JPH06182365A - Method and apparatus for treating water separated from water purifying treatment sludge - Google Patents

Method and apparatus for treating water separated from water purifying treatment sludge

Info

Publication number
JPH06182365A
JPH06182365A JP35646392A JP35646392A JPH06182365A JP H06182365 A JPH06182365 A JP H06182365A JP 35646392 A JP35646392 A JP 35646392A JP 35646392 A JP35646392 A JP 35646392A JP H06182365 A JPH06182365 A JP H06182365A
Authority
JP
Japan
Prior art keywords
water
sludge
treatment
clo
separated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP35646392A
Other languages
Japanese (ja)
Other versions
JP2552998B2 (en
Inventor
Hiroshi Motohashi
寛 本橋
Shinichiro Egawa
眞一郎 江川
Shoichi Goda
昭一 郷田
Hitoshi Kimura
仁 木村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Corp
Original Assignee
Ebara Infilco Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Infilco Co Ltd filed Critical Ebara Infilco Co Ltd
Priority to JP4356463A priority Critical patent/JP2552998B2/en
Publication of JPH06182365A publication Critical patent/JPH06182365A/en
Application granted granted Critical
Publication of JP2552998B2 publication Critical patent/JP2552998B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To enable the suitable high-level treatment of purified water while avoiding the return of soluble Fe and Mn to raw water from return water by injecting chlorine dioxide into sludge separated water and subsequently applying filtration and/or contact filtration due to Mn sand to the sludge separat ed water to return the filtered water to a water prufing treatment process. CONSTITUTION:In a process returning the separated water from sludge of a water purifying treatment process to raw water, the supernatant water from a concn. tank 6 and the filtrate from dehydration treatment equipment 7 are allowed to be merged with each other to be introduced into a flocculation and sedimentation tank 9 or allowed to individually flow in the tank and subjected to flocculation and sedimentation treatment by the addition of a basic aluminum cloride to be supplied to filtering equipment 10 packed with anthracite and Mn sand through an outflow pipe (b) and the sludge-separated water consisting of the supernatant water and the filtrate is filtered to be returned to raw water. Chlorine dioxide is injected at the part of the outflow pipe (b) transferring the sludge separated water from the flocculation and sedimentation tank 9 to the filtering equipment 10.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、飲料水の製造を目的と
した浄水の高度処理施設における、汚泥分離水中のF
e、Mn処理に関する。
FIELD OF THE INVENTION The present invention relates to F in sludge separation water in an advanced treatment facility for purified water for the purpose of producing drinking water.
e, Mn treatment.

【0002】[0002]

【従来の技術】浄水処理における汚泥処理により発生す
る汚泥濃縮工程の上澄水や脱水工程の濾水などの分離水
は、従来、単に放流されることもあるが、その一部又は
全量を有効利用のため原水側に返送され、続いて浄水処
理工程に送られていた。しかしながら、原水及び返送さ
れる汚泥分離水中のFe、Mnが処理工程上の問題とな
ることはなかった。これは以前の浄水設備においては着
水井への前塩素注入、沈殿池処理水への中塩素注入など
の処理工程途中での塩素注入が行われていたため、塩素
による原水及び返送される汚泥分離水中のFe、Mnが
十分酸化され、凝集沈殿や砂濾過などにより殆ど除去さ
れていたためである。しかしながら、近年、水源の有機
汚染などによる健康上の問題や、おいしい水の要求に伴
う高度処理の発展など浄水処理プロセスの変化により、
汚泥分離水中のFe、Mnの問題が生じて来た。
2. Description of the Related Art Conventionally, separated water such as supernatant water in sludge concentration step or filtered water in dewatering step, which is generated by sludge treatment in water purification treatment, may be simply discharged, but some or all of it is effectively used. Due to this, it was returned to the raw water side and then sent to the water purification process. However, Fe and Mn in the raw water and the returned sludge separation water did not pose a problem in the treatment process. This is because chlorine was injected in the middle of the treatment process, such as pre-chlorine injection to the landing well and medium chlorine injection to the treatment water of the sedimentation basin in the previous water purification facility. This is because Fe and Mn in Example 2 were sufficiently oxidized and were almost removed by coagulating sedimentation, sand filtration, or the like. However, in recent years, due to changes in the water purification process, such as health problems due to organic pollution of water sources, and the development of advanced treatment that accompanies the demand for delicious water,
The problem of Fe and Mn in sludge separation water has arisen.

【0003】浄水の高度処理においては、色度、臭気、
界面活性剤などの除去に加え、発ガン性物質である塩素
化炭化水素の除去をも目的としている。発ガン性物質と
されるトリハロメタンに代表される塩素化炭化水素は、
原水中の微量性有機物が多い状態で塩素注入を行うこと
により、生じた遊離塩素と微量性有機物との反応により
生じる。このため健康上の問題から活性炭などによる吸
着によってトリハロメタンなどの除去が行われるが、ト
リハロメタンなどは活性炭吸着では破過が非常に早いと
いう問題が生じる。従って最近の高度処理施設では、前
段で極力微量性有機物を除去した後、最終の濾過工程後
に塩素注入を行う、後塩素注入が一般的となり、前塩
素、中塩素注入は避けられている。
In advanced treatment of purified water, chromaticity, odor,
In addition to removing surfactants, etc., it also aims to remove chlorinated hydrocarbons that are carcinogens. Chlorinated hydrocarbons represented by trihalomethane, which is a carcinogen,
When chlorine is injected in a state where the amount of trace organic substances in the raw water is large, it occurs due to the reaction between the generated free chlorine and trace organic substances. For this reason, trihalomethane and the like are removed by adsorption with activated carbon or the like for health reasons, but trihalomethane or the like has a problem that breakthrough is very fast in adsorption with activated carbon. Therefore, in recent advanced treatment facilities, post-chlorine injection, in which chlorine is injected after the final filtration step after removing trace organic substances as much as possible in the first stage, is common, and pre-chlorine and medium-chlorine injection is avoided.

【0004】このため、原水中に含まれる懸濁性及び溶
存性のFe、Mnは処理されず汚泥処理工程において還
元状態となり、溶出した溶解性Fe、Mnは原水側に送
られると、そのまま浄化工程へと送られることとなり種
々の問題を生じる。図3に凝集沈殿槽1、濾過設備2、
活性炭吸着濾過設備3を配した高度処理工程のフローを
示した。すなわち、凝集沈殿槽1における沈殿物は排泥
池4に、濾過設備2および活性炭吸着濾過設備3の濾過
汚泥は排水池5に、それぞれ貯蔵してそれらの上澄水は
返送管bを介して原水処理工程に返送し、分離された汚
泥はさらに濃縮槽6および脱水処理設備7の工程を経て
脱水ケーキとして回収し、またその上澄水や濾液は返送
管bを介して原水処理工程に返送する工程である。この
ような工程では、汚泥分離水(上記上澄水や濾液)に含
まれたFe、Mnが除去出来ずに原水処理工程に返送さ
れ、原水に含まれたFe、Mnと共に濾過設備2、活性
炭吸着濾過設備3を通って処理水流出管aを経て処理水
中に流出する。流出したFe、Mnは処理水に色度障害
を与え、また処理工程に管路閉塞の問題を生じ、さらに
また塩素を消費するため後塩素注入量が増大することと
なる。
For this reason, suspended and dissolved Fe and Mn contained in the raw water are not treated and are reduced in the sludge treatment step, and the dissolved Fe and Mn thus eluted are sent to the raw water side for purification. It is sent to the process and causes various problems. FIG. 3 shows the coagulation sedimentation tank 1, the filtration equipment 2,
The flow of the advanced treatment process in which the activated carbon adsorption filtration equipment 3 is arranged is shown. That is, the sediment in the coagulation sedimentation tank 1 is stored in the drainage basin 4, the filtration sludge in the filtration equipment 2 and the activated carbon adsorption filtration equipment 3 is stored in the drainage basin 5, and the supernatant water thereof is stored in the return pipe b. The sludge that is returned to the treatment step is further recovered as a dehydrated cake through the steps of the concentrating tank 6 and the dehydration treatment facility 7, and the supernatant water and the filtrate thereof are returned to the raw water treatment step via the return pipe b. Is. In such a process, Fe and Mn contained in the sludge separation water (the above-mentioned supernatant water and filtrate) could not be removed and returned to the raw water treatment process, and Fe and Mn contained in the raw water were filtered along with the filtration facility 2 and activated carbon adsorption. It flows through the filtration equipment 3 and the treated water outflow pipe a into the treated water. The Fe and Mn that have flowed out impair the chromaticity of the treated water, cause a problem of pipe blockage in the treatment process, and further consume chlorine, so that the amount of post-chlorine injection increases.

【0005】図4には、前記図3に示した高度処理工程
の濾過設備2と活性炭吸着濾過設備3との間にオゾン処
理設備8を配置した凝集沈殿槽1、濾過設備2、オゾン
処理設備8および活性炭吸着濾過設備3の各工程からな
る高度処理のフローを示した。この図4の高度処理工程
の他の部分は図3の工程と同じである。このような図4
に示した工程では、返送により供給された溶解性のF
e、Mnは原水と同様にオゾンによる酸化処理を受け
る。返送により供給された溶解性のFe、Mnの量的変
動も、返送により供給されている時、されていない時に
よってオゾンの消費量も大きくかわる。
FIG. 4 shows a flocculation settling tank 1 in which an ozone treatment facility 8 is arranged between the filtration facility 2 and the activated carbon adsorption filtration facility 3 in the advanced treatment process shown in FIG. 3, a filtration facility 2, and an ozone treatment facility. 8 shows the flow of the advanced treatment consisting of each step of 8 and activated carbon adsorption filtration equipment 3. The other parts of the advanced processing step of FIG. 4 are the same as those of FIG. Such a figure 4
In the process shown in, the soluble F
The e and Mn are subjected to the oxidation treatment with ozone, like the raw water. Concerning the quantitative fluctuations of the soluble Fe and Mn supplied by returning, the consumption of ozone greatly changes depending on whether or not they are supplied by returning.

【0006】このように、不安定状態の酸化処理では、
オゾンの注入率が消費量以下の場合、活性炭濾過により
溶解性のFe、Mnが処理水側に流出する。本邦では、
水道法施行規則および厚生省環境部長通知「水道法の施
行について(環水第81号昭和49年7月26日)」に
示された給水栓水で保持すべき遊離残留塩素量または結
合残留塩素量の規定から後塩素注入が義務づけられてい
る。流出したFe、Mnは、後塩素注入による酸化によ
って色度障害を与えたり、配水、送水管の管路閉塞の原
因となったり、また塩素を消費するため後塩素注入が増
大するなどの問題を生じる。
Thus, in the unstable oxidation treatment,
When the injection rate of ozone is less than the consumption amount, soluble Fe and Mn flow out to the treated water side by the activated carbon filtration. In Japan,
The amount of free residual chlorine or the amount of combined residual chlorine that should be retained in the tap water indicated in the Waterworks Law Enforcement Regulations and the Ministry of Health, Labor and Welfare Ministry of Environment Notification “Enforcement of the Waterworks Law (Kansui No. 81, July 26, 1974)” The post-chlorine injection is obligatory according to the regulations. The effluent Fe and Mn cause problems such as chromaticity damage due to oxidation due to post-chlorine injection, cause of blockage of water distribution and water supply pipes, and increase of post-chlorine injection due to consumption of chlorine. Occurs.

【0007】また、オゾンの注入率が適正な消費量の場
合、溶解性Mnは5価のMnに酸化され、SS化される
が、これらSS化されたMnは活性炭層内で抑留され、
濾過閉塞などの問題が発生する。さらに、オゾンの注入
率が消費量以上の場合、5価のSS化されたMnと溶解
性の7価のMnが混在する状態になる。このような状態
下では、5価のMnにより、前述のような濾過閉塞の問
題が発生し、7価の溶解性Mnは活性炭の還元作用によ
って5価となり過閉塞の問題が発生すると同時に7価か
ら5価に還元された時活性炭表面がMnによりコーティ
ングされ、活性炭の吸着能力を低下させ、さらには活性
炭の賦活力の低下を引き起こす。なお、オゾン注入量が
過度に大きくなると、7価の溶解性Mnはそのまま処理
水に流出する現象も発生し、これら7価のMnは経時変
化と共に5価のMnとなり、上述と同様な問題が発生す
る。
When the injection rate of ozone is appropriate, the soluble Mn is oxidized into pentavalent Mn and converted into SS, but these SS-converted Mn are retained in the activated carbon layer.
Problems such as filtration blockage occur. Further, when the injection rate of ozone is equal to or more than the consumption amount, it becomes a state in which pentavalent SS-converted Mn and soluble 7-valent Mn are mixed. Under such a condition, the pentavalent Mn causes the above-mentioned problem of filter clogging, and the 7-valent soluble Mn becomes pentavalent due to the reducing action of the activated carbon, resulting in the problem of over-clogging and at the same time the pentavalent Mn. When reduced to pentavalent, the surface of the activated carbon is coated with Mn, which reduces the adsorption capacity of the activated carbon and further lowers the activation ability of the activated carbon. In addition, when the amount of injected ozone becomes excessively large, a phenomenon in which the 7-valent soluble Mn flows out into the treated water as it is, these 7-valent Mn becomes 5-valent Mn with the lapse of time, and the same problem as described above occurs. Occur.

【0008】以上の様な問題を解決するため、汚泥の固
液分離の際、二次的にFe、Mnを除去する方法が提案
されている。しかしながら、例えば浮上濃縮ではFe、
Mnを十分の酸化することはできず、また凝集沈殿法は
溶解性Fe、Mnに対して殆ど効果が得られない。凝集
沈殿法の一つとして汚泥に過剰なアルカリ剤を注入する
ことにより高pH(通常11〜12以上)とし、Feお
よびMnを水酸化物として固液分離をする方法がある
が、高pH化は汚泥の性状を変化させ、また汚泥処理分
離水を原水側に返送する際にpH調整が必要などの問題
があった。
In order to solve the above problems, there has been proposed a method of secondarily removing Fe and Mn during solid-liquid separation of sludge. However, for example, in flotation concentration, Fe,
Mn cannot be sufficiently oxidized, and the coagulation-sedimentation method has almost no effect on soluble Fe and Mn. As one of the coagulation-sedimentation methods, there is a method of injecting an excessive alkaline agent into sludge to obtain a high pH (usually 11 to 12 or more) and solid-liquid separation using Fe and Mn as hydroxides. Had problems such as changing the properties of sludge and pH adjustment when returning sludge-treated separated water to the raw water side.

【0009】[0009]

【発明が解決しようとする課題】本発明は、汚泥処理分
離水を返送するに際し、溶解性のFe、Mnが返送水か
ら原水に供給されることを回避し、好適な浄水の高度処
理が行える方法と装置を提供することを課題とする。
The present invention avoids the supply of soluble Fe and Mn from the returned water to the raw water when returning the sludge-treated separated water, and can perform suitable advanced treatment of purified water. It is an object to provide a method and a device.

【0010】[0010]

【課題を解決するための手段】上記課題の解決は本発明
の浄水処理汚泥分離水の処理方法及び装置によって達成
される。 すなわち、(1)浄水処理工程より発生する汚泥分離水
を原水側に返送する工程において、該分離水に二酸化塩
素を注入した後、濾過及び/又はMn砂による接触濾過
を施して浄水処理工程に返送することを特徴とする浄水
処理汚泥分離水の処理方法。 (2)浄水処理施設より発生する汚泥分離水を原水側に
返送する装置において、該分離水に二酸化塩素を注入す
る手段と、二酸化塩素を注入後の分離水を処理する濾過
装置及び/又はMn砂による接触濾過装置を介して浄水
処理工程に返送するよう構成された浄水処理汚泥分離水
の処理装置。である。
The above-mentioned problems can be solved by the method and apparatus for treating purified water treated sludge separated water according to the present invention. That is, in the step (1) of returning the sludge separation water generated in the water purification process to the raw water side, chlorine dioxide is injected into the separation water, and then filtration and / or contact filtration with Mn sand is performed to perform the water purification process. A method for treating purified water treatment sludge separated water, which is characterized by returning the water. (2) In a device for returning sludge separation water generated from a water purification facility to the raw water side, means for injecting chlorine dioxide into the separation water, and a filtering device and / or Mn for treating the separation water after injecting chlorine dioxide A treatment device for purified water treatment sludge separated water, which is configured to be returned to the purified water treatment process through a sand contact filtration device. Is.

【0011】(構成)本発明の浄水処理工程の構成の1
例を図1に示す。ただし、本発明はこの具体例によって
制限されるものではない。図1に示した本発明の浄水処
理工程の構成は汚泥分離水を原水側に返送する工程の構
成以外は図4に示した従来の浄水処理工程の構成と同じ
である。勿論この部分の構成は前記図3に示した浄水処
理工程の構成と同じであっても構わない。図1の本発明
の浄水処理工程の汚泥分離水を原水側に返送する工程の
構成は、濃縮槽6からの上澄水と脱水処理設備7からの
濾液を合流して(あるいは別個に)凝集沈殿槽9に流入
し、PAC(塩基性塩化アルミニウム)を加えて凝集沈
殿し、流出管bを経てアンスラサイトとMn砂を充填し
た濾過設備10で上記上澄水と濾液からなる汚泥分離水
を濾過して原水側に返送する工程によって構成される
が、該返送工程において、上記凝集沈殿槽9から濾過設
備10に汚泥分離水を移送する流出管bの部位で二酸化
塩素を注入することが本発明の浄水処理工程の構成の骨
子である。
(Structure) 1 of the structure of the water purification process of the present invention
An example is shown in FIG. However, the present invention is not limited to this specific example. The configuration of the water purification process of the present invention shown in FIG. 1 is the same as the configuration of the conventional water purification process shown in FIG. 4 except for the process of returning sludge separated water to the raw water side. Of course, the configuration of this part may be the same as the configuration of the water purification process shown in FIG. The constitution of the step of returning the sludge separated water in the water purification process of the present invention of FIG. 1 is such that the supernatant water from the concentration tank 6 and the filtrate from the dehydration treatment facility 7 are combined (or separately) to coagulate and precipitate. After flowing into the tank 9, PAC (basic aluminum chloride) was added to cause coagulation and sedimentation, and the sludge separation water composed of the supernatant water and the filtrate was filtered through the outflow pipe b with a filtration facility 10 filled with anthracite and Mn sand. In the returning step, chlorine dioxide is injected at the portion of the outflow pipe b for transferring the sludge separation water from the coagulating sedimentation tank 9 to the filtration facility 10 in the returning step. It is the essence of the structure of the water purification process.

【0012】(作用)本発明においては、汚泥処理分離
水中の溶解性のFe、Mnの酸化に二酸化塩素を用いた
点が重要である。通常の水処理においては、塩素、次亜
塩素酸ナトリウムにより酸化を行うが、汚泥分離水のよ
うに有機物が多い状況では、前述のようにトリハロメタ
ンなどの副生成物を生じ、原水及び処理水の質の低下を
来す。これに対し二酸化塩素はトリハロメタンなどを生
じない。また、有機物との反応で生じる亜塩素酸イオン
(ClCO2 - )、塩素酸イオン(ClCO3 - )は浄
水工程の活性炭により還元除去される。これらイオンに
よる活性炭の破過はトリハロメタンなどに比較して非常
に遅い。
(Function) In the present invention, it is important that chlorine dioxide is used to oxidize soluble Fe and Mn in the sludge-treated separated water. In ordinary water treatment, oxidation is performed with chlorine and sodium hypochlorite, but in a situation where there are many organic substances such as sludge separation water, by-products such as trihalomethane are produced as described above, and raw water and treated water are treated. Comes of poor quality. On the other hand, chlorine dioxide does not generate trihalomethane. Further, chlorite ion (ClCO 2 ) and chlorate ion (ClCO 3 ) generated by the reaction with the organic matter are reduced and removed by the activated carbon in the water purification step. Breakthrough of activated carbon by these ions is much slower than that of trihalomethane.

【0013】二酸化塩素とFe、Mnの反応は次の通り
であり、反応生成物は続く砂濾過及び/又はマンガン砂
による接触濾過により除去される。すなわち、 Mn(II)+MnO(OH)2 →MnO2 ・MnO+2H+ ……(1) MnO2 ・MnO+2ClO2 +3H2 O→ 2MnO(OH)2 +2ClO2 - +2H+ ……(2) Fe(II)+ClO2 →Fe(III) +ClO2 - ……(3) (1)式は試水中のMn(II)のマンガン砂への吸着反
応、(2)式はマンガン砂のClO2 による賦活反応で
ある。(3)式はFe(II)のFe(III) への酸化反応で
ある。Fe(III) はFe(OH)3 となり、濾過により
除去される。
The reaction between chlorine dioxide and Fe, Mn is as follows, and the reaction product is removed by subsequent sand filtration and / or catalytic filtration with manganese sand. That, Mn (II) + MnO ( OH) 2 → MnO 2 · MnO + 2H + ...... (1) MnO 2 · MnO + 2ClO 2 + 3H 2 O → 2MnO (OH) 2 + 2ClO 2 - + 2H + ...... (2) Fe (II) + ClO 2 → Fe (III) + ClO 2 - ...... (3) (1) equation adsorption reaction to the manganese sand Mn (II) in water samples, (2) is a activation reaction by ClO 2 manganese sand . Equation (3) is the oxidation reaction of Fe (II) to Fe (III). Fe (III) becomes Fe (OH) 3 and is removed by filtration.

【0014】また、二酸化塩素注入前に凝集沈殿を行
い、有機物をある程度除去することによって、ClO2
- 、ClO3 - の大幅な減少が行える。また、ClO2
- 、ClO3 - は空気曝気によっても速やかに気散する
ため、ClO2 - 、ClO3 - 除去として曝気処理にて
行うこともできる。
In addition, ClO 2 is obtained by performing coagulation and precipitation before chlorine dioxide injection to remove organic substances to some extent.
-, ClO 3 - perform a significant reduction of. Also, ClO 2
-, ClO 3 - is used to Eat quickly by air aeration, ClO 2 -, ClO 3 - can also be performed by aeration as removed.

【0015】[0015]

【実施例】以下、実施例により本発明を具体的に説明す
る。ただし、本発明の実施態様はこの実施例のみに限定
されるものではない。以下に示す各実施例では図2に示
す浄水処理フローにより、除Mn、除Fe処理を行っ
た。
EXAMPLES The present invention will be specifically described below with reference to examples. However, the embodiment of the present invention is not limited to this example. In each of the following examples, the Mn-removing and Fe-removing treatments were performed according to the water purification treatment flow shown in FIG.

【0016】図2の浄水処理フローによる原水側の浄水
処理は、図1に示した本発明の原水側の浄水処理フロー
と比較して、着水井Aの原水を先ず生物接触酸化槽で生
物学的に有機性物の分解を行う工程を含む以外図1の浄
水処理フローと同じである。しかし、汚泥および汚泥分
離水の処理工程は異なっている。すなわち、図2の浄水
処理フローでは、生物接触酸化槽と凝集沈殿槽1からの
汚泥は排泥池4に集め、濾過設備2および活性炭吸着濾
過設備4の各設備からの汚泥は排水池5に集積し、排泥
池4からの汚泥分離水と排水池5からの汚泥分離水とは
別に処理する方式である。
Compared to the raw water side water purification treatment flow of the present invention shown in FIG. 1, the raw water side water purification treatment flow of FIG. The process is the same as the water purification process flow of FIG. 1 except that it includes a step of actively decomposing organic substances. However, the treatment process of sludge and sludge separation water is different. That is, in the clean water treatment flow of FIG. 2, sludge from the biological contact oxidation tank and coagulation sedimentation tank 1 is collected in the sludge basin 4, and sludge from each of the filtration equipment 2 and the activated carbon adsorption filtration equipment 4 is discharged into the drainage basin 5. This is a method of collecting and treating the separated sludge water from the drainage pond 4 and the separated sludge water from the drainage pond 5 separately.

【0017】また図2の浄水処理フローでは、排泥池4
からの汚泥と排水池5からの汚泥も、それらの含水率の
違いによって別個の濃縮・脱水工程で処理している。す
なわち、排泥池4からの汚泥は濃縮槽11で濃縮し加圧
脱水機12で脱水して脱水汚泥とし、排水池5からの汚
泥は1次濃縮槽13および2次濃縮槽14で濃縮し、前
処理槽15を経て天日乾燥床で乾燥して脱水汚泥とす
る。上記各汚泥濃縮・脱水工程からのFe、Mnを含む
汚泥分離水は、図2の浄水処理フローで図中……………
…→印で表わされている。図からわかるようにこの浄水
処理工程では図1の場合と異なり排泥池4からの汚泥分
離水と排水池5から濃縮槽などからの汚泥分離水は別個
にMn、Fe除去槽16および17で二酸化塩素による
酸化処理を行って汚泥分離水からMn、Feを除去し原
水側に返送している。
Further, in the water purification treatment flow of FIG.
The sludge from No. 5 and the sludge from the drainage basin 5 are also treated in separate concentration / dehydration processes depending on the difference in their water content. That is, the sludge from the drainage pond 4 is concentrated in the concentration tank 11 and dehydrated by the pressure dehydrator 12 to be dehydrated sludge, and the sludge from the drainage pond 5 is concentrated in the primary concentration tank 13 and the secondary concentration tank 14. After passing through the pretreatment tank 15, it is dried on a sun drying bed to obtain dehydrated sludge. The sludge separation water containing Fe and Mn from each of the above sludge concentration / dehydration steps is shown in the diagram of the purified water treatment process in Fig. 2 ...
... is indicated by a mark. As can be seen from the figure, in this water purification process, unlike the case of FIG. 1, sludge separation water from the sludge basin 4 and sludge separation water from the drainage basin 5 from the concentrating tank and the like are separately supplied to the Mn and Fe removing tanks 16 and 17, respectively. Mn and Fe are removed from the sludge separation water by oxidation treatment with chlorine dioxide and returned to the raw water side.

【0018】(実施例1)図2の浄水処理フローにより
以下に示す試水について除Mn、除Fe処理を行った。
(Example 1) The sample water shown below was subjected to Mn removal and Fe removal processing according to the water purification processing flow of FIG.

【0019】(試水)試水は、脱塩素水道水にFe、M
nを添加して用いた。Mn、Feの添加量は各々1mg
/リットルとした。試水水質を表1に示す。なお、F
e、Mnを添加するには、Fe(II)SO4 、Mn(II)S
4 を用いた。
(Sample water) Sample water is dechlorinated tap water containing Fe and M.
n was added and used. Addition amount of Mn and Fe is 1 mg each
/ Liter. Table 1 shows the sample water quality. In addition, F
To add e and Mn, Fe (II) SO 4 , Mn (II) S
O 4 was used.

【0020】[0020]

【表1】 [Table 1]

【0021】(ClO2 調整方法及び分析方法) ClO2 調整方法 亜塩素酸ナトリウム5g、クエン酸2.5g、カオリン
8gを粉末状態で混合し、生成するClO2 ガスを純水
約200mlに吸収させた。本法では、ほぼ純粋のCl
2 水溶液(800〜1200mg/リットル程度)が
得られる。 分析方法 下記Aietaらの報告(*)によるチオ硫酸ナトリウ
ム滴定法を用いて分析を行った。 * Determination of Chlorine Dioxide,Chlorine Chl
orite and Chlorate in Water; E.M.Aieta et al. J.AW
WA 76巻 64頁 (1984)
(ClO 2 adjusting method and analyzing method) ClO 2 adjusting method Sodium chlorite (5 g), citric acid (2.5 g) and kaolin (8 g) were mixed in a powder state, and the generated ClO 2 gas was absorbed in about 200 ml of pure water. It was In this method, almost pure Cl
An O 2 aqueous solution (about 800 to 1200 mg / liter) is obtained. Analytical method The analysis was performed using the sodium thiosulfate titration method described by Aieta et al. (*) Below. * Determination of Chlorine Dioxide, Chlorine Chl
orite and Chlorate in Water; EMAieta et al. J.AW
Volume 76 Pages 64 (1984)

【0022】(処理試験条件)カラム試験条件は次の通
りである。 カラム : φ20mm×H・1200mm 充填材 : デフェライトM(荏原インフィルコ
製マンガン砂0.6mmφ) 充填層厚 : 600mm 通水方法 : 下向流 通水速度 : 120〜240m/日(SV8.3 〜
16.3 h-1
(Processing test conditions) The column test conditions are as follows. Column: φ20 mm × H · 1200 mm Filler: Deferrite M (EBARA Infilco Manganese Sand 0.6 mmφ) Packing layer thickness: 600 mm Water flow method: Downflow water flow rate: 120-240 m / day (SV8.3-
16.3 h -1 )

【0023】(結果)カラムによる通水試験結果を表2
に示す。
(Results) Table 2 shows the results of the water flow test by the column.
Shown in.

【0024】[0024]

【表2】 [Table 2]

【0025】1.Mn(II)約1mg/リットル、Fe(I
I)約1mg/リットルを含む試水水質(表1参照)に対
して、二酸化塩素(ClO2 )を4mg/リットルで注
入し、処理試験を行った結果除Mn、除Feは良好であ
った。 2.二酸化塩素(ClO2 )注入率を10および15m
g/リットル(表2、ケース6、7)と増加させた場合
でも除Mn、除Feは良好である。しかし、処理水の残
留ClO2 濃度が高くなり、色度及び塩素臭が高くな
る。残留ClO2 濃度が4及び10mg/リットルの
時、色度はそれぞれ26及び90度である。 3.残留ClO2 と色度について、処理水を静置した状
態での時間経過を表3に示す。
1. Mn (II) about 1 mg / liter, Fe (I
I) Chlorine dioxide (ClO 2 ) was injected at 4 mg / liter into the sample water quality (see Table 1) containing about 1 mg / liter, and a treatment test was conducted. As a result, Mn removal and Fe removal were good. . 2. Chlorine dioxide (ClO 2 ) injection rate of 10 and 15 m
Even when the amount was increased to g / liter (Table 2, Cases 6 and 7), the removal of Mn and the removal of Fe were good. However, the residual ClO 2 concentration of the treated water is high, and the chromaticity and chlorine odor are high. When the residual ClO 2 concentration is 4 and 10 mg / liter, the chromaticity is 26 and 90 degrees, respectively. 3. Table 3 shows the residual ClO 2 and chromaticity with the lapse of time when the treated water was allowed to stand.

【0026】[0026]

【表3】 [Table 3]

【0027】時間経過につれ、ClO2 と色度は減少す
るものの、ClO2 イオンの増加は殆ど見られない。色
度はClO2 に由来するものであり、時間と共にClO
2 が気散するものといえる。暗所での静置(約25℃)
にて5時間後、約80%のClO2 が気散している。ま
た、前述の(1)、(2)の式よりMn(II)1mg/リ
ットルを除去するに必要なClO2 は1.21mg/リ
ットルと算出できる。本試験においては、Mn(II)、F
e(II)各1mg/リットルを含む試水を用いた。この試
水に対するClO2 の必要量は、化学当量的には3.6
mg/リットルとなり、実際の処理結果(表2)からも
4mg/リットルのClO2 の注入で良好な結果を得て
おり、理論と合致する。
Although ClO 2 and chromaticity decrease with the passage of time, almost no increase in ClO 2 ion is observed. The chromaticity is derived from ClO 2 , and with time, ClO
It can be said that 2 is distracting. Standing in the dark (about 25 ℃)
After 5 hours, about 80% of ClO 2 has been dispersed. Further, ClO 2 required to remove 1 mg / liter of Mn (II) can be calculated as 1.21 mg / liter from the above equations (1) and (2). In this test, Mn (II), F
Sample water containing 1 mg / l of each e (II) was used. The required amount of ClO 2 with respect to this sample water is 3.6 in terms of chemical equivalent.
Since the actual treatment result (Table 2), injection of 4 mg / liter of ClO 2 gave good results, which is in agreement with the theory.

【0028】(実施例2)図2の浄水処理フローによ
り、浄水施設の汚泥の脱水濾水を対象として、除Mn、
除Fe処理を実施した。
(Embodiment 2) According to the water purification treatment flow of FIG. 2, for removing dewatered drainage of sludge in a water purification facility, Mn removal,
Fe removal treatment was performed.

【0029】(処理対象水)浄水施設の無薬注長時間型
加圧脱水機(圧搾機構付)の濾水
(Water to be treated) Drainage of non-chemical injection long-time pressure dehydrator (with compression mechanism) of water purification facility

【0030】(結果) 1.濾水の水質分析結果を表4に示す。(Results) 1. The results of water quality analysis of the filtered water are shown in Table 4.

【0031】[0031]

【表4】 [Table 4]

【0032】表中主な項目は、濁度8度、色度100
度、NH3 −N14.8mg/リットル、Fe1.8m
g/リットル、Mn5.6mg/リットルである。濁
度、色度はFe(水酸化第二鉄)の影響が大きく関与し
ていると思われる。MnはほぼMn2+イオンである。 2.塩素要求量を検討したブレークポイントカーブを図
5に示す。原水中のNH3 −Nが14.8mg/リット
ルと高いため、本実施例では塩素要求量はおよそ150
mg/リットルとなっている。
The main items in the table are turbidity of 8 degrees and chromaticity of 100.
Degree, NH 3 -N 14.8 mg / liter, Fe 1.8 m
g / liter and Mn 5.6 mg / liter. It is considered that the effect of Fe (ferric hydroxide) is greatly involved in the turbidity and chromaticity. Mn is almost an Mn 2+ ion. 2. Fig. 5 shows the breakpoint curve that examined the chlorine demand. Since NH 3 —N in the raw water is as high as 14.8 mg / liter, the chlorine demand is about 150 in this embodiment.
It is mg / liter.

【0033】3.ClO2 の注入率と残留ClO2 の関
係を図6に、ClO2 - イオンの関係を図7に示す。な
お、測定法は塩素要求量の測定条件(暗所・1時間反
応)に準じた。処理対象水のClO2 消費量は20mg
/リットルである。消費されたClO2 はすべてClO
2 - イオンに変化している。NH3 −NとClO2 との
反応については、NH4 Clを純水に溶解した水溶液を
用いて別途試験した。NH3 −N水溶液とClO2 との
反応は殆ど見られず、その結果を図6および図7に示
す。この結果より、NH3 −N水溶液とClO2 との反
応は殆ど見られないことがわかる。すなわち、ClO2
によりNH3 −Nの存在下においても効果的なFe、M
nの酸化が行えることがわかる。
3. ClO 2 infusion rate and the relationship between the residual ClO 2 in FIG. 6, ClO 2 - Figure 7 shows the relationship between ion. The measuring method was based on the measuring conditions of the required amount of chlorine (dark place, 1 hour reaction). The amount of ClO 2 consumed in the treated water is 20 mg
/ Liter. All ClO 2 consumed is ClO
It has changed to 2 - ion. The reaction between NH 3 —N and ClO 2 was separately tested using an aqueous solution of NH 4 Cl dissolved in pure water. Almost no reaction between the NH 3 -N aqueous solution and ClO 2 was observed, and the results are shown in FIGS. 6 and 7. From this result, it can be seen that almost no reaction between the NH 3 —N aqueous solution and ClO 2 is observed. That is, ClO 2
Makes Fe, M effective even in the presence of NH 3 -N.
It can be seen that n can be oxidized.

【0034】(実施例3)脱水濾液の除Mn、除Fe処
理のため、塩素ならびに二酸化塩素を注入後、Mn砂濾
過処理を実施した。処理条件は次の通りである。 カラム : φ20mm×高さ1000mm 充填材 : デフェライトM(荏原インフィルコ
製マンガン砂0.6mmφ) 充填層厚 : 600mm 通水方法 : 下向流 通水速度 : LV200m/日
Example 3 To remove Mn and Fe from the dehydrated filtrate, Mn sand was filtered after chlorine and chlorine dioxide were injected. The processing conditions are as follows. Column: φ20 mm × height 1000 mm Filler: Deferrite M (EBARA Infilco Manganese sand 0.6 mmφ) Packing layer thickness: 600 mm Water flow method: Downflow water flow rate: LV200 m / day

【0035】(結果) 1.処理結果を表5に示す。(Results) 1. The processing results are shown in Table 5.

【0036】[0036]

【表5】 [Table 5]

【0037】酸化剤としてClO2 20mg/リットル
添加あるいは塩素としてNaClO 150mg/リッ
トル添加、いずれでもFe、Mnは良好に除去できる。
ClO2 処理の場合、残留ClO2 による色度障害が起
こるが、ClO2 を曝気などにより除去することで色度
も除去できる。 2.Mn砂処理水のトリハロメタン(THM)は、Cl
2 処理で殆ど生成していない。NaClO処理では、
処理対象水生成能(108μg/リットル)に対し、採
取直後で42%、24時間後で89%のTHMが生成し
ている。TOXは、ClO2 処理でも幾分生成している
が、NaClO処理の15〜30%程度である。
Fe and Mn can be satisfactorily removed by adding 20 mg / liter of ClO 2 as an oxidant or 150 mg / liter of NaClO as chlorine.
In the case of ClO 2 treatment, chromaticity hindrance occurs due to residual ClO 2, but chromaticity can also be removed by removing ClO 2 by aeration or the like. 2. Trihalomethane (THM) of Mn sand treated water is Cl
Almost no generation by O 2 treatment. With NaClO treatment,
42% of THM was generated immediately after the collection and 89% of THM was generated 24 hours after the collection target water generation capacity (108 μg / liter). Although TOX is generated to some extent in the ClO 2 treatment, it is about 15 to 30% of that in the NaClO treatment.

【0038】3.NaClO処理−Mn砂濾過におい
て、通水中充填層内に気泡が混入する現象が見られた。
これは、処理対象水のNH3 −N濃度が15mg/リッ
トルと高く、NaClO処理により脱窒素が起こり、気
泡化したものと推定される。本方法を適用するには、N
aClO混入後滞留時間を長めにとり、さらに曝気処理
など行うことが望ましい。 4.アメリカ環境保護局(USEPA)では、水道水中
の残留ClO2 、ClO2 - イオン、ClO3 - イオン
の合計が1mg/リットル以下とするよう勧告してい
る。本件、脱水濾液のClO2 消費量は約29mg/リ
ットルであり、殆どがClO2 - イオンに変化する。C
lO2 を用いた処理法を適用するには、後段の活性炭処
理などを行うことが好ましい。
3. In the NaClO treatment-Mn sand filtration, a phenomenon was observed in which air bubbles were mixed in the water-filled bed.
It is presumed that this is because the NH 3 —N concentration of the water to be treated was as high as 15 mg / liter, and denitrification occurred due to the NaClO treatment and bubbles were formed. To apply this method, N
It is desirable to take a longer residence time after mixing aClO and further perform aeration treatment. 4. The US Environmental Protection Agency (USEPA) recommends that the total amount of residual ClO 2 , ClO 2 ions, and ClO 3 ions in tap water be 1 mg / liter or less. In this case, the amount of ClO 2 consumed by the dehydrated filtrate is about 29 mg / liter, and most of the ClO 2 is converted to ClO 2 ions. C
In order to apply the treatment method using 10 2 , it is preferable to perform the treatment with activated carbon in the latter stage.

【0039】[0039]

【発明の効果】本発明の処理によりつぎの効果が得られ
る。 二酸化塩素を用いるため、トリハロメタンなどの有
害物質を生じることがない。 除Fe、除Mnが汚泥返送工程で行われるため、返
送による原水中へのFe、Mnの負荷がない。 従って、浄水過程における活性炭寿命が延び、使用
量が減る。 引いては、前塩素注入、中塩素注入なしに行う浄水
の高度処理が効率よく行え、安全な飲料水が効率的に行
える。
The following effects can be obtained by the processing of the present invention. Since chlorine dioxide is used, it does not produce harmful substances such as trihalomethane. Since Fe removal and Mn removal are performed in the sludge returning step, there is no load of Fe and Mn on the raw water due to the returning. Therefore, the life of activated carbon in the water purification process is extended and the usage amount is reduced. As a result, advanced treatment of purified water without pre-chlorine injection and medium-chlorine injection can be efficiently performed, and safe drinking water can be efficiently performed.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の汚泥分離水の処理工程を含む浄水の高
度処理工程の1例を示す概念的フロー図
FIG. 1 is a conceptual flow chart showing an example of an advanced treatment process of purified water including a treatment process of sludge separated water according to the present invention.

【図2】本発明の汚泥分離水の処理工程を含む浄水の高
度処理工程の1具体例を示すフロー図
FIG. 2 is a flow chart showing one specific example of an advanced treatment process of purified water including a treatment process of sludge separated water according to the present invention.

【図3】凝集沈澱、濾過設備に活性炭吸着設備を加えた
従来の浄水高度処理のフロー図
[Fig. 3] Flow chart of conventional advanced water purification treatment with coagulation sedimentation and filtration equipment plus activated carbon adsorption equipment

【図4】凝集沈澱、濾過設備にオゾン処理と活性炭によ
る生物吸着処理が加った従来の浄水高度処理のフロー図
[Figure 4] Flow chart of conventional advanced water purification treatment in which coagulation sedimentation and filtration equipment are added with ozone treatment and biological adsorption treatment with activated carbon

【図5】ブレークポイントカーブ[Figure 5] Breakpoint curve

【図6】二酸化塩素注入率と残留二酸化塩素の関係グラ
[Fig. 6] Relationship graph between chlorine dioxide injection rate and residual chlorine dioxide

【図7】二酸化塩素注入率と残留二酸化塩素イオンの関
係グラフ
FIG. 7: Relationship graph between chlorine dioxide injection rate and residual chlorine dioxide ion

【符号の説明】[Explanation of symbols]

1 凝集沈澱槽 2 濾過設備 3 活性炭吸着濾過設備 4 排泥池 5 排水池 6 濃縮槽 7 脱水処理設備 8 オゾン処理設備 9 凝集沈殿槽 10 濾過設備 11 濃縮槽 12 加圧脱水機 13 1次濃縮槽 14 2次濃縮槽 15 脱水前処理設備 16 Mn、Fe除去槽 A 着水井 a 処理水流出管 b 流出管 1 Coagulation Sedimentation Tank 2 Filtration Equipment 3 Activated Carbon Adsorption Filtration Equipment 4 Drainage Pond 5 Drainage Tank 6 Concentration Tank 7 Dehydration Treatment Equipment 8 Ozone Treatment Equipment 9 Coagulation Sedimentation Tank 10 Filtration Equipment 11 Concentration Tank 12 Pressure Dehydrator 13 Primary Concentration Tank 14 Secondary concentration tank 15 Dehydration pretreatment facility 16 Mn, Fe removal tank A Landing well a Treated water outflow pipe b Outflow pipe

───────────────────────────────────────────────────── フロントページの続き (72)発明者 木村 仁 東京都港区港南1丁目6番27号 荏原イン フィルコ株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Hitoshi Kimura 1-6-27 Konan Minato-ku, Tokyo Ebara-in Filco Co., Ltd.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 浄水処理工程より発生する汚泥分離水を
原水側に返送する工程において、該分離水に二酸化塩素
を注入した後、濾過及び/又はMn砂による接触濾過を
施して浄水処理工程に返送することを特徴とする浄水処
理汚泥分離水の処理方法。
1. In the step of returning the sludge separation water generated in the water purification treatment step to the raw water side, chlorine dioxide is injected into the separation water, and then filtration and / or contact filtration with Mn sand is applied to the water purification step. A method for treating purified water treatment sludge separated water, which is characterized by returning the water.
【請求項2】 浄水処理施設より発生する汚泥分離水を
原水側に返送する装置において、該分離水に二酸化塩素
を注入する手段と、二酸化塩素を注入後の分離水を処理
する濾過装置及び/又はMn砂による接触濾過装置を介
して浄水処理工程に返送するよう構成された浄水処理汚
泥分離水の処理装置。
2. A device for returning sludge separated water generated from a water purification facility to the raw water side, means for injecting chlorine dioxide into the separated water, and a filtering device for treating the separated water after injecting chlorine dioxide, and / or Alternatively, a treatment device for purified water treatment sludge separated water configured to be returned to the purified water treatment process through a contact filtration device using Mn sand.
JP4356463A 1992-12-22 1992-12-22 Purification treatment sludge separation water treatment method and device Expired - Fee Related JP2552998B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4356463A JP2552998B2 (en) 1992-12-22 1992-12-22 Purification treatment sludge separation water treatment method and device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4356463A JP2552998B2 (en) 1992-12-22 1992-12-22 Purification treatment sludge separation water treatment method and device

Publications (2)

Publication Number Publication Date
JPH06182365A true JPH06182365A (en) 1994-07-05
JP2552998B2 JP2552998B2 (en) 1996-11-13

Family

ID=18449142

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4356463A Expired - Fee Related JP2552998B2 (en) 1992-12-22 1992-12-22 Purification treatment sludge separation water treatment method and device

Country Status (1)

Country Link
JP (1) JP2552998B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000050346A1 (en) * 1999-02-24 2000-08-31 Pall Corporation Water purification
KR100456449B1 (en) * 2002-09-24 2004-11-10 원영희 A waste water disposal system
JP2006224010A (en) * 2005-02-18 2006-08-31 Hitachi Ltd Operation control method of water purification process
WO2011079318A3 (en) * 2009-12-24 2011-12-15 Bcr Environmental, Llc Improved digestion of biosolids in wastewater

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5939384A (en) * 1982-08-27 1984-03-03 Fuji Electric Corp Res & Dev Ltd Treatment of raw water for service water
JPS6061510A (en) * 1983-09-15 1985-04-09 Mitsuru Tsuchikura Disinfecting and sterilizing aqueous solution used for swimming pool
JPH01275504A (en) * 1988-04-26 1989-11-06 Kurita Water Ind Ltd Agent for controlling aquatic adhesive life
JPH03229615A (en) * 1990-02-06 1991-10-11 Ebara Infilco Co Ltd Method for treating exhaust ozone

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5939384A (en) * 1982-08-27 1984-03-03 Fuji Electric Corp Res & Dev Ltd Treatment of raw water for service water
JPS6061510A (en) * 1983-09-15 1985-04-09 Mitsuru Tsuchikura Disinfecting and sterilizing aqueous solution used for swimming pool
JPH01275504A (en) * 1988-04-26 1989-11-06 Kurita Water Ind Ltd Agent for controlling aquatic adhesive life
JPH03229615A (en) * 1990-02-06 1991-10-11 Ebara Infilco Co Ltd Method for treating exhaust ozone

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000050346A1 (en) * 1999-02-24 2000-08-31 Pall Corporation Water purification
KR100456449B1 (en) * 2002-09-24 2004-11-10 원영희 A waste water disposal system
JP2006224010A (en) * 2005-02-18 2006-08-31 Hitachi Ltd Operation control method of water purification process
WO2011079318A3 (en) * 2009-12-24 2011-12-15 Bcr Environmental, Llc Improved digestion of biosolids in wastewater
CN102884011A (en) * 2009-12-24 2013-01-16 Bcr环境公司 Improved digestion of biosolids in wastewater
US8663473B2 (en) 2009-12-24 2014-03-04 Bcr Environmental Corporation Digestion of biosolids in wastewater
US9758401B2 (en) 2009-12-24 2017-09-12 Bcr Environmental Corporation Digestion of biosolids in wastewater

Also Published As

Publication number Publication date
JP2552998B2 (en) 1996-11-13

Similar Documents

Publication Publication Date Title
Bablon et al. Practical application of ozone: principles and case studies
US5122274A (en) Method of treating fluids
CA2439927C (en) Methods of treating water using combinations of chlorine dioxide, chlorine and ammonia
Liu et al. Coupling ferrate pretreatment and in-situ ozonation/ceramic membrane filtration for wastewater reclamation: water quality and membrane fouling
US5269932A (en) Method of treating fluids
US4534867A (en) System for removing iron and/or other chemically reducing substances from potable water
Yasri et al. Effective removal of organics from corn wet milling steepwater effluent by electrochemical oxidation and adsorption on 3-D granulated graphite electrode
Ando et al. Removal of musty-odorous compounds in water and retained in algal cells through water purification processes
McGuire et al. Assessment of unit processes for the removal of trace organic compounds from drinking water
CN101987764A (en) Method and treatment device for purifying water of micro polluted water source
DE4031609A1 (en) METHOD AND DEVICE FOR PROCESSING LIQUID RESIDUES FROM PHOTOGRAPHIC PROCESSES
Kucharska et al. Novel combined IME-O3/OH−/H2O2 process in application for mature landfill leachate treatment
JP2552998B2 (en) Purification treatment sludge separation water treatment method and device
Chen et al. Using catalytic ozonation and biofiltration to decrease the formation of disinfection by-products
Blanck Trihalomethane reduction in operating water treatment plants
US5609766A (en) Process for treating bromide-containing water using ozone
JPH0330440B2 (en)
JPH07124593A (en) Highly advanced water purifying treatment method
JP6239442B2 (en) Organic wastewater treatment method and treatment apparatus
US2144051A (en) Method of treating water
Ventresque et al. Ozone: A means of stimulating biological activated carbon reactors
EP1476401B1 (en) Method for treating water
EP4208412A1 (en) Wastewater ozone treatment
JPH0199689A (en) Method for removing organic matter in water
JPS6036835B2 (en) How to purify human waste water

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees