JPH06182926A - Electromagnetic structural cladding material - Google Patents

Electromagnetic structural cladding material

Info

Publication number
JPH06182926A
JPH06182926A JP27073291A JP27073291A JPH06182926A JP H06182926 A JPH06182926 A JP H06182926A JP 27073291 A JP27073291 A JP 27073291A JP 27073291 A JP27073291 A JP 27073291A JP H06182926 A JPH06182926 A JP H06182926A
Authority
JP
Japan
Prior art keywords
less
clad material
steel
magnetic steel
plate thickness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP27073291A
Other languages
Japanese (ja)
Other versions
JPH08443B2 (en
Inventor
Akira Yamamoto
山本  明
Masayoshi Kondo
正義 近藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP3270732A priority Critical patent/JPH08443B2/en
Publication of JPH06182926A publication Critical patent/JPH06182926A/en
Publication of JPH08443B2 publication Critical patent/JPH08443B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To provide an electromagnetic structural cladding material in which mechanical strength, rigidity, thermal shrinkage are optimized and particularly a superconducting magnet-supporting collar material for a particle accelerator by laminating and integrating different type nonmagnetic materials having different thermal shrinkages. CONSTITUTION:An electromagnet supporting structural cladding material is formed by laminating and integrating a nonmagnetic steel on both or one side surface of an Al alloy material by intermetallic connection in such a manner that a tensile strength is 50kgf/mm<2> or more, a Young's modulus is 10000kgf/ mm<2> or more, a specific penneability is 1.002 or less, a thermal expansion (shrinkage) coefficient at 4K is 0.33% or less, a thickness is 0.5-5mm, and a thickness ratio of the Al material to the steel is 0.3-2.5.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、極低温で使用するステ
ンレス鋼−Alクラッド材に関するものであり、特に粒
子加速器のカラ−材に使用する非磁性クラッド材部材に
係るものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a stainless steel-Al clad material used at extremely low temperatures, and more particularly to a non-magnetic clad material member used as a color material for a particle accelerator.

【0002】[0002]

【従来の技術】粒子加速器は、主リングの中に、電子あ
るいは陽子の粒子ビームを通すビームパイプがあり、こ
のビームパイプの周囲には荷電粒子の軌道を定め、効率
よく加速を行うために電磁石を設けている。特に、近年
の粒子加速器の高エネルギー化に伴い高磁場超電導電磁
石が必要不可欠となりつつある。そのために、超電導電
磁石は超電導コイルを二重殻構造と呼ばれるコイル巻線
方法が用いられるが、コイルにかかる強大な電磁力を支
持するために、通称カラーと呼ばれる支持構造部材が必
要となる。通常このカラーは、超電導コイルの形状に合
わせ、二次元的に複雑な形状となるため、非磁性材から
なる厚さ1mm程度の板をプレス打ち抜き加工によって製
作することが試みられている。
2. Description of the Related Art A particle accelerator has a beam pipe for passing a particle beam of electrons or protons in a main ring, and an electromagnet is used to efficiently orbit the charged particles around the beam pipe. Is provided. In particular, with the recent increase in energy of particle accelerators, high-field superconducting electromagnets are becoming indispensable. Therefore, the superconducting electromagnet uses a coil winding method called a double-shell structure for the superconducting coil, but a supporting structure member commonly called a collar is required to support a strong electromagnetic force applied to the coil. Usually, this collar has a two-dimensionally complicated shape in conformity with the shape of the superconducting coil, so it has been attempted to manufacture a plate made of a nonmagnetic material and having a thickness of about 1 mm by press punching.

【0003】このカラー材は非磁性であるとともに充分
な強度を必要とする。この観点からはステンレス鋼材は
適応可能な材料であったが、このような材料では、コイ
ル本体(Nb・Ti/Cu)を超電導とするに必要な液
体ヘリウム温度(4.2K)という極低温に冷却した場
合に起こる収縮率に適合せず、常温での製作時に与えら
れた支持剛性が、極低温での使用時に低下してしまうと
いう問題が生じる。
This color material is non-magnetic and requires sufficient strength. From this point of view, the stainless steel material was applicable, but with such a material, the ultra-low temperature of liquid helium temperature (4.2K) necessary for superconducting the coil body (Nb · Ti / Cu) was achieved. There is a problem in that it does not match the shrinkage ratio that occurs when cooled, and the supporting rigidity given during fabrication at room temperature decreases during use at extremely low temperatures.

【0004】[0004]

【発明が解決しようとする課題】前述のように粒子加速
器におけるカラー材は、超電導電磁石にかかる強大な電
磁力を支持しなければならない。すなわち、超電導電磁
石の力学的設計、製作において最も重要な項目の一つ
に、磁石支持剛性の向上が挙げられるが、そのためにコ
イル本体をカラーが常に適切に支持する構造にすると共
に、常温で組み立てられた電磁石支持剛性が極低温状態
においても保持され無ければならない。
As described above, the collar material in the particle accelerator must support the strong electromagnetic force applied to the superconducting electromagnet. In other words, one of the most important items in the mechanical design and manufacture of superconducting electromagnets is the improvement of the magnet support rigidity. For that purpose, the coil body should be structured so that it is always properly supported and assembled at room temperature. The obtained electromagnet support rigidity must be maintained even in a cryogenic state.

【0005】本発明は、この様な現状の要求を充足する
ものであって、熱収縮量の異なる異種非磁性材を積層一
体化させることにより、力学的な強度、剛性、熱収縮量
を最適化した電磁構造用クラッド材、特に粒子加速器に
おける超電導電磁石支持用カラー材を提供することを目
的とするものである。
The present invention satisfies the above-mentioned current requirements, and optimizes the mechanical strength, rigidity, and heat shrinkage amount by laminating and integrating different kinds of nonmagnetic materials having different heat shrinkage amounts. It is an object of the present invention to provide an improved clad material for an electromagnetic structure, particularly a collar material for supporting a superconducting electromagnet in a particle accelerator.

【0006】[0006]

【課題を解決するための手段】上記目的を達成するため
に本発明の要旨とするところは、(1) Al材の両面ある
いは片面に非磁性鋼を金属間接合して積層一体化し、引
張強さ50kgf/mm2 以上,ヤング率10000kgf/mm2
以上,比透磁率1.002以下であり、かつ常温から4
Kに冷却した時に生ずる熱収縮率が0.33%以下の特
性を有する電磁構造用クラッド材であり、(2) 前記クラ
ッド材は、重量%で2%までのMn、1.5%までのM
gの少なくとも一種を含有したAl材と、その両面ある
いは片面に、重量%で0.12%以下のC、1.00%
以下のSi、8.00〜12.00%のMn、5.00
〜7.00%のNi、18.00〜21.00%のCr
を含有する非磁性鋼とを金属間接合して積層一体化し、
前記非磁性鋼:Al材の板厚比を0.3〜2.5とすこ
と、また、この際の両材の積層板厚を0.5〜5mmとす
ることが好ましいこと、(3) 前記各項記載のAl材と非
磁性鋼を積層し、500℃以下の温度でAl材の圧下率
で30乃至60%の熱間圧延を施して、板厚を0.5〜
5mm、非磁性鋼:Al材の板厚比を0.3〜2.5の電
磁構造用クラッド材を製造する方法である。
In order to achieve the above-mentioned object, the gist of the present invention is to: (1) laminate non-magnetic steel on both sides or one side of an Al material by metal-to-metal joining to obtain tensile strength It is 50 kgf / mm 2 or more, a Young's modulus 10000 kgf / mm 2
Above, the relative magnetic permeability is 1.002 or less, and at room temperature 4
A clad material for electromagnetic structure having a heat shrinkage ratio of 0.33% or less when cooled to K. (2) The clad material is up to 2% Mn by weight and 1.5% up to M
Al material containing at least one of g, and C on the both sides or one side of which is 0.12% or less by weight%, 1.00%
The following Si, 8.00 to 12.00% Mn, 5.00
~ 7.00% Ni, 18.0 ~ 21.00% Cr
And non-magnetic steel containing
It is preferable that the plate thickness ratio of the non-magnetic steel: Al material is 0.3 to 2.5, and the laminated plate thickness of both materials at this time is 0.5 to 5 mm, (3) The Al material described in the above items and non-magnetic steel are laminated, and hot rolling is performed at a temperature of 500 ° C. or less at a reduction ratio of the Al material of 30 to 60% to obtain a plate thickness of 0.5 to
This is a method for producing a clad material for electromagnetic structure having a plate thickness ratio of 5 mm and a non-magnetic steel: Al material of 0.3 to 2.5.

【0007】上記本発明材は加工性も良好であり、熱収
縮等の調整、最適化を必要とする低温機器の構造材とし
て広く利用できるが、特に粒子加速器の超電導電磁石支
持用カラーに好適である。
The above-mentioned material of the present invention has good workability and can be widely used as a structural material for low-temperature equipment which requires adjustment and optimization of heat shrinkage and the like, and is particularly suitable for a collar for supporting a superconducting electromagnet of a particle accelerator. is there.

【0008】以下に本発明を詳細に説明する。本発明ク
ラッド材を構成するAl材は、例えば粒子加速器の超電
導電磁石の支持材として用いた場合に要求される特性
を、合せ材である非磁性鋼との関係を考慮して具えたも
のの中から選択しなければならない。その具備しなけれ
ばならない特性の一つとして、磁場精度を乱さないため
に比透磁率が小さいことが必要である。この意味からは
純Alが適しているが、強度が不足する。そこで本発明
は、Mn2.0%以下,Mg1.5%以下の何れかまた
は両方を含有したAl合金材を使用することを推奨す
る。MnはAlマトリックスに溶解し耐蝕性を向上す
る、そのために2.0%まで添加できるがそれ以上の添
加は効果が飽和する。Mgは強度を上昇させるために添
加するが、余り多量に含有すると冷間加工性が劣化し、
また表面酸化膜の形成を促進して接合性を低下させるの
で1.5%以下にするのが好ましい。なお、この種のA
l合金はJIS A3004−Oに規定されている。
The present invention will be described in detail below. The Al material constituting the clad material of the present invention includes, for example, the characteristics required when used as a support material for a superconducting electromagnet of a particle accelerator, in consideration of the relationship with a non-magnetic steel as a composite material. You have to choose. One of the characteristics that must be possessed is that the relative permeability is small in order not to disturb the magnetic field accuracy. Pure Al is suitable in this sense, but its strength is insufficient. Therefore, in the present invention, it is recommended to use an Al alloy material containing one or both of Mn 2.0% or less and Mg 1.5% or less. Mn dissolves in the Al matrix and improves corrosion resistance. Therefore, Mn can be added up to 2.0%, but the effect is saturated if it is added more. Mg is added to increase the strength, but if it is contained in an excessively large amount, cold workability deteriorates,
Further, it is preferably 1.5% or less because it accelerates the formation of the surface oxide film and lowers the bonding property. In addition, this kind of A
The l-alloy is specified in JIS A3004-O.

【0009】合わせ材として用いる非磁性鋼は極低温で
強度が高く、かつ非磁性であることが必要であり、好ま
しい成分組成として重量%でC:0.12%以下、S
i:1.00%以下、Mn:8.00〜12.00%、
Ni:5.00〜7.00%、Cr:18.00〜2
1.00%を含有し、残部が実質的にFeより成る合金
鋼である。この様な組成の合金鋼であれば80kgf/mm2
以上の引張強さと、4.2Kにおける比透磁率1.00
2以下が得られる。この種合金鋼は、すでに市販されて
いるYUS(登録商標)130Sを用いることができ
る。
The non-magnetic steel used as a laminating material is required to have a high strength and a non-magnetic property at an extremely low temperature, and a preferable component composition is C: 0.12% or less by weight% and S
i: 1.00% or less, Mn: 8.00 to 12.00%,
Ni: 5.00 to 7.00%, Cr: 18.0 to 2
It is an alloy steel containing 1.00% and the balance substantially Fe. 80kgf / mm 2 for alloy steel with such composition
The above tensile strength and relative permeability at 4.2K 1.00
A value of 2 or less is obtained. As the seed alloy steel, YUS (registered trademark) 130S which is already on the market can be used.

【0010】本発明は上記したAl材を母材とし、その
一面または両面に非磁性鋼を合わせ材として積層接合
し、クラッド材とする。得られるクラッド材は、例えば
超低温で使用するカラー材では次の特性を具備すること
が必要である。すなわち、常温での製作時にあらかじめ
応力を付与するために常温における耐力(σ0.2 )≧3
0f/mm2 ,引張強度(TS)≧50kgf/mm2 ,ヤング率
(E)≧10000f/mm2 とすることにより極低温にお
いて強大な電磁力を発生する超電導コイルを支持するこ
とが可能であり、また、常温からこの様な極低温(4K
近傍)に冷却することによって発生する超電導コイルの
熱収縮に同調するため、熱収縮率を0.33%以下と
し、かつ、同温度における比透磁率(μ)が1.002
以下となるようにする。さらに成形加工時にばりなどが
出ないように優れた加工性が要求される。
In the present invention, the above Al material is used as a base material, and non-magnetic steel is laminated on one surface or both surfaces thereof as a laminated material to form a clad material. The obtained clad material is required to have the following characteristics, for example, for a color material used at an ultralow temperature. That is, the proof stress at room temperature (σ 0.2 ) ≧ 3 in order to apply stress in advance at the time of fabrication at room temperature.
By setting 0 f / mm 2 , tensile strength (TS) ≧ 50 kgf / mm 2 , and Young's modulus (E) ≧ 10000 f / mm 2 , it is possible to support a superconducting coil that generates a strong electromagnetic force at extremely low temperatures. Also, from room temperature to such extremely low temperature (4K
In order to synchronize with the heat shrinkage of the superconducting coil generated by cooling to (near), the heat shrinkage is 0.33% or less, and the relative permeability (μ) at the same temperature is 1.002.
It should be as follows. Furthermore, excellent workability is required so that burrs do not appear during molding.

【0011】上記特性を得るためには、前記したAl材
と非磁性鋼の特性および積層比によって決まり、これは
特に極低温におけるクラッド材の収縮率を特定するため
にも重要である。前述したようにNb−Ti/Cuより
なる超電導コイルを超電導状態にするため、常温より液
体ヘリウムで4K近傍に冷却したときに起こる収縮率
は、理論的にはCuの収縮率0.33%以下であり、実
用的には超電導状態を安定に維持するためのCu比率の
制限から0.28%以上の範囲にある。一方、同様な状
況における非磁性鋼での収縮率はほぼ0.26%であ
り、Al材では0.4%と高くなって、両材では極低温
に起こる収縮率に大きな差がみられる。従って、この様
な特性の異なる両金属を単純に積層接合しただけでは、
超電導コイルの収縮率に一致せず、極低温域での超電導
コイルを所定位置に確実に支持することが困難となり、
ひいては磁場に乱れを生じさせることになる。本発明者
等はこのAl材に前記非磁性鋼を積層接合したクラッド
材について、Al材に対する非磁性鋼の厚み比(積層
比)を極低温域(4K)で生ずる熱収縮率との関係で調
べたところ、図1に示す様な実線が得られた。すなわ
ち、この図から明らかの様にに積層(クラッド)比が
0.3〜2.5の範囲に調整することにより、実用的な
Nb−Ti/Cuコイルの熱収縮率の範囲にほぼ等しく
なり(斜線部分)、この結果、粒子加速器のカラー材と
して極めて適切であることが分かった。
In order to obtain the above-mentioned characteristics, it is determined by the characteristics and the lamination ratio of the Al material and the non-magnetic steel, which is important especially for specifying the shrinkage rate of the clad material at extremely low temperatures. As described above, in order to bring the superconducting coil made of Nb-Ti / Cu into a superconducting state, the contraction rate that occurs when cooled to about 4K with liquid helium from room temperature is theoretically 0.33% or less of Cu. Therefore, practically, it is in the range of 0.28% or more from the limit of the Cu ratio for maintaining the superconducting state stably. On the other hand, in the same situation, the shrinkage rate of non-magnetic steel is approximately 0.26%, which is as high as 0.4% in the Al material, and there is a large difference in the shrinkage rate that occurs at extremely low temperatures for both materials. Therefore, simply laminating and joining both metals with different characteristics like this,
It does not match the contraction rate of the superconducting coil, and it becomes difficult to reliably support the superconducting coil at a predetermined position in the extremely low temperature range.
Eventually, the magnetic field will be disturbed. Regarding the clad material obtained by laminating and joining the non-magnetic steel to the Al material, the present inventors have found that the thickness ratio (laminating ratio) of the non-magnetic steel to the Al material is related to the heat shrinkage ratio that occurs in the extremely low temperature range (4K). Upon examination, a solid line as shown in FIG. 1 was obtained. That is, as is apparent from this figure, by adjusting the stacking (cladding) ratio within the range of 0.3 to 2.5, the heat shrinkage ratio of the practical Nb-Ti / Cu coil becomes approximately equal to the range. As a result, it was found that it is extremely suitable as a color material for particle accelerators.

【0012】更に、この様なクラッド材を粒子加速器の
カラー材として使用するには、中央部に超伝導電磁石を
挿入する孔形を有する形状に加工したカラー材を、複数
枚スポット溶接して接合せしめ、ビームパイプの長さ方
向に並列して超電導電磁石を支持する。
Further, in order to use such a clad material as a collar material for a particle accelerator, a plurality of collar materials processed into a shape having a hole for inserting a superconducting electromagnet in the central portion are spot-welded and joined. At the same time, the superconducting electromagnet is supported in parallel in the length direction of the beam pipe.

【0013】クラッド材を製造するには有機樹脂で接着
したり、爆着により接合する方法があるが、前者の場合
は、接着材が4Kという低温に耐えることが困難であ
り、後者の場合は接合(爆着)はスラブの段階で行わ
れ、その後の板材に成形するために行う熱間圧延や、冷
間圧延後の焼鈍(歪み取り)ではAlの融点以上の温度
で処理するため、特性の優れたクラッド材を確実に得る
ことが難しくなる。そのため本発明では、接着や爆着な
どの方法によらず、圧延法、すなわち帯状の非磁性鋼及
びAlを500℃以下に加熱して重ね、大気中でAlの
圧下率としてほぼ30%以上の圧下率で圧延して得るこ
とができる。この圧下率30%以上の圧延を行うことに
より接合強度が大になり極低温域においても剥離を起こ
すことがなくなる。しかし、圧下率が60%以上を超え
ると非磁性鋼をも圧下することになるのでこれを対象と
した700℃以上の歪み取り焼鈍が必要となり、従っ
て、Alの融点以上の処理となるため界面に合金化が起
って特性を劣化する。
In order to manufacture the clad material, there are methods of adhering with an organic resin or joining by explosive bonding, but in the former case, it is difficult for the adhesive material to withstand a low temperature of 4K, and in the latter case. Bonding (explosion welding) is performed at the slab stage, and the hot rolling performed to form the plate material thereafter and the annealing (strain relief) after cold rolling are performed at a temperature equal to or higher than the melting point of Al. It becomes difficult to reliably obtain the excellent clad material of. Therefore, in the present invention, the rolling method, that is, the strip-shaped non-magnetic steel and Al are heated to 500 ° C. or lower and overlapped, regardless of the method such as adhesion or explosive adhesion, and the reduction ratio of Al in the atmosphere is about 30% or more. It can be obtained by rolling at a reduction rate. By carrying out the rolling at a rolling reduction of 30% or more, the bonding strength becomes large and peeling does not occur even in an extremely low temperature range. However, if the rolling reduction exceeds 60%, the non-magnetic steel will also be rolled down. Therefore, strain relief annealing at 700 ° C or higher for this is required, and therefore, the treatment above the melting point of Al is required, so that the interface Alloying occurs and the characteristics deteriorate.

【0014】また、この方法でクラッド材を製造する場
合、板厚を0.5mm以上とすれば安定した圧延が可能と
なり、一方最終形状への加工を打ち抜き加工で行う場合
には板厚を5mm以下にする必要がある。
Further, when the clad material is manufactured by this method, if the plate thickness is 0.5 mm or more, stable rolling is possible. On the other hand, when the final shape is punched, the plate thickness is 5 mm. Must be:

【0015】[0015]

【実施例】以下に本発明の実施例を説明する。重量%と
して、Cu:0.13%,Si:0.19%,Fe:
0.48%,Mn:10.5%,Mg:0.93%,Z
n:0.01%,残部実質的にAlよりなるAl材(J
IS30004)の両面に、重量%として、C:0.0
7%,Si:0.6%,Mn:1.05%,P:0.0
24%,S:0.001%,Ni:5.98%,Cr:
19.26%,N:0.32%,残部実質的にFeより
なる非磁性鋼(YUS130S)を積層し、450℃に
加熱しAl材の圧下率45%で圧延して板厚2.5mmの
金属間接合したクラッド材を製造した。この際、製品の
積層比、すなわち非磁性鋼/Al材が1.27 (非磁性
鋼−Al材−非磁性鋼=0.7-1.1-0.7mm)となるように構
成した。
EXAMPLES Examples of the present invention will be described below. As weight%, Cu: 0.13%, Si: 0.19%, Fe:
0.48%, Mn: 10.5%, Mg: 0.93%, Z
n: 0.01%, balance Al material consisting essentially of Al (J
IS30004) on both sides, as a weight%, C: 0.0
7%, Si: 0.6%, Mn: 1.05%, P: 0.0
24%, S: 0.001%, Ni: 5.98%, Cr:
Non-magnetic steel (YUS130S) consisting of 19.26%, N: 0.32% and the balance being substantially Fe is laminated, heated to 450 ° C., and rolled at a rolling reduction of 45% of an Al material to obtain a plate thickness of 2.5 mm. The metal-clad clad material was manufactured. At this time, the lamination ratio of the products, that is, the nonmagnetic steel / Al material was 1.27 (nonmagnetic steel-Al material-nonmagnetic steel = 0.7-1.1-0.7 mm).

【0016】表1に、得られたクラッド材の特性を示
す。同表にはAl材及び非磁性鋼の特性も併記した。
Table 1 shows the characteristics of the obtained clad material. The characteristics of the Al material and the non-magnetic steel are also shown in the table.

【0017】[0017]

【表1】 [Table 1]

【0018】上記表から明らかのように、クラッド材の
積層比1.27にすることにより、所望の機械的性質を
有するクラッド材が得られ、しかもその4Kという極低
温で生ずる収縮率も、断面面積比でNb:Ti:Cuが
1:1:1.6の超伝導コイルの収縮率0.29に同調
することが可能となり、常温での製作時にあらかじめ与
えた応力による超電導電磁石支持剛性が極低温で励磁し
た時にも保持できるようになった。
As is clear from the above table, by setting the clad material lamination ratio to 1.27, a clad material having the desired mechanical properties can be obtained, and the shrinkage ratio which occurs at an extremely low temperature of 4K also shows a cross section. It is possible to tune the shrinkage rate of the superconducting coil of 0.29 in the area ratio of Nb: Ti: Cu to 1: 1: 1.6, and the superconducting electromagnet support rigidity due to the stress given in advance at room temperature is extremely high. It can be held even when excited at low temperature.

【0019】なお本発明クラッド材を構成する非磁性鋼
に近い機械的特性を有するものに、SUS304や31
6材があるが、これらは低温での磁気特性が悪く(比透
磁率が1.01以上)、磁場精度に影響が出る。
It is to be noted that SUS304 and 31 have mechanical properties close to those of the non-magnetic steel constituting the clad material of the present invention.
There are 6 materials, but these have poor magnetic properties at low temperatures (relative permeability of 1.01 or more), which affects magnetic field accuracy.

【0020】[0020]

【発明の効果】以上のように、本発明の非磁性鋼/Al
クラッド材は構成厚み比率を適性にすることにより、極
低温における熱収縮を調整することができ、特に、長大
な粒子加速器用カラー材に極めて適しており、この種設
備のシステムとしての安定化と高磁場化による高性能化
に裨益すること大である。
As described above, the non-magnetic steel / Al of the present invention is used.
The clad material can adjust the heat shrinkage at cryogenic temperature by adjusting the composition thickness ratio to an appropriate level, and is particularly suitable for a long color material for particle accelerators. It is a great benefit to improve the performance by increasing the magnetic field.

【図面の簡単な説明】[Brief description of drawings]

【図1】積層(クラッド)比と熱収縮率の関係を示す図
である。
FIG. 1 is a diagram showing a relationship between a lamination (cladding) ratio and a heat shrinkage rate.

【手続補正書】[Procedure amendment]

【提出日】平成4年3月12日[Submission date] March 12, 1992

【手続補正1】[Procedure Amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0017[Correction target item name] 0017

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0017】[0017]

【表1】 [Table 1]

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 Al材の両面あるいは片面に非磁性鋼を
金属間接合して積層一体化し、引張強さ50kgf/mm2
上,ヤング率10000kgf/mm2 以上,比透磁率1.0
02以下であり、かつ常温から4Kに冷却したときに生
ずる熱収縮率が0.33%以下の特性を有することを特
徴とする電磁構造用クラッド材。
1. A non-magnetic steel on either side or both sides of the Al material is laminated and integrated by bonding between the metal, the tensile strength of 50 kgf / mm 2 or more, a Young's modulus 10000 kgf / mm 2 or more, relative permeability 1.0
A clad material for an electromagnetic structure, which has a property of not more than 02 and a heat shrinkage ratio of not more than 0.33% generated when cooled from room temperature to 4K.
【請求項2】 重量%で2%までのMn、1.5%まで
のMgの少なくとも一種を含有したAl材と、その両面
あるいは片面に、重量%で0.12%以下のC、1.0
0%以下のSi、8.00〜12.00%のMn、5.
00〜7.00%のNi、18.00〜21.00%の
Crを含有する非磁性鋼とを金属間接合して積層一体化
し、前記非磁性鋼:Al材の板厚比を0.3〜2.5と
したことを特徴とする請求項1記載の電磁構造用クラッ
ド材。
2. An Al material containing at least 2% by weight of Mn and at least 1.5% of Mg at least on one side and 0.1% or less by weight% of C, 1. 0
0% or less of Si, 8.00 to 12.00% of Mn, 5.
A nonmagnetic steel containing Ni of 0.000 to 7.00% and nonmagnetic steel of 18.0 to 21.00% of Cr is metal-metal bonded to be laminated and integrated, and the plate thickness ratio of the nonmagnetic steel: Al material is set to 0. The clad material for electromagnetic structure according to claim 1, wherein the clad material is 3 to 2.5.
【請求項3】 積層板厚を0.5〜5mmとしたことを特
徴とする請求項2記載の電磁構造用クラッド材。
3. The clad material for electromagnetic structure according to claim 2, wherein the laminated plate thickness is 0.5 to 5 mm.
【請求項4】 前記各請求項におけるクラッド材を加工
し、極低温で使用するに適した粒子加速器における超電
導電磁石支持用カラー。
4. A collar for supporting a superconducting electromagnet in a particle accelerator, which is suitable for processing the clad material according to each of the above claims and using it at cryogenic temperatures.
【請求項5】 重量%で2%までのMn、1.5%まで
のMgの少なくとも一種を含有したAl材の両面あるい
は片面に、重量%で0.12%以下のC、1.00%以
下のSi、8.00〜12.00%のMn、5.00〜
7.00%のNi、18.00〜21.00%のCrを
含有する非磁性鋼を積層し、500℃以下の温度でAl
材の圧下率30%以上60%以下の熱間圧延を施して、
板厚を0.5〜5mm、非磁性鋼:Al材の板厚比を0.
3〜2.5とすることを特徴とする電磁構造用クラッド
材の製造方法。
5. An Al material containing at least one of Mn up to 2% by weight and Mg up to 1.5% on both sides or one side, with C of less than 0.12% by weight and 1.00%. The following Si, 8.00 to 12.00% Mn, 5.00
Non-magnetic steel containing 7.00% Ni and 18.0 to 21.00% Cr is laminated and Al at a temperature of 500 ° C. or lower.
Hot rolling with a rolling reduction of 30% or more and 60% or less,
The plate thickness is 0.5 to 5 mm, and the plate thickness ratio of non-magnetic steel: Al material is 0.
A method for manufacturing a clad material for an electromagnetic structure, characterized in that it is 3 to 2.5.
JP3270732A 1991-10-18 1991-10-18 Clad material for electromagnetic structure Expired - Lifetime JPH08443B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3270732A JPH08443B2 (en) 1991-10-18 1991-10-18 Clad material for electromagnetic structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3270732A JPH08443B2 (en) 1991-10-18 1991-10-18 Clad material for electromagnetic structure

Publications (2)

Publication Number Publication Date
JPH06182926A true JPH06182926A (en) 1994-07-05
JPH08443B2 JPH08443B2 (en) 1996-01-10

Family

ID=17490193

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3270732A Expired - Lifetime JPH08443B2 (en) 1991-10-18 1991-10-18 Clad material for electromagnetic structure

Country Status (1)

Country Link
JP (1) JPH08443B2 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5073868A (en) * 1973-11-01 1975-06-18
JPS6142498A (en) * 1984-08-06 1986-02-28 Kobe Steel Ltd Production of aluminum-stainless steel clad plate for forming
JPH01232031A (en) * 1988-03-14 1989-09-18 Sumitomo Electric Ind Ltd Aluminum alloy-stainless steel composite material
JPH035137A (en) * 1989-06-02 1991-01-10 Toshiba Corp Clad material

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5073868A (en) * 1973-11-01 1975-06-18
JPS6142498A (en) * 1984-08-06 1986-02-28 Kobe Steel Ltd Production of aluminum-stainless steel clad plate for forming
JPH01232031A (en) * 1988-03-14 1989-09-18 Sumitomo Electric Ind Ltd Aluminum alloy-stainless steel composite material
JPH035137A (en) * 1989-06-02 1991-01-10 Toshiba Corp Clad material

Also Published As

Publication number Publication date
JPH08443B2 (en) 1996-01-10

Similar Documents

Publication Publication Date Title
EP1360340B1 (en) Iron-cobalt-vanadium alloy
US5830585A (en) Article made by joining two members together, and a brazing filler metal
US6331214B1 (en) Monolithically bonded construct of rare-earth magnet and metal material and method for bonding same
JPH1171659A (en) Amorphous magnetic material and magnetic core using the same
US3534459A (en) Composite superconducting elements
JP5094325B2 (en) High strength composite metal material and manufacturing method thereof
JPH06182926A (en) Electromagnetic structural cladding material
US20230256713A1 (en) Homogenizing heterogeneous foils for light alloy metal parts
JP2003105500A (en) Stainless steel/copper clad, and manufacturing method therefor
JPH0657379A (en) Non-magnetic steel excellent in hot workability and corrosion resistance
US6761780B2 (en) Method of manufacturing a high Mn non-magnetic steel sheet for cryogenic temperature use
JP3864600B2 (en) Method for producing high Mn non-magnetic steel sheet for cryogenic use
JP3645925B2 (en) Joined body and joining method of permanent magnet and different kind of member
JP2016008314A (en) Fe-BASED METAL PLATE AND PRODUCTION METHOD THEREFOR
JPH0852590A (en) Bonding material for metallic member
JP3112199B2 (en) High strength and high thermal expansion Fe-Ni alloy and method for producing the same
JPH0472900B2 (en)
JPS58193347A (en) Austenite stainless steel excellent in cryogenic temperature characteristics
JPH08112680A (en) Method for joining two kinds of members varying in coefficient of thermal expansion by heating
CN117210721A (en) High-entropy alloy with ultrahigh tensile property at room temperature and low-temperature environment and preparation method thereof
JPH08118066A (en) Production of joined body consisting of permanent magnet having rust preventability and member of different material kind
JPS5857944A (en) Composite metallic pipe and its manufacture
JPH05386A (en) Manufacture of aluminum/invar/aluminum clad material
Henning et al. Experiments with aluminum bonded Nb 3 Sn
JPS61207553A (en) Nonmagnetic steel for use at very low temperature

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19960702