JPH06183873A - Method for growing semimagnetic compound semiconductor single crystal - Google Patents
Method for growing semimagnetic compound semiconductor single crystalInfo
- Publication number
- JPH06183873A JPH06183873A JP35490092A JP35490092A JPH06183873A JP H06183873 A JPH06183873 A JP H06183873A JP 35490092 A JP35490092 A JP 35490092A JP 35490092 A JP35490092 A JP 35490092A JP H06183873 A JPH06183873 A JP H06183873A
- Authority
- JP
- Japan
- Prior art keywords
- transition metal
- melt
- group
- magnetic field
- group element
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Crystals, And After-Treatments Of Crystals (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は半磁性化合物半導体単結
晶の育成方法に関し、より詳しくは円筒状縦磁場空間内
に設置した縦型ブリッジマン炉を用い、フラックス法に
より、微量の3d遷移金属元素を置換元素として含有し
たIIB族元素−VIB族元素化合物半導体単結晶を一方向
に凝固させて育成する方法において、均一融液を得るた
めに強磁場を利用する育成方法に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for growing a semi-magnetic compound semiconductor single crystal, and more specifically, it uses a vertical Bridgman furnace installed in a cylindrical longitudinal magnetic field space and a trace amount of 3d transition metal by a flux method. The present invention relates to a method for growing a IIB group element-VIB group element compound semiconductor single crystal containing an element as a substituting element by unidirectionally solidifying, and using a strong magnetic field to obtain a uniform melt.
【0002】[0002]
【従来の技術】従来、半磁性化合物半導体の単結晶を育
成する方法として、IIB族元素及びVIB族元素のいずれ
か一方を化学量論組成よりも過剰に用いてフラックスと
し、これらと共に微量の置換添加元素(3d遷移金属元
素)を透明石英管(ルツボ)内に真空封入し、電気炉内
でこれらの元素を溶かし、直接合成して作る方法が採用
されている。即ち、真空封入した石英ルツボを電気炉内
に配置し、先ず数100℃で予備加熱してIIB族元素及
びVIB族元素を完全に溶かす。しかし、微量の置換添加
元素は融点が高いのでこの時点ではIIB族元素−VIB族
元素融液には溶けないでいる。次に、ルツボ全体の温度
を1150℃近くに上げて融液の混合を促がし、同時に
微量の置換添加元素をIIB族元素−VIB族元素融液に徐
々に溶け込ませる。全ての元素が完全に溶けたと思われ
る時点で、ルツボをゆっくり降下させ(低温域に移動さ
せ)、ルツボの底から結晶の析出を開始させる。この方
法は溶液成長法と呼ばれ、半磁性化合物半導体のバルク
結晶を得るために通常採用されている。IIB族元素−VI
B族元素化合物半導体の結晶の育成にこの溶液成長法が
採用されている主な理由は、比較的低い温度で結晶育成
が可能であること、IIB族元素−VIB族元素化合物半導
体の高融点、高蒸気圧の問題を極力避けることが可能で
あることにある。しかし、このような従来法では、微量
の置換添加元素が育成された結晶内に不均一な濃度分布
で存在していることが時々見られる。極端な場合には、
添加元素が完全には溶けないで少なくとも一部がルツボ
の底に沈着した状態で結晶育成が終了してしまうことが
ある。2. Description of the Related Art Conventionally, as a method for growing a single crystal of a semi-magnetic compound semiconductor, one of the IIB group element and the VIB group element is used in excess of the stoichiometric composition to form a flux, and a small amount of substitution is performed together with the flux. A method is adopted in which an additive element (3d transition metal element) is vacuum-sealed in a transparent quartz tube (crucible), these elements are melted in an electric furnace, and directly synthesized. That is, a vacuum-sealed quartz crucible is placed in an electric furnace and first preheated at several 100 ° C. to completely melt the IIB group element and the VIB group element. However, since a small amount of the substitutional additive element has a high melting point, it does not dissolve in the IIB group element-VIB group element melt at this point. Next, the temperature of the entire crucible is raised to near 1150 ° C. to promote the mixing of the melt, and at the same time, a small amount of the substitutional additive element is gradually dissolved in the melt of the IIB group element-VIB element melt. When all the elements are considered to be completely melted, the crucible is slowly lowered (moved to a low temperature region) to start crystal precipitation from the bottom of the crucible. This method is called a solution growth method and is usually adopted to obtain a bulk crystal of a semimagnetic compound semiconductor. IIB group element-VI
The main reasons for adopting this solution growth method for growing a crystal of a group B element compound semiconductor are that the crystal can be grown at a relatively low temperature, a high melting point of a group IIB element-VIB element compound semiconductor, It is possible to avoid the problem of high vapor pressure as much as possible. However, in such a conventional method, it is sometimes seen that a trace amount of the substitutional additive element is present in the grown crystal in a non-uniform concentration distribution. In extreme cases,
The crystal growth may end in a state where the additive element is not completely melted and at least a part is deposited on the bottom of the crucible.
【0003】[0003]
【発明が解決しようとする課題】上記したように、従来
の方法では、微量の置換添加元素がIIB族元素−VIB族
元素融液中に完全には溶けないで少なくとも一部がルツ
ボの底に残るか或いは溶けたとしても結晶内に不均一な
濃度分布を持ち込むなど、所望の結晶を育成することが
困難であった。As described above, in the conventional method, a trace amount of the substitutional additive element is not completely dissolved in the IIB group-VIB group element melt, and at least a part of the element is formed in the bottom of the crucible. Even if it remains or melts, it is difficult to grow a desired crystal because it brings a non-uniform concentration distribution into the crystal.
【0004】本発明の目的は、微量の3d遷移金属元素
(Mn、Fe、Co、Ni等)を置換元素として含有し
たIIB族元素−VIB族元素化合物半導体単結晶内に3d
遷移金属元素が均一な濃度分布で存在している半磁性化
合物半導体単結晶の育成方法を提供することにある。The object of the present invention is to provide 3d in a IIB group element-VIB group element compound semiconductor single crystal containing a trace amount of 3d transition metal element (Mn, Fe, Co, Ni, etc.) as a substitution element.
It is to provide a method for growing a semi-magnetic compound semiconductor single crystal in which a transition metal element exists in a uniform concentration distribution.
【0005】[0005]
【課題を解決するための手段】上記目的を達成するため
には、結晶の育成に先立ってIIB族元素、VIB族元素及
び微量の3d遷移金属元素からなる均一な融液を調製す
る必要がある。このような均一な融液を得る方法につい
て種々検討した結果、既に高温(1150℃)で良く混
り合ったIIB族元素−VIB族元素融液に1T(テスラ)
以上、好ましくは5〜10Tの強い静磁場(本明細書に
おいてはこれを強磁場と称する)を印加して未溶解状態
にある微量の3d遷移金属元素を融液中の所定位置に浮
遊させ、未溶解状態の3d遷移金属元素と融液との相対
位置を長時間に亘って変化させることにより、即ち未溶
解状態の3d遷移金属元素又は囲りの融液のいずれかを
上下方向に移動させることにより、濃度勾配が大きくな
り3d遷移金属元素が完全に溶解されることを見出し
た。次に、印加磁場を解除して自然対流を誘起し(自然
対流は印加磁場により阻止されていた)、それによる攪
拌で融液全体を一層均一な濃度分布にする。In order to achieve the above object, it is necessary to prepare a uniform melt consisting of a IIB group element, a VIB group element and a trace amount of a 3d transition metal element before growing a crystal. . As a result of various studies on a method for obtaining such a uniform melt, 1T (Tesla) was added to the IIB group-VIB group element melt already well mixed at high temperature (1150 ° C).
As described above, preferably a strong static magnetic field of 5 to 10 T (this is referred to as a strong magnetic field in the present specification) is applied to suspend a trace amount of the undissolved 3d transition metal element at a predetermined position in the melt, By changing the relative position between the undissolved 3d transition metal element and the melt over a long period of time, that is, either the undissolved 3d transition metal element or the surrounding melt is moved vertically. As a result, it was found that the concentration gradient was increased and the 3d transition metal element was completely dissolved. Next, the applied magnetic field is released to induce natural convection (natural convection was blocked by the applied magnetic field), and stirring by this causes the melt to have a more uniform concentration distribution.
【0006】即ち、本発明の半磁性化合物半導体単結晶
の育成方法は、円筒状縦磁場空間内に設置した縦型ブリ
ッジマン炉を用い、フラックス法により、微量の3d遷
移金属元素を置換元素として含有したIIB族元素−VIB
族元素化合物半導体単結晶を一方向に凝固させて育成す
る方法において、IIB族元素及びVIB族元素のいずれか
一方を化学量論組成よりも過剰に用いてフラックスと
し、これらのIIB族元素、VIB族元素及び微量の3d遷
移金属元素を同一閉管ルツボ内に真空封入し、低融点の
IIB族元素及びVIB族元素を融解させ、次いで強磁場を
印加して高融点の3d遷移金属元素をその融液中に浮遊
させ、ルツボ又は強磁場発生装置を上下方向に移動させ
ることによって融液中での3d遷移金属元素の相対位置
を変更させながら3d遷移金属元素をIIB族元素−VIB
族元素融液中に完全に溶解させ、その後印加磁場を解除
し、融液内の自然対流を利用して融液全体を一様に混合
し、次いで融液をルツボの底から徐々に冷却して一方向
凝固法により所望の単結晶を析出させることを特徴とす
る。That is, the method for growing a semi-magnetic compound semiconductor single crystal of the present invention uses a vertical Bridgman furnace installed in a cylindrical vertical magnetic field space, and a trace amount of a 3d transition metal element is used as a substitution element by a flux method. Group IIB element contained-VIB
In a method of unidirectionally solidifying and growing a group element compound semiconductor single crystal, one of the group IIB element and the group VIB element is used in excess of the stoichiometric composition to form a flux, and the group IIB element, VIB A group 3 element and a trace amount of 3d transition metal element are vacuum sealed in the same closed tube crucible,
The IIB group element and the VIB group element are melted, and then a strong magnetic field is applied to suspend the 3d transition metal element having a high melting point in the melt, and the crucible or the strong magnetic field generator is moved vertically to melt the melt. The 3d transition metal element is changed to the IIB group element-VIB while changing the relative position of the 3d transition metal element in
It is completely dissolved in the group element melt, then the applied magnetic field is released, the entire melt is uniformly mixed by utilizing natural convection in the melt, and then the melt is gradually cooled from the bottom of the crucible. The desired single crystal is deposited by the unidirectional solidification method.
【0007】以下に、本発明の半磁性化合物半導体単結
晶の育成方法を、IIB族元素−VIB族元素化合物半導体
であるCd−Se化合物半導体に微量の置換添加元素と
してMn又はCoを用いた場合について説明する。Mn
又はCoを微量置換添加元素として用いてCd−Se化
合物半導体の構成元素の一部を置換して得られる半磁性
半導体はCd1-x Mnx Se、Cd1-y Coy Seのよ
うにx又はyを用いて表わすことができる。A method of growing a semi-magnetic compound semiconductor single crystal according to the present invention will be described below in which Mn or Co is used as a small amount of a substitution additive element in a Cd-Se compound semiconductor which is a IIB group element-VIB group element compound semiconductor. Will be described. Mn
Alternatively, a semi-magnetic semiconductor obtained by substituting a part of the constituent elements of a Cd—Se compound semiconductor by using Co as a trace substitution additive element is x such as Cd 1-x Mn x Se and Cd 1-y Co y Se. Alternatively, it can be represented by using y.
【0008】置換添加元素としてのMn及びCoは磁性
材料であるため印加磁場の中では磁場勾配を感じて力を
受け、磁場勾配の無い位置に向けて押しやられる。この
ため印加磁場下では磁場の最も強い位置にとどまろうと
する。本発明で用いる縦磁場に於いてはこの位置は磁場
発生コイルの丁度中心に相当する。したがって微量のM
n又はCoを印加磁場の力でこの位置に留めておくこと
ができる。それでCd−Se融液又は強磁場発生装置を
上下方向に移動させることによって融液中でのMn又は
Coの相対位置を変更させながら、即ち未溶解状態のM
n又はCo又は囲りの融液のいずれかを上下方向に移動
させながら未溶解状態のMn又はCoの周囲の濃度勾配
を大きくして拡散を促進することによりMn又はCoを
効率良く溶かすことができる。このようにして得られた
一様な濃度分布を持った融液から一様な濃度分布を持っ
た結晶を得ることができる。Since Mn and Co as substitutional additive elements are magnetic materials, they feel a magnetic field gradient in an applied magnetic field and receive a force, and are pushed toward a position without a magnetic field gradient. Therefore, under the applied magnetic field, the magnetic field tends to stay at the strongest position. In the longitudinal magnetic field used in the present invention, this position corresponds to just the center of the magnetic field generating coil. Therefore, a small amount of M
n or Co can be kept in this position by the force of the applied magnetic field. Therefore, the relative position of Mn or Co in the melt is changed by moving the Cd-Se melt or the strong magnetic field generator up and down, that is, M in the undissolved state.
It is possible to efficiently dissolve Mn or Co by increasing the concentration gradient around Mn or Co in an undissolved state and promoting diffusion while vertically moving either n or Co or the surrounding melt. it can. Crystals having a uniform concentration distribution can be obtained from the melt having a uniform concentration distribution thus obtained.
【0009】[0009]
【実施例】縦形ブリッジマン炉で単結晶を育成するのに
適した形状の外径15mm、肉厚2.5mmで、内壁は
ルツボと原料との反応を防止するためにカーボン膜で被
われている透明石英ルツボ(石英アンプル)を用い、そ
の底から原料をCd及びSeの順に詰め、Cd原料とS
e原料の境目に置換添加元素であるMn又はCoを置い
た。EXAMPLE An outer diameter of 15 mm and a wall thickness of 2.5 mm, which is suitable for growing a single crystal in a vertical Bridgman furnace, and an inner wall is covered with a carbon film to prevent the reaction between the crucible and the raw material. Using a transparent quartz crucible (quartz ampoule), the raw materials are packed from the bottom in the order of Cd and Se.
e Mn or Co, which is a substitution additive element, was placed at the boundary of the raw material.
【0010】上記のような順序で原料を詰めた石英ルツ
ボから残留ガスを排除するために室温で10-6Torr
まで真空引きした。次に、真空引きを続けながらルツボ
の周囲の温度を約200℃まで上げてこの温度に保持
し、ガスを排除した後真空封入した。なお、フラックス
法(溶液成長法)を採用して結晶を育成するため、融液
の組成が化学量論組成(1400〜1500℃で融解す
る)から10%ほどSe過剰になるように(融点を下げ
る操作)、最初から原料の組成を調節した。In order to eliminate residual gas from the quartz crucible packed with the raw materials in the above order, the temperature is 10 -6 Torr at room temperature.
I evacuated until. Next, while continuing evacuation, the temperature around the crucible was raised to about 200 ° C. and maintained at this temperature, the gas was eliminated, and then the crucible was vacuum-sealed. Since the crystal is grown by adopting the flux method (solution growth method), the composition of the melt should be 10% Se excess from the stoichiometric composition (melting at 1400 to 1500 ° C.) (melting point: The operation of lowering), the composition of the raw material was adjusted from the beginning.
【0011】原料を詰め真空封入し終えた石英ルツボ
を、縦磁場内に設置した縦型ブリッジマン炉の中心部に
設置し、先ず600℃で3時間予備加熱した。この時点
で融点が321℃のCdと221℃のSeは完全に溶け
た。しかし微量置換添加元素であるMn(融点1244
℃)又はCo(融点1495℃)はそれらが高融点を持
つため未溶解のままになっていた。次に電気炉の温度を
1150℃までゆっくりと昇温させ、その温度で5時間
保持して自然対流の助けを借りてCd−Se母融液を完
全に混ぜ合わせた。(尚、比較例として、この時点で、
無磁場で一方向凝固法により結晶育成を試みると、置換
添加元素であるMn又はCoの少なくとも一部がルツボ
の底に未溶解のまま沈着した状態で結晶育成を終ること
が時々発生する。このような事態を避けて結晶を育成す
るために本発明では以下の手段を採用する。) 炉の温
度を1150℃に維持した状態で8Tの磁場を印加し、
微量置換添加元素であるMn又はCoを磁場コイルの中
心位置にとどめて置いた。この状態は印加磁場によって
置換添加元素が融液内に浮いていることに相当する。次
にルツボを上下方向にゆっくり移動させることによっ
て、置換添加元素が融液の下端から上端まで相対的な移
動をしながらゆっくりと且つ効率良く溶解した。この時
の石英ルツボの移動速度は10mm/hrで、8時間に
亘って移動をくり返し、2往復させた(石英ルツボの移
動速度は固定したものではなく、例えば5mm/hrで
1往復であっても、50mm/hrで10往復であって
もよい)。強磁場を8時間に亘って連続して印加した
後、印加磁場を解除して(磁場0に戻して)再び熱対流
を起こさせ、これにより融液全体を攪拌した。この間
に、石英ルツボを初めの設定位置まで戻して、一方向凝
固の実験に備えた。印加磁場を解除してから1時間後に
結晶育成を開始した。結晶育成は一方向凝固法を採用
し、石英ルツボを5mm/hrの一定速度で下方に移動
させ、ルツボの底から所望の単結晶がSe過剰の溶液か
ら析出するように仕向けた。A quartz crucible filled with raw materials and sealed in vacuum was placed in the center of a vertical Bridgman furnace placed in a vertical magnetic field, and first preheated at 600 ° C. for 3 hours. At this point, Cd having a melting point of 321 ° C. and Se having a melting point of 221 ° C. were completely melted. However, Mn (melting point 1244) which is a trace substitutional additive element
C.) or Co (melting point 1495.degree. C.) remained unmelted due to their high melting point. Next, the temperature of the electric furnace was slowly raised to 1150 ° C., and the temperature was maintained for 5 hours to completely mix the Cd—Se mother melt with the help of natural convection. (As a comparative example, at this point,
When crystal growth is attempted by a unidirectional solidification method without a magnetic field, it sometimes happens that crystal growth ends in a state where at least a part of Mn or Co, which is a substitutional additive element, remains undissolved on the bottom of the crucible. In order to avoid such a situation and grow a crystal, the present invention employs the following means. ) Applying a magnetic field of 8T with the furnace temperature maintained at 1150 ° C,
Mn or Co, which is a trace replacement additive element, was kept at the center position of the magnetic field coil. This state corresponds to the substitutional additive element floating in the melt due to the applied magnetic field. Next, by slowly moving the crucible up and down, the substitutional additive element was slowly and efficiently dissolved while moving relatively from the lower end to the upper end of the melt. The movement speed of the quartz crucible at this time was 10 mm / hr, and the movement was repeated for 8 hours to make two reciprocations (the movement speed of the quartz crucible is not fixed, for example, one reciprocation is 5 mm / hr. May be 10 round trips at 50 mm / hr). After continuously applying a strong magnetic field for 8 hours, the applied magnetic field was released (returning to the magnetic field 0) to cause thermal convection again, thereby stirring the entire melt. During this time, the quartz crucible was returned to the initial set position to prepare for the unidirectional solidification experiment. Crystal growth was started 1 hour after the applied magnetic field was released. The unidirectional solidification method was adopted for crystal growth, and the quartz crucible was moved downward at a constant speed of 5 mm / hr so that the desired single crystal was precipitated from the Se-excess solution from the bottom of the crucible.
【0012】上記のようにして、高濃度のMn又はCo
を含む半磁性化合物半導体Cd1-xMnx SeまたはC
d1-y Coy Se(式中xは0.01〜0.50であ
り、yは0.001〜0.05である)を単結晶で得る
ことができた。単結晶の大きさはCd1-x Mnx Seが
直径10mm、長さ10mm、Cd1-y Coy Seが約
5mm×5mm×5mmであった。これら単結晶中のM
n又はCoの濃度分布は強磁場中で磁化測定を行なうこ
とによって可成りの精度で求めることができる。即ち、
各単結晶の下端部、中央部および上端部の3ケ所からそ
れぞれに磁化測定用試料を得、4.2K(液体ヘリウム
温度)にて磁化曲線を測定した。これらの磁化曲線から
求めたMn又はCo原子1個当りの磁気能率は上、中、
下それぞれについて5μB /Mn・atom 、3μB /Co
・atom と同一であり、測定精度は0.2%以下であっ
た。これらの値はMn2+又はCo2+の理論値に極めて近
く、単結晶の各部位におけるMn又はCoの濃度が測定
誤差範囲で同一であり、従って育成した結晶全体に亘っ
て均一な濃度分布になっていることが充分に保証され
た。As described above, a high concentration of Mn or Co
Semi-magnetic compound semiconductor containing Cd 1-x Mn x Se or C
It was possible to obtain d 1-y Co y Se (where x is 0.01 to 0.50 and y is 0.001 to 0.05) as a single crystal. Regarding the size of the single crystal, Cd 1-x Mn x Se had a diameter of 10 mm and a length of 10 mm, and Cd 1-y Co y Se had a size of about 5 mm × 5 mm × 5 mm. M in these single crystals
The concentration distribution of n or Co can be obtained with considerable accuracy by measuring the magnetization in a strong magnetic field. That is,
Magnetization measurement samples were respectively obtained from the lower end portion, the central portion and the upper end portion of each single crystal, and the magnetization curve was measured at 4.2 K (liquid helium temperature). The magnetic efficiency per Mn or Co atom obtained from these magnetization curves is upper, middle,
5μ B / Mn · atom, 3μ B / Co for each bottom
・ It was the same as atom, and the measurement accuracy was 0.2% or less. These values are very close to the theoretical values of Mn 2+ or Co 2+ , and the concentration of Mn or Co at each site of the single crystal is the same within the measurement error range, so that the concentration distribution is uniform over the entire grown crystal. It was fully guaranteed that
【0013】以上の実施例からも明らかなように、微量
の置換添加元素としてMn又はCoなどの磁性材料を添
加して半磁性化合物半導体Cd1-x Mnx Se又はCd
1-yCoy Seを、一様な濃度分布の単結晶として育成
する場合に、これら化合物の融液の濃度を一様なものと
しておくことが重要である。その手段として強磁場を用
いることが効果的であり、印加磁場の有効利用につなが
る。As is clear from the above examples, a semi-magnetic compound semiconductor Cd 1-x Mn x Se or Cd is prepared by adding a magnetic material such as Mn or Co as a slight amount of a substitution additive element.
When growing 1-y Co y Se as a single crystal having a uniform concentration distribution, it is important to keep the concentration of the melt of these compounds uniform. It is effective to use a strong magnetic field as the means, which leads to effective utilization of the applied magnetic field.
【0014】本発明による方法は、他のIIB族元素−VI
B族元素化合物半導体にMn、Fe、Co、Niなどの
磁性材料を置換添加元素として微量に添加し、一様な濃
度分布の単結晶を得るためにも適用可能であり、均一濃
度の単結晶が確実に安定して製造することができる(生
産性の向上)。The method according to the invention is also suitable for other Group IIB elements-VI.
The present invention is also applicable to obtain a single crystal having a uniform concentration distribution by adding a small amount of a magnetic material such as Mn, Fe, Co, or Ni as a substitution additive element to a group B element compound semiconductor. Can be reliably and stably manufactured (improved productivity).
【0015】[0015]
【発明の効果】本発明の半磁性化合物半導体単結晶の育
成方法により、微量の3d遷移金属元素(Mn、Fe、
Co、Ni等)を置換元素として均一な濃度分布で含有
した半磁性IIB族元素−VIB族元素化合物半導体単結晶
を得ることができる。According to the method for growing a semi-magnetic compound semiconductor single crystal of the present invention, a trace amount of 3d transition metal element (Mn, Fe,
It is possible to obtain a semi-magnetic IIB group element-VIB group element compound semiconductor single crystal containing Co, Ni, etc.) as a substitution element in a uniform concentration distribution.
Claims (1)
ッジマン炉を用い、フラックス法により、微量の3d遷
移金属元素を置換元素として含有したIIB族元素−VIB
族元素化合物半導体単結晶を一方向に凝固させて育成す
る方法において、IIB族元素及びVIB族元素のいずれか
一方を化学量論組成よりも過剰に用いてフラックスと
し、これらのIIB族元素、VIB族元素及び微量の3d遷
移金属元素を同一閉管ルツボ内に真空封入し、低融点の
IIB族元素及びVIB族元素を融解させ、次いで強磁場を
印加して高融点の3d遷移金属元素をその融液中に浮遊
させ、ルツボ又は強磁場発生装置を上下方向に移動させ
ることによって融液中での3d遷移金属元素の相対位置
を変更させながら3d遷移金属元素をIIB族元素−VIB
族元素融液中に完全に溶解させ、その後印加磁場を解除
し、融液内の自然対流を利用して融液全体を一様に混合
し、次いで融液をルツボの底から徐々に冷却して一方向
凝固法により所望の単結晶を析出させることを特徴とす
る半磁性化合物半導体単結晶の育成方法。1. A group IIB element-VIB containing a trace amount of a 3d transition metal element as a substitution element by a flux method using a vertical Bridgman furnace installed in a cylindrical vertical magnetic field space.
In a method of unidirectionally solidifying and growing a group element compound semiconductor single crystal, one of the group IIB element and the group VIB element is used in excess of the stoichiometric composition to form a flux, and the group IIB element, VIB A group 3 element and a trace amount of 3d transition metal element are vacuum sealed in the same closed tube crucible,
The IIB group element and the VIB group element are melted, then a high magnetic field is applied to suspend the 3d transition metal element having a high melting point in the melt, and the crucible or the strong magnetic field generator is moved vertically to melt the melt. The 3d transition metal element is changed to the IIB group element-VIB while changing the relative position of the 3d transition metal element in
It is completely dissolved in the group element melt, then the applied magnetic field is released, the entire melt is uniformly mixed by utilizing natural convection in the melt, and then the melt is gradually cooled from the bottom of the crucible. A method for growing a semi-magnetic compound semiconductor single crystal, which comprises depositing a desired single crystal by a unidirectional solidification method.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP35490092A JPH06183873A (en) | 1992-12-18 | 1992-12-18 | Method for growing semimagnetic compound semiconductor single crystal |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP35490092A JPH06183873A (en) | 1992-12-18 | 1992-12-18 | Method for growing semimagnetic compound semiconductor single crystal |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH06183873A true JPH06183873A (en) | 1994-07-05 |
Family
ID=18440669
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP35490092A Pending JPH06183873A (en) | 1992-12-18 | 1992-12-18 | Method for growing semimagnetic compound semiconductor single crystal |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH06183873A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100476321B1 (en) * | 2002-01-24 | 2005-03-10 | 조성래 | transition metal-doped ferromagnetic semiconductor single crystal |
KR100510203B1 (en) * | 2002-06-11 | 2005-08-24 | 조성래 | chalcopyrite structure single crystal displaced transition element and their manufacturing method |
KR100704301B1 (en) * | 2005-08-18 | 2007-04-06 | 부산대학교 산학협력단 | Method for magnetizing alloy of transition metal and semiconductor by hydrogen injection |
CN104091693A (en) * | 2014-07-03 | 2014-10-08 | 北京科技大学 | Method for preparing Cd1-xMnxSe quantum dot solar cell |
-
1992
- 1992-12-18 JP JP35490092A patent/JPH06183873A/en active Pending
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100476321B1 (en) * | 2002-01-24 | 2005-03-10 | 조성래 | transition metal-doped ferromagnetic semiconductor single crystal |
KR100510203B1 (en) * | 2002-06-11 | 2005-08-24 | 조성래 | chalcopyrite structure single crystal displaced transition element and their manufacturing method |
KR100704301B1 (en) * | 2005-08-18 | 2007-04-06 | 부산대학교 산학협력단 | Method for magnetizing alloy of transition metal and semiconductor by hydrogen injection |
CN104091693A (en) * | 2014-07-03 | 2014-10-08 | 北京科技大学 | Method for preparing Cd1-xMnxSe quantum dot solar cell |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2010024392A1 (en) | Manufacturing method for silicon carbide monocrystals | |
JP2023024315A (en) | METHOD FOR MANUFACTURING SiC SINGLE CRYSTAL | |
US4793894A (en) | Process for crystal growth from solution | |
JPS6345198A (en) | Production of crystal of multiple system | |
McMasters et al. | Preparation of Terfenol-D by float zone solidification | |
US3781209A (en) | Method of producing homogeneous rods of semiconductor material | |
JPH06183873A (en) | Method for growing semimagnetic compound semiconductor single crystal | |
Kozuki et al. | Metastable crystal growth of the low temperature phase of barium metaborate from the melt | |
JPH0244798B2 (en) | ||
US3695941A (en) | Preparation of eutectic material | |
JPH01122998A (en) | Production of cd zn te mixed crystal semiconductor | |
JPS5934679B2 (en) | Uniform impurity doping method and device using liquid capsule method | |
JP2020050544A (en) | Seed crystal for iron gallium alloy single crystal growth | |
JP7349100B2 (en) | Seed crystal for FeGa single crystal growth and method for producing FeGa single crystal | |
EP0174672A1 (en) | Method of manufacturing bismuth germanate crystals | |
Pandya et al. | Characteristic growth features and etching of InBi single crystals | |
JPH05310494A (en) | Growth of single crystal | |
Gandhi | Single crystal growth by a slow evaporation technique: Concept, mechanisms and applications | |
JPS63144191A (en) | Production of compound semiconductor single crystal and apparatus therefor | |
JP2012036015A (en) | Crystal growth method | |
JPH06279174A (en) | Production of oxide single crystal | |
Elwell | Fundamentals of flux growth | |
JP2814657B2 (en) | Method for growing compound semiconductor single crystal | |
US3600143A (en) | Growth of crystalline chalcogenide spinels | |
Bruni et al. | Bridgman growth of ferrite crystals |