coal, is supplied to the spouted bed gasifier d side by a charge pump b so as not to clog the transfer pipe e. Then, after the internal pressure of the coal gasifier d rises to a predetermined pressure, a heating fluid such as steam starts flowing into the heater c, and the CWM passing through it is heated in the range of 50 to 200°C. Next, the proportion of coal will be gradually increased to increase the concentration so that the viscosity of the CWM does not exceed 1000 cp. Finally, when the supply of CWM is to be stopped, the proportion of coal in the CWM is reduced to lower the concentration, that is, the viscosity, and then the temperature of the heater c is lowered and the supply is stopped.

【0006】すなわち、このCWMランタンクa内のC
WMは通常、石炭65wt%、水35wt%の割合で混
合されており、その粘度は約1000cpとなっている
が、石炭の割合が数wt%上昇するとその粘度が急激に
上昇して流動性が低下し、加熱ヒータcや移送配管e内
に詰まってしまう。一方、CWMの粘度を低下させるた
めに水の割合を多くすると、噴流床式ガス化炉d内での
CWMのガス化効率が低下するといった相反する欠点が
ある。 そこで、この高温CWM供給装置は加熱ヒータcによっ
てCWMを加熱することで水の割合を増やすことなくC
WMの粘度の上昇を抑え、高濃度のCWMが加熱ヒータ
cや移送配管e内に詰まるのを防止している。
[0006] That is, C in this CWM lan tank a
WM is usually a mixture of 65 wt% coal and 35 wt% water, and its viscosity is approximately 1000 cp, but when the coal ratio increases by several wt%, the viscosity increases rapidly and fluidity decreases. This will cause the heater c and transfer pipe e to become clogged. On the other hand, increasing the proportion of water in order to reduce the viscosity of CWM has the contradictory drawback that the gasification efficiency of CWM in the spouted bed gasifier d decreases. Therefore, this high-temperature CWM supply device heats the CWM with a heating heater c, without increasing the proportion of water.
This suppresses the increase in the viscosity of the WM and prevents the highly concentrated CWM from clogging the heater c and the transfer pipe e.

【0007】ところで、上述した高温CWM供給装置で
は、何等かの原因で噴流床式ガス化炉dの内圧が急激に
低下した場合、加熱ヒータcや移送配管eの内圧も同時
に低下し、これを流れるCWM中の水分が急激に蒸発す
ることによってCWMの濃度が上昇して流動性が失われ
、これが加熱ヒータcや移送配管e内に詰まって高温C
WM供給装置が閉塞状態となってしまうことがあった。 この場合、この高温CWM供給装置を全てバラして詰ま
っているCWMを除去するか、それが不可能な場合は高
温CWM供給装置を新たに作り直さなくてはならず、大
変なロスとなる。  そのため、本発明者らはこれらの
不都合を解消するために新たな高温CWM供給装置を提
案している。この新たな高温CWM供給装置は図2に示
すように、従来の高温CWM供給装置の移送配管eの上
流側に、移送配管eの上流側の石炭・水スラリを逃がす
高圧受入ドラムfを設けると共に、上記移送配管eの下
流側に石炭・水スラリの流れを遮断する遮断弁gを設け
、さらに、この遮断弁gの下流側の移送配管eに窒素ガ
スを注入する窒素ガス注入部hとを新たに備えたもので
ある。
By the way, in the above-mentioned high-temperature CWM supply system, if the internal pressure of the entrained bed gasifier d suddenly drops for some reason, the internal pressure of the heater c and the transfer pipe e also drops at the same time. As the water in the flowing CWM rapidly evaporates, the concentration of CWM increases and fluidity is lost, which clogs the heater c and the transfer pipe e, resulting in high temperature CWM.
The WM supply device sometimes became blocked. In this case, the high-temperature CWM supply device must be completely disassembled to remove the clogged CWM, or if that is not possible, the high-temperature CWM supply device must be rebuilt, resulting in a large loss. Therefore, the present inventors have proposed a new high-temperature CWM supply device to eliminate these disadvantages. As shown in Fig. 2, this new high-temperature CWM supply device is equipped with a high-pressure receiving drum f on the upstream side of the transfer pipe e of the conventional high-temperature CWM supply device to release the coal/water slurry upstream of the transfer pipe e. A cutoff valve g for blocking the flow of the coal/water slurry is provided on the downstream side of the transfer pipe e, and a nitrogen gas injection part h is further provided for injecting nitrogen gas into the transfer pipe e on the downstream side of the cutoff valve g. This is a new addition.

【0008】この遮断弁gは噴流床式ガス化炉d内の圧
力が急激に低下すると、瞬時に作動して移送配管e内の
石炭・水スラリの流れを遮断するようになっており、ま
た、窒素ガス注入部hは、遮断弁gが作動すると同時に
連動して遮断弁gの下流側の移送配管e内に窒素ガスを
注入して、内部の石炭・水スラリを噴流床式ガス化炉d
側に圧送するようになっている。また、高圧受入ドラム
fは窒素ガスによって移送配管e内と略同圧に制御され
ており、遮断弁gの上流側の移送配管eに接続され、途
中に分岐遮断弁mを備えた分岐配管nに接続されている
。この分岐遮断弁mは上記遮断弁gと連動しており、遮
断弁gが閉じると同時に瞬時に開いて遮断弁gの上流側
の移送配管e内の石炭・水スラリを高圧受入ドラムf側
に流すようになっている。
This shutoff valve g is designed to operate instantaneously to shut off the flow of coal/water slurry in the transfer pipe e when the pressure in the entrained bed gasifier d suddenly decreases. , the nitrogen gas injector h injects nitrogen gas into the transfer pipe e on the downstream side of the shutoff valve g at the same time as the shutoff valve g operates, and transfers the internal coal/water slurry to the entrained bed gasifier. d
It is designed to be pumped to the side. In addition, the high-pressure receiving drum f is controlled by nitrogen gas to approximately the same pressure as the inside of the transfer pipe e, and is connected to the transfer pipe e on the upstream side of the cutoff valve g, and a branch pipe n equipped with a branch cutoff valve m in the middle. It is connected to the. This branch cutoff valve m is linked to the above cutoff valve g, and opens instantaneously at the same time as the cutoff valve g closes to transfer the coal/water slurry in the transfer pipe e upstream of the cutoff valve g to the high pressure receiving drum f side. It is designed to flow.

【0009】すなわち、この高温CWM供給装置は噴流
床式ガス化炉dの内圧が急激に低下した場合に遮断弁g
が閉じて装置内の圧力の低下を防止すると同時に、窒素
ガス注入部hから注入される窒素ガスによって遮断弁g
の下流側の移送配管e内の高濃度の石炭・水スラリを全
て噴流床式ガス化炉d側に圧送して遮断弁gの下流側の
移送配管e内に高濃度の石炭・水スラリが詰まるのを防
止すると共に、高圧受入ドラムfに、遮断弁gの上流側
の移送配管e及び加熱ヒータc内の高濃度の石炭・水ス
ラリを全て逃がすことによって遮断弁gの上流側の移送
配管e及び加熱ヒータc内に高濃度の石炭・水スラリが
詰まるのを防止するものである。
That is, in this high-temperature CWM supply device, when the internal pressure of the entrained bed gasifier d suddenly decreases, the shutoff valve g
At the same time, the shutoff valve g is closed by the nitrogen gas injected from the nitrogen gas injection part h.
The high concentration coal/water slurry in the transfer pipe e on the downstream side of the shutoff valve g is all pumped to the entrained bed gasifier d side, and the high concentration coal/water slurry is in the transfer pipe e on the downstream side of the shutoff valve g. By preventing clogging and releasing all the high concentration coal/water slurry in the transfer pipe e and the heater c on the upstream side of the cutoff valve g to the high pressure receiving drum f, the transfer pipe on the upstream side of the cutoff valve g This prevents highly concentrated coal/water slurry from clogging inside the heater c and the heater c.

【0010】0010

【発明が解決しようとする課題】ところで、上述した新
たな高温CWM供給装置は運転中は遮断弁gが開いてお
り、装置内の石炭・水スラリの圧力は基本的に噴流床式
ガス化炉dの内圧によって決まっているため、異常に上
昇することはない。また、CWMランタンaから供給さ
れる石炭・水スラリの粘度が異常に高くなり、チャージ
ポンプb出口の圧力が異常に上昇した場合はCWM回収
路kのラプチャーディスクjが破れ、高圧の石炭・水ス
ラリをCWMランタンクに回収することで装置を保護す
るようになっている。
[Problems to be Solved by the Invention] By the way, in the above-mentioned new high-temperature CWM supply equipment, the shutoff valve g is open during operation, and the pressure of the coal/water slurry inside the equipment is basically equal to that of the entrained bed gasifier. Since it is determined by the internal pressure of d, it will not rise abnormally. Additionally, if the viscosity of the coal/water slurry supplied from the CWM lantern a becomes abnormally high and the pressure at the outlet of the charge pump b rises abnormally, the rupture disk j of the CWM recovery path k will rupture, causing the high-pressure coal/water slurry to rupture. The equipment is protected by collecting the slurry into the CWM run tank.

【0011】しかしながら、運転を停止して遮断弁gを
閉じた状態の時に、誤って加熱ヒータcに加熱用流体を
流した場合、装置内の石炭・水スラリの水分が熱膨張し
て装置内の圧力が異常上昇し、装置を破壊してしまう虞
がある。このような場合、通常なら、装置に安全弁等を
設け、大気放出するのが普通であるが、高温の石炭・水
スラリを大気開放すると上述したように水分が急激に蒸
発してその粘度が上昇し、装置内に詰まってしまう。ま
た、この高温の石炭・水スラリを上記高圧受入ドラムf
内に逃がすことも考えられるが、装置が停止している時
であるため、高圧受入ドラムf内圧が規定圧以上になっ
ていない場合は利用できない。
However, if the heating fluid is accidentally flowed into the heater c when the operation is stopped and the shutoff valve g is closed, the moisture in the coal/water slurry inside the device will thermally expand and cause damage inside the device. There is a risk that the pressure will rise abnormally and destroy the device. In such cases, it is normal to install a safety valve in the equipment and release the slurry into the atmosphere. However, when hot coal/water slurry is released into the atmosphere, as mentioned above, the moisture evaporates rapidly and its viscosity increases. However, it gets stuck inside the device. In addition, this high-temperature coal/water slurry is transferred to the high-pressure receiving drum f.
It is also possible to release the high-pressure drum f to the inside, but since the equipment is stopped, this cannot be used unless the internal pressure of the high-pressure receiving drum f is equal to or higher than the specified pressure.

【0012】そこで、本発明はこれらの欠点を有効に解
決するために案出されたものであり、その目的は、運転
停止時に、装置内の石炭・水スラリ圧力が異常に上昇し
た場合、これを有効に逃がして装置の保護を達成した高
温CWM供給装置の過圧防止装置を提供するものである
[0012] The present invention was devised to effectively solve these drawbacks, and its purpose is to prevent the coal/water slurry pressure in the equipment from increasing abnormally during operation stoppage. The present invention provides an overpressure prevention device for a high-temperature CWM supply device that protects the device by effectively releasing the heat.

【0013】[0013]

【課題を解決するための手段】上記目的を達成するため
に本発明は石炭と水を混合した石炭・水スラリを貯蔵す
るCWMランタンクと、該CWMランタンクに設けられ
、該CWMランタンク内の石炭・水スラリを圧送するチ
ャージポンプと、該チャージポンプの下流側に接続され
、上記石炭・水スラリを加熱する加熱ヒータと、該加熱
ヒータで加熱した石炭・水スラリを噴流床式ガス化炉に
移送する移送配管と、該移送配管の上流側に、これと分
岐して設けられ、石炭・水スラリを逃がす高圧受入ドラ
ムと、上記移送配管の下流側に設けられ、石炭・水スラ
リの流れを遮断する遮断弁と、該遮断弁の下流側の移送
配管に設けられ、該移送配管に窒素ガスを注入する窒素
ガス注入部とを備えた高温CWM供給装置において、上
記遮断弁と高圧受入ドラムを結ぶ移送配管にこれと分岐
して圧力逃がし配管を接続すると共に、該圧力逃がし配
管の他端にラプチャーディスクを介して圧力逃がしドラ
ムを備えたものである。
[Means for Solving the Problems] In order to achieve the above objects, the present invention provides a CWM run tank for storing a coal/water slurry containing a mixture of coal and water, and a CWM run tank which is provided in the CWM run tank to store coal/water slurry in the CWM run tank. A charge pump that pumps the water slurry, a heater connected downstream of the charge pump that heats the coal/water slurry, and a heated coal/water slurry transferred to the spouted bed gasifier. A high-pressure receiving drum is installed on the upstream side of the transfer piping to branch off from this to allow the coal/water slurry to escape, and a high-pressure receiving drum is installed on the downstream side of the transfer piping to block the flow of the coal/water slurry. In a high-temperature CWM supply device comprising a cutoff valve that is connected to the cutoff valve, and a nitrogen gas injector that is installed in a transfer pipe downstream of the cutoff valve and injects nitrogen gas into the transfer pipe, the cutoff valve and the high pressure receiving drum are connected. A pressure relief pipe is connected to the transfer pipe by branching from it, and a pressure relief drum is provided at the other end of the pressure relief pipe via a rupture disk.

【0014】[0014]

【作用】本発明は以上のように構成したため、運転停止
時に遮断弁が閉じて装置内が閉塞状態の時に、加熱ヒー
タによって装置内の石炭・水スラリが加熱されて高温、
高圧の石炭・水スラリとなって熱膨張を起こし、装置内
の石炭・水スラリの圧力が異常に上昇すると、圧力逃が
し配管のラプチャーディスクが破れて高温、高圧の石炭
・水スラリを圧力逃がしドラムに逃がすことになる。従
って、高温、高圧の石炭・水スラリによる装置の破損等
の事故や、粘度の上昇による石炭・水スラリの閉塞状態
を未然に防止できる。
[Operation] Since the present invention is constructed as described above, when the shutoff valve closes at the time of operation stop and the inside of the equipment is in a closed state, the coal/water slurry inside the equipment is heated by the heating heater and the slurry is heated to a high temperature.
When the coal/water slurry becomes a high-pressure coal/water slurry and undergoes thermal expansion, and the pressure of the coal/water slurry inside the equipment rises abnormally, the rupture disk in the pressure relief piping ruptures and releases the high-temperature, high-pressure coal/water slurry into the pressure relief drum. He will be released to Therefore, accidents such as equipment damage due to high temperature and high pressure coal/water slurry and clogging of the coal/water slurry due to increased viscosity can be prevented.

【0015】[0015]

【実施例】以下、本発明の一実施例を説明する。[Embodiment] An embodiment of the present invention will be described below.

【0016】図1は本発明の過圧防止装置を備えた高温
CWM供給装置を示したものである。図示するように、
この高温CWM供給装置は石炭と水を混合したCWM(
石炭・水スラリ)を貯蔵するCWMランタンク1と、こ
のCWMランタンク1内のCWMを加圧して移送するチ
ャージポンプ2と、このチャージポンプ2の下流側に接
続され、CWMを加熱する加熱ヒータ3と、この加熱ヒ
ータ3で加熱したCWMを噴流床式ガス化炉4に移送す
る移送配管5と、この移送配管5の上流側に、これと分
岐して設けられた高圧受入ドラム6と、この移送配管5
の下流側に設けられ、CWMの流れを遮断する遮断弁7
と、この遮断弁7の下流の移送配管5内に窒素ガスを注
入する窒素ガス注入部8とから主に構成されている。
FIG. 1 shows a high temperature CWM supply device equipped with an overpressure prevention device according to the present invention. As shown,
This high-temperature CWM supply equipment uses CWM (CWM) mixed with coal and water (
A CWM run tank 1 that stores a coal/water slurry), a charge pump 2 that pressurizes and transfers CWM in this CWM run tank 1, and a heater 3 that is connected to the downstream side of this charge pump 2 and heats the CWM. , a transfer pipe 5 that transfers the CWM heated by the heater 3 to the entrained bed gasifier 4, a high-pressure receiving drum 6 provided upstream of the transfer pipe 5 and branched from the transfer pipe 5, Piping 5
A shutoff valve 7 is provided on the downstream side of the CWM and shuts off the flow of CWM.
and a nitrogen gas injector 8 that injects nitrogen gas into the transfer pipe 5 downstream of the shutoff valve 7.

【0017】この噴流床式ガス化炉4は上述したように
、CWMと酸素、水蒸気等のガス化剤を高温で反応させ
て水素や一酸化炭素などの可燃ガスを生成するものであ
り、ガス化処理能力を高めるために内部は15〜45K
gf/cm2 程度の高圧に加圧されている。
As mentioned above, this spouted bed gasifier 4 reacts CWM with a gasifying agent such as oxygen and water vapor at high temperature to produce combustible gases such as hydrogen and carbon monoxide. The internal capacity is 15-45K to increase processing capacity.
It is pressurized to a high pressure of about gf/cm2.

【0018】チャージポンプ2はCWMランタンク1内
のCWMを加熱ヒータ3及び移送配管5を介して噴流床
式ガス化炉4側に約30Kgf/cm2 程度の高圧に
加圧して移送している。また、チャージポンプ2の出口
側にはラプチャーディスク9を備えたCWM回収路10
が設けられており、CWMの粘度が異常に上昇してチャ
ージポンプ2出口の圧力が所定圧以上になった場合に装
置を保護するためにラプチャーディスク9が破れてCW
MをCWMランタンク1に再び回収するようになってい
る。
The charge pump 2 pressurizes the CWM in the CWM run tank 1 to a high pressure of about 30 Kgf/cm 2 and transfers it to the entrained bed gasifier 4 side via the heater 3 and the transfer pipe 5. Further, on the outlet side of the charge pump 2, a CWM recovery path 10 equipped with a rupture disk 9 is provided.
A rupture disk 9 is provided to protect the device when the viscosity of the CWM increases abnormally and the pressure at the outlet of the charge pump 2 exceeds a predetermined pressure.
M is collected again into CWM run tank 1.

【0019】また、チャージポンプ2の下流側には逆止
弁11を介して加熱ヒータ3が設けられている。この加
熱ヒータ3はチャージポンプ2から圧送されたCWMを
通過させると共に、水蒸気等の加熱用流体Sによって5
0〜200℃の範囲でCWMを加熱して、その粘度を低
下させて流動性を向上させている。この加熱用流体Sは
加熱ヒータ3の出口側に設けられた温度計12によって
調節される調節弁13によってその流量が制御されてい
る。また、CWMを加熱して温度が下がった加熱用流体
Sは凝縮水Wとなって加熱ヒータ3から排出され、図示
しない加熱装置によって再び加熱されて水蒸気となり、
加熱用流体Sとして再利用されようになっている。
Further, a heater 3 is provided downstream of the charge pump 2 via a check valve 11. This heater 3 allows the CWM pressure-fed from the charge pump 2 to pass through, and is heated by a heating fluid S such as water vapor.
CWM is heated in the range of 0 to 200°C to reduce its viscosity and improve its fluidity. The flow rate of this heating fluid S is controlled by a regulating valve 13 which is regulated by a thermometer 12 provided on the outlet side of the heater 3 . Further, the heating fluid S whose temperature has been lowered by heating the CWM becomes condensed water W and is discharged from the heater 3, and is heated again by a heating device (not shown) and becomes water vapor.
It is designed to be reused as a heating fluid S.

【0020】また、加熱ヒータ3と噴流床式ガス化炉4
を接続すると共に、加熱ヒータ3で加熱されたCWMを
噴流床式ガス化炉4側に移送する移送配管5には、これ
を流れるCWMの流れを瞬時に遮断する遮断弁7が設け
られている。この遮断弁7は噴流床式ガス化炉4内の圧
力を計測する圧力計4aによって制御されており、噴流
床式ガス化炉4内の圧力が急激に低下すると、瞬時に作
動して移送配管5内のCWMの流れを遮断するようにな
っている。また、この遮断弁7の下流側の移送配管5に
は窒素ガス注入部8が設けられており、遮断弁7が作動
すると同時に連動して遮断弁7の下流側の移送配管5内
に窒素ガスを注入して、内部のCWMを噴流床式ガス化
炉4側に圧送するようになっている。
[0020] Also, the heater 3 and the spouted bed gasifier 4
The transfer pipe 5 that connects the CWM heated by the heater 3 to the entrained bed gasifier 4 side is provided with a shutoff valve 7 that instantly shuts off the flow of CWM flowing therethrough. . This shutoff valve 7 is controlled by a pressure gauge 4a that measures the pressure inside the spouted bed gasifier 4, and when the pressure inside the spouted bed gasifier 4 suddenly decreases, it is activated instantaneously and the transfer piping is closed. The flow of CWM within 5 is cut off. Further, a nitrogen gas injector 8 is provided in the transfer pipe 5 on the downstream side of the cutoff valve 7, and at the same time as the cutoff valve 7 operates, nitrogen gas is injected into the transfer pipe 5 on the downstream side of the cutoff valve 7. is injected to forcefully send the CWM inside to the spouted bed gasifier 4 side.

【0021】また、遮断弁7の上流側の移送配管5には
分岐配管5aの一端が分岐して接続されており、分岐配
管5aの他端には高圧受入ドラム6が設けられている。 すなわち、分岐配管5aの途中には分岐遮断弁7aが設
けられており、上記遮断弁7と連動して遮断弁7が閉じ
ると同時に瞬時に開いて分岐遮断弁7aの上流側の移送
配管5内及び加熱ヒータ3内のCWMを高圧受入ドラム
6側に流すようになっている。そして、この分岐遮断弁
7aの作動状態は遮断弁7と反対で遮断弁7が開いてい
る通常状態の時は閉じた状態となって、CWMが高圧受
入ドラム6側に流れないように規制している。この高圧
受入ドラム6内は窒素ガスによって移送配管5内と略同
圧に制御されており、内底部には高温のCWMを冷却す
るための冷却水が張ってある。すなわち、高圧受入ドラ
ム6内を移送配管5内と略同圧に保つことで、分岐遮断
弁7aが開いてCWMが高圧受入ドラム6側に流れた際
に、CWMの飽和蒸気圧が急激に低下して高圧受入ドラ
ム6側に流れる前に粘度が高くなって流動性が失われ、
高圧受入ドラム6内に流れなくなるのを防止している。 また、高圧受入ドラム6内の上部にはスプレーノズル1
4が設けられており、洗浄水W′を噴射して高圧受入ド
ラム6内に冷却水を供給すると共に、溜まったCWMを
排出する際に高圧受入ドラム6内を洗浄するようになっ
ている。また、高圧受入ドラム6には液面計15と共に
圧力計16が設けられており、高圧受入ドラム6内の圧
力が所定圧になるように窒素ガスバルブ17及び排気バ
ルブ18を制御するようになっている。また、高圧受入
ドラム6の最下部には内部に溜った冷却水W′及び冷却
されたCWMを排出するための排出口19が設けられて
いる。
Further, one end of a branch pipe 5a is branched and connected to the transfer pipe 5 on the upstream side of the cutoff valve 7, and a high pressure receiving drum 6 is provided at the other end of the branch pipe 5a. That is, a branch cut-off valve 7a is provided in the middle of the branch pipe 5a, and opens instantly at the same time as the cut-off valve 7 closes in conjunction with the above-mentioned cut-off valve 7. And the CWM inside the heater 3 is made to flow to the high pressure receiving drum 6 side. The operating state of this branch cut-off valve 7a is opposite to that of the cut-off valve 7, and when the cut-off valve 7 is open in the normal state, it is closed, and prevents the CWM from flowing toward the high-pressure receiving drum 6. ing. The inside of this high-pressure receiving drum 6 is controlled to approximately the same pressure as the inside of the transfer pipe 5 by nitrogen gas, and the inside bottom is filled with cooling water for cooling the high-temperature CWM. That is, by maintaining the inside of the high-pressure receiving drum 6 at approximately the same pressure as the inside of the transfer pipe 5, when the branch cutoff valve 7a opens and the CWM flows to the high-pressure receiving drum 6 side, the saturated vapor pressure of the CWM decreases rapidly. The viscosity increases and fluidity is lost before flowing to the high-pressure receiving drum 6 side.
This prevents the water from flowing into the high-pressure receiving drum 6. In addition, a spray nozzle 1 is installed at the upper part of the high-pressure receiving drum 6.
4 is provided to inject cleaning water W' to supply cooling water into the high-pressure receiving drum 6, and to clean the inside of the high-pressure receiving drum 6 when discharging accumulated CWM. Further, the high-pressure receiving drum 6 is provided with a pressure gauge 16 together with a liquid level gauge 15, and the nitrogen gas valve 17 and exhaust valve 18 are controlled so that the pressure inside the high-pressure receiving drum 6 becomes a predetermined pressure. There is. Furthermore, a discharge port 19 is provided at the lowest part of the high-pressure receiving drum 6 for discharging the cooling water W' and the cooled CWM accumulated inside.

【0022】また、この高温CWM供給装置の過圧防止
装置20は図示するように、高圧受入ドラム6と遮断弁
7とを接続する移送配管5に一端が接続された圧力逃が
し配管21と、この圧力逃がし配管21の途中に設けら
れたラプチャーディスク22と、圧力逃がし配管21の
他端に接続された圧力逃がしドラム23とから主に構成
されている。
As shown in the figure, the overpressure prevention device 20 of this high temperature CWM supply device includes a pressure relief pipe 21 whose one end is connected to the transfer pipe 5 connecting the high pressure receiving drum 6 and the shutoff valve 7; It mainly consists of a rupture disk 22 provided in the middle of the pressure relief pipe 21 and a pressure relief drum 23 connected to the other end of the pressure relief pipe 21.

【0023】このラプチャーディスク22は通常運転時
には圧力逃がしドラム23と装置間を遮断するものであ
り、装置内の高温のCWMの圧力が異常に上昇すると破
れて高温のCWMを圧力逃がしドラム23側に逃がすよ
うになっており、その破壊圧力はCWM回収路10のラ
プチャーディスク9より高くなっている。また、圧力逃
がしドラム23内はポンプ24から供給される窒素ガス
等によって装置内と略同圧に加圧されており、また、そ
の容積は加熱ヒータ3の加熱温度によって決定するCW
Mの最大容積変化に一定の余裕率を持った容積に形成さ
れている。例えば、水と石炭の熱膨張係数を同じと仮定
すると、20℃のCWMが150℃に加熱されると約1
0%程度、その容積が膨張するため、遮断弁7の上流側
の移送配管5及び加熱ヒータ3の容積が1m3 の場合
、圧力逃がしドラム23の容積は0.1〜0.2m3 
程度で充分である。
During normal operation, this rupture disk 22 serves as a barrier between the pressure relief drum 23 and the device, and if the pressure of the high-temperature CWM inside the device rises abnormally, it ruptures and releases the pressure of the high-temperature CWM to the drum 23 side. The rupture pressure is higher than that of the rupture disk 9 of the CWM recovery path 10. Further, the inside of the pressure relief drum 23 is pressurized to approximately the same pressure as the inside of the device by nitrogen gas etc. supplied from the pump 24, and its volume is determined by the heating temperature of the heater 3.
The volume is formed to have a certain margin for the maximum volume change of M. For example, assuming that water and coal have the same coefficient of thermal expansion, when CWM at 20°C is heated to 150°C, approximately 1
Since the volume expands by about 0%, if the volume of the transfer pipe 5 and heater 3 on the upstream side of the shutoff valve 7 is 1 m3, the volume of the pressure relief drum 23 is 0.1 to 0.2 m3.
It is enough.

【0024】次に、本発明の作用を説明する。Next, the operation of the present invention will be explained.

【0025】先ず、この高温CWM供給装置の通常の運
転を行う場合は従来と同様に、起動時にはCWMが加熱
ヒータ3や移送配管5内に詰まらないように、常温、低
濃度、すなわち石炭の割合が少ない(約60wt%前後
)低粘度のCWMをチャージポンプ2によって噴流床式
ガス化炉4側に約30Kgf/cm2 に加圧して供給
する。そして、噴流床式ガス化炉4の内圧が例えば約2
0Kgf/cm2 程度の運転状態まで上昇したならば
加熱ヒータ3に水蒸気等の加熱用流体を流し始め、これ
を通過するCWMを例えば約150℃に加熱する。次に
、CWMの粘度が1000cpを越えないように石炭の
割合を徐々に増やして(約65wt%)CWMの濃度を
上昇させることになる。そして、最後に、このCWMの
供給を停止する場合にはCWM中の石炭の割合を起動時
と同程度に減らして濃度、すなわち粘度を下げた後、加
熱ヒータ3による加熱温度を下げて停止することになる
First, when performing normal operation of this high-temperature CWM supply device, as in the conventional case, at startup, the CWM is kept at room temperature and at a low concentration, that is, at a low concentration, in order to prevent the CWM from clogging the heater 3 and the transfer pipe 5. CWM having a low viscosity (approximately 60 wt%) is supplied to the spouted bed gasifier 4 side by a charge pump 2 under pressure of approximately 30 Kgf/cm2. Then, the internal pressure of the spouted bed gasifier 4 is, for example, about 2
When the operating state reaches approximately 0 Kgf/cm2, a heating fluid such as steam starts flowing through the heater 3, and the CWM passing through it is heated to, for example, about 150°C. Next, the concentration of CWM will be increased by gradually increasing the proportion of coal (approximately 65 wt%) such that the viscosity of CWM does not exceed 1000 cp. Finally, when stopping the supply of CWM, the proportion of coal in the CWM is reduced to the same level as at startup to lower the concentration, that is, the viscosity, and then the heating temperature by the heating heater 3 is lowered and stopped. It turns out.

【0026】ところが、何等かの原因で噴流床式ガス化
炉4の内圧が急激に低下した場合は、これを噴流床式ガ
ス化炉4に設けられている圧力計4aが検知し、遮断弁
7を作動して移送配管5内のCWMの移送を遮断する。 すると、これと連動して窒素ガス注入部8の窒素ガスバ
ルブ8aが作動して、遮断弁7の下流側の移送配管5内
に高圧の窒素ガスを噴き込んで遮断弁7の下流側の移送
配管5内にあるCWMの水分が蒸発して粘度が上昇する
前に、全てのCWMを噴流床式ガス化炉4内に噴き出す
ことになる。従って、遮断弁7の下流側の移送配管5内
にあるCWMの粘度が上昇して、これに詰まることがな
くなる。
However, if the internal pressure of the spouted bed gasifier 4 suddenly drops due to some reason, the pressure gauge 4a provided in the spouted bed gasifier 4 detects this and the shutoff valve is activated. 7 to shut off the transfer of CWM in the transfer pipe 5. Then, in conjunction with this, the nitrogen gas valve 8a of the nitrogen gas injector 8 operates, injecting high-pressure nitrogen gas into the transfer pipe 5 on the downstream side of the cutoff valve 7. All of the CWM is spouted into the spouted bed gasifier 4 before the moisture in the CWM in the gasifier 5 evaporates and its viscosity increases. Therefore, the viscosity of the CWM in the transfer pipe 5 on the downstream side of the shutoff valve 7 increases and the pipe is prevented from becoming clogged.

【0027】また、遮断弁7が作動すると窒素ガス注入
部8の窒素ガスバルブ8aと同時に分岐配管5aの分岐
遮断弁7aも同時に作動して開き、加熱ヒータ3及び移
送配管5内の高温のCWMを高圧受入ドラム6側に逃が
すことになる。この高圧受入ドラム6内は窒素ガスによ
って装置内と略同圧に加圧されているため、これに受け
入れられる高温のCWM中の飽和水蒸気圧が低下して水
分が急激に蒸発することがなく、CWMの流動性の低下
が防止されてCWMがスムーズに高圧受入ドラム6内に
流れることになる。高圧受入ドラム6内に流れた高温の
CWMはドラム6内部に張られている冷却水によって常
温まで冷却された後、スプレーノズル14からの洗浄水
W′と共に排水口19より外部に排出されることになる
。従って、遮断弁7の上流側の移送配管5及び加熱ヒー
タ3内の高温のCWMは流動性が低下することなくスム
ーズに高圧受入ドラム6内に流れるため、これに詰まる
ことがなくなる。そして、上述した通常の運転停止時と
同様にCWM中の石炭の割合を徐々に減らして濃度、す
なわちCWMの粘度を下げた後、加熱ヒータ3による加
熱温度を停止した後、遮断弁7及び分岐遮断弁7aを閉
じて運転を停止することになる。
Furthermore, when the cutoff valve 7 is activated, the nitrogen gas valve 8a of the nitrogen gas injector 8 and the branch cutoff valve 7a of the branch pipe 5a are simultaneously activated and opened, and the high temperature CWM in the heater 3 and the transfer pipe 5 is shut off. It will be released to the high pressure receiving drum 6 side. Since the inside of this high-pressure receiving drum 6 is pressurized by nitrogen gas to approximately the same pressure as the inside of the apparatus, the saturated water vapor pressure in the high-temperature CWM received by this drum 6 does not decrease and the water does not evaporate rapidly. A decrease in the fluidity of the CWM is prevented, and the CWM flows smoothly into the high-pressure receiving drum 6. The high-temperature CWM flowing into the high-pressure receiving drum 6 is cooled down to room temperature by the cooling water spread inside the drum 6, and then discharged to the outside from the drain port 19 together with the cleaning water W' from the spray nozzle 14. become. Therefore, the high-temperature CWM in the transfer pipe 5 and heater 3 on the upstream side of the cutoff valve 7 smoothly flows into the high-pressure receiving drum 6 without a decrease in fluidity, so that it is not clogged therein. Then, similarly to the normal operation stoppage described above, after gradually reducing the proportion of coal in the CWM to lower the concentration, that is, the viscosity of the CWM, and stopping the heating temperature by the heating heater 3, the shutoff valve 7 and the branch The shutoff valve 7a will be closed and the operation will be stopped.

【0028】ところが、運転を停止して遮断弁7及び分
岐遮断弁7aを閉じた装置の閉塞状態の時に誤って加熱
ヒータ3内に高温の加熱用流体Sが流れると、装置内の
CWMが加熱されて熱膨張を起こし、装置内の圧力が異
常に上昇する。例えば、水と石炭の熱膨張係数を同じと
仮定すると、20℃のCWMが150℃に加熱されると
約10%の容積が膨張することになる。すると、熱膨張
した約10%のCWMは圧力逃がし配管21を通ってラ
プチャーディスク22を破壊し、圧力逃がしドラム23
内にフラッシュすることになる。圧力逃がしドラム23
内は上述したように窒素ガスによって加圧されているた
め、熱膨張したCWM中の水分は蒸発しないことになる
。従って、熱膨張したCWMの粘度が上昇して装置内に
詰まったりすることがなくなる。
However, if the high-temperature heating fluid S accidentally flows into the heater 3 when the device is in a closed state with the operation stopped and the cutoff valve 7 and branch cutoff valve 7a closed, the CWM inside the device gets heated up. This causes thermal expansion, which causes the pressure inside the device to rise abnormally. For example, assuming that water and coal have the same coefficient of thermal expansion, a CWM at 20°C will expand by about 10% in volume when heated to 150°C. Then, approximately 10% of the thermally expanded CWM passes through the pressure relief piping 21 and destroys the rupture disk 22, causing the pressure relief drum 23 to collapse.
It will flash inside. Pressure relief drum 23
Since the interior of the CWM is pressurized with nitrogen gas as described above, the moisture in the thermally expanded CWM does not evaporate. Therefore, the viscosity of the thermally expanded CWM will not increase and the device will not become clogged.

【0029】このように、本発明は万一、CWMが熱膨
張を起こして装置内が高圧になった場合、これを過圧防
止装置20によって装置の防止や、CWMが装置内に詰
まったりすることを未然に防止することが可能となる。
As described above, in the present invention, in the unlikely event that the CWM undergoes thermal expansion and the inside of the device becomes high pressure, the overpressure prevention device 20 prevents this from occurring in the device or prevents the CWM from clogging inside the device. This makes it possible to prevent this from happening.

【0030】[0030]

【発明の効果】以上、要するに本発明によれば、万一、
CWMが熱膨張を起こして装置内が高圧になった場合の
不都合を過圧防止装置によって防止することが可能とな
るため、装置の信頼性が向上して、装置の分解清掃作業
等の煩わしい作業を行う必要がなくなると共に、装置を
新たに作り直すといった費用や時間的コストが低減され
るといった優れた効果を有する。
[Effects of the Invention] In short, according to the present invention, if
The overpressure prevention device can prevent problems caused by thermal expansion of the CWM and high pressure inside the device, improving the reliability of the device and eliminating troublesome work such as disassembling and cleaning the device. This has excellent effects such as eliminating the need to perform the above process and reducing the cost and time cost of re-creating the device.

【図面の簡単な説明】[Brief explanation of drawings]

【図1】本発明の一実施例を示す概略図である。FIG. 1 is a schematic diagram showing an embodiment of the present invention.

【図2】従来の高温CWM供給装置を示す概略図である
FIG. 2 is a schematic diagram showing a conventional high temperature CWM supply device.

【図3】従来の高温CWM供給装置を示す概略図である
FIG. 3 is a schematic diagram showing a conventional high temperature CWM supply device.

【符号の説明】[Explanation of symbols]

1  CWMランタンク 2  チャージポンプ 3  加熱ヒータ 4  噴流床式ガス化炉 5  移送配管 6  高圧受入ドラム 7  遮断弁 8  窒素ガス注入部 20  過圧防止装置 21  圧力逃がし配管 22  ラプチャーディスク 23  圧力逃がしドラム 1 CWM run tank 2 Charge pump 3 Heater 4 Entrained bed gasifier 5 Transfer piping 6 High pressure receiving drum 7 Shutoff valve 8 Nitrogen gas injection part 20 Overpressure prevention device 21 Pressure relief piping 22 Rupture Disc 23 Pressure relief drum

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】  石炭と水を混合した石炭・水スラリを
貯蔵するCWMランタンクと、該CWMランタンクに設
けられ、該CWMランタンク内の石炭・水スラリを圧送
するチャージポンプと、該チャージポンプの下流側に接
続され、上記石炭・水スラリを加熱する加熱ヒータと、
該加熱ヒータで加熱した石炭・水スラリを噴流床式ガス
化炉に移送する移送配管と、該移送配管の上流側に、こ
れと分岐して設けられ、石炭・水スラリを逃がす高圧受
入ドラムと、上記移送配管の下流側に設けられ、石炭・
水スラリの流れを遮断する遮断弁と、該遮断弁の下流側
の移送配管に設けられ、該移送配管に窒素ガスを注入す
る窒素ガス注入部とを備えた高温CWM供給装置におい
て、上記遮断弁と高圧受入ドラムを結ぶ移送配管にこれ
と分岐して圧力逃がし配管を接続すると共に、該圧力逃
がし配管の他端にラプチャーディスクを介して圧力逃が
しドラムを備えたことを特徴とする高温CWM供給装置
の過圧防止装置。
Claim 1: A CWM run tank that stores a coal/water slurry that is a mixture of coal and water, a charge pump installed in the CWM run tank and that pumps the coal/water slurry in the CWM run tank, and a charge pump downstream of the charge pump. a heater connected to the side and heating the coal-water slurry;
A transfer pipe that transfers the coal/water slurry heated by the heater to the entrained bed gasifier, and a high-pressure receiving drum that is provided upstream of the transfer pipe and branched from this and that releases the coal/water slurry. , installed on the downstream side of the above-mentioned transfer pipe, to carry coal and
In a high-temperature CWM supply device comprising a shutoff valve that shuts off the flow of water slurry, and a nitrogen gas injection section that is provided in a transfer pipe downstream of the shutoff valve and injects nitrogen gas into the transfer pipe, the cutoff valve A high-temperature CWM supply device characterized in that a pressure relief pipe is connected to a transfer pipe connecting the high-pressure receiving drum and the high-pressure receiving drum, and a pressure relief drum is provided at the other end of the pressure relief pipe via a rupture disk. overpressure protection device.
JP9536591A 1991-04-25 1991-04-25 Overpressure prevention device for high-temperature CWM supply device Expired - Fee Related JP2855879B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9536591A JP2855879B2 (en) 1991-04-25 1991-04-25 Overpressure prevention device for high-temperature CWM supply device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9536591A JP2855879B2 (en) 1991-04-25 1991-04-25 Overpressure prevention device for high-temperature CWM supply device

Publications (2)

Publication Number Publication Date
JPH04325593A true JPH04325593A (en) 1992-11-13
JP2855879B2 JP2855879B2 (en) 1999-02-10

Family

ID=14135604

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9536591A Expired - Fee Related JP2855879B2 (en) 1991-04-25 1991-04-25 Overpressure prevention device for high-temperature CWM supply device

Country Status (1)

Country Link
JP (1) JP2855879B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109533699A (en) * 2017-09-21 2019-03-29 贵港市厚顺信息技术有限公司 A kind of emergency set and automatic control system for coal water slurry storage tank leakage

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109533699A (en) * 2017-09-21 2019-03-29 贵港市厚顺信息技术有限公司 A kind of emergency set and automatic control system for coal water slurry storage tank leakage

Also Published As

Publication number Publication date
JP2855879B2 (en) 1999-02-10

Similar Documents

Publication Publication Date Title
JP5188697B2 (en) Method and apparatus for combustion turbine fuel recirculation system and nitrogen purge system
RU2153201C2 (en) Nuclear reactor with stand-by cooling system and its cooling process
EP0754904B1 (en) Cryogenic pump system
US5368105A (en) Cryogenic slurry for extinguishing underground fires
US7973111B2 (en) Mechanically operated kill agent injection safety system and method to stop a runaway chemical reaction
AU766737B2 (en) Method and device for regulated injection of liquid carbon dioxide in a pressurised liquid
JPS6020187A (en) Safety cooling device for reactor
JPH04325593A (en) Apparatus for preventing high-temperature cwm feeding apparatus from causing drastic pressure rise
JP2855874B2 (en) High temperature CWM supply device
JPH0541958B2 (en)
CA1325890C (en) Gas turbine plant system and gas pressure stabilizer thereof in emergency
JP3555235B2 (en) Fuel purge method for pressurized fluidized bed boiler
CA2050256A1 (en) Process for commissioning pipelines
JP3556961B2 (en) High temperature CWM supply device
JPH11210992A (en) Ammonia storage vaporizing device
JP4230398B2 (en) Exhaust gas temperature reduction device and exhaust gas temperature reduction method using hot water
JP2618949B2 (en) Pulverized coal combustion apparatus and its operation method
JP3761946B2 (en) Fuel supply apparatus for fluidized bed combustion furnace and cooling method thereof
JPH04110505A (en) Corrosion preventing method of boiler
JPH0333345B2 (en)
RU2661885C2 (en) Automatic protection compensating device for disconnection of electric power supply of production line of regenerating spent oil
JP4685644B2 (en) Heavy oil reformer, heavy oil reformer shutdown method, and gas turbine equipped with heavy oil reformer
JPS5971921A (en) Method for purging fuel tube to feed burner for highly concentrated slurry
JP2932743B2 (en) Cooling water supply device for high temperature and high pressure vessel
CN206591056U (en) Endless tube method polymarization method for prodcing polyacrylates propylene refining unit propylene recovery unit

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees