JPH06182340A - Treatment method for water supply - Google Patents

Treatment method for water supply

Info

Publication number
JPH06182340A
JPH06182340A JP4355017A JP35501792A JPH06182340A JP H06182340 A JPH06182340 A JP H06182340A JP 4355017 A JP4355017 A JP 4355017A JP 35501792 A JP35501792 A JP 35501792A JP H06182340 A JPH06182340 A JP H06182340A
Authority
JP
Japan
Prior art keywords
water
raw water
membrane
supplied
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4355017A
Other languages
Japanese (ja)
Inventor
Kashu Obata
嘉修 小畠
Nobuhiro Oda
信博 織田
Tsutomu Ogose
勤 生越
Naoki Matsutani
直樹 松渓
Hiroshi Kurobe
洋 黒部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurita Water Industries Ltd
Original Assignee
Kurita Water Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurita Water Industries Ltd filed Critical Kurita Water Industries Ltd
Priority to JP4355017A priority Critical patent/JPH06182340A/en
Publication of JPH06182340A publication Critical patent/JPH06182340A/en
Pending legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Water, Waste Water Or Sewage (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

PURPOSE:To control the decrease of permeated water amount generated by membrane fouling, reduce the frequency of chemical cleanings for a membrane in a large extent and operate a membrane device stably by heating the water supply at the specified temperature, cooling and then supplying the water to a filter with a separating membrane, and filtering. CONSTITUTION:Raw water is supplied to a heat exchanger 2 for recovering heat after removing solides such as sand and others by a strainer 1, and heat exchange is performed between raw temperature raw water and heat treated raw water of a high temperature. Raw water heated in a heat exchanger 2 is supplied to a heat exchanger 3 heated with steam by a boiler 4 and heated up to 100-200 deg.C and supplied to a reaction column 5. Raw water of a high temperature coming out of the reaction column 5 is supplied to the heat exchanger 2, and cooled down to 40 deg.C usually by the heat exchange with the low temperature raw water before heat tread, and then supplied to a filter 6 using a separating membrane and filtered therein. The lowering of permeated water amount to be generated by membrane fouling can be controlled by high temperature treatment of raw water.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は給水の処理方法の改良に
関するものである。さらに詳しくいえば、本発明は、給
水を高温加熱後、冷却処理したのち、分離膜に通すこと
により、膜汚染による透過水量の低下を抑制しうるとと
もに、膜の薬品洗浄回数を大幅に減らすことができ、膜
装置の安定運転が可能な給水の処理方法に関するもので
ある。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an improvement in a method for treating feed water. More specifically, the present invention is capable of suppressing a decrease in the amount of permeated water due to membrane contamination by heating the feed water at a high temperature and then cooling it, and then passing it through a separation membrane, and significantly reducing the number of times of chemical cleaning of the membrane. The present invention relates to a method for treating water supply that enables stable operation of the membrane device.

【0002】[0002]

【従来の技術】水の利用は、工業用水をはじめ、生活用
水、農業用水と、それぞれの利用が進むにつれて、その
重要性も一段と増してきており、化学工業をはじめ、新
しい先端技術産業などにおける水の需要も生まれてきて
いる。一方、水資源の節約から、下水や産業排水の再生
水や雨水など、低水質の水を利用するという雑用水の利
用も盛んになっており、例えば水洗トイレ用、冷房・冷
却用水、散水などの雑用途として、ビルなどの建物に使
用されている。工業用水、下水、産業排水などを処理
し、より高品質の水にする技術として、簡単な凝集沈殿
法から、膜などを利用する高度の技術まで各種の方式が
開発されている。水処理に用いられる分離膜としては、
例えば精密ろ過膜(MF膜)、限外ろ過膜(UF膜)、
逆浸透膜(RO膜)、透析膜、電気透析膜などが知られ
ており、被処理水の水質や得られる処理水の用途に応じ
て適宜選択され、使用されている。ところで、中水・下
水の三次処理水は、有機物を比較的多く含有しており、
通常次に示す方法で処理され、分離膜を装着したろ過装
置に給水されている。すなわち、まず原水に次亜塩素酸
ナトリウム及びポリ塩化アルミニウムなどを添加し、凝
集加圧浮上装置又は凝集沈殿装置に供給して凝集物を分
離し、次いで二層ろ過器を通したのち、分離膜を装着し
たろ過装置に給水する方法が採られている。 このような水処理においては、該分離膜は原水中の有機
物により汚染され、比較的に短時間で膜透過水量が低下
する。膜透過水量が低下した場合には、通常薬品洗浄が
実施されるが、この場合、多大の労力を必要とするとと
もに、多量の排水が発生するのを免れないという問題が
生じる。
2. Description of the Related Art The use of water has become more important as industrial water, domestic water, and agricultural water have been used. The demand for water is also emerging. On the other hand, due to the conservation of water resources, the use of miscellaneous water such as reclaimed water from sewage and industrial wastewater, rainwater, and other low-quality water is also popular, and for example, for flush toilets, cooling / cooling water, and sprinkling water. As a miscellaneous use, it is used in buildings such as buildings. Various methods have been developed as technologies for treating industrial water, sewage, industrial wastewater, etc. to obtain higher quality water, from a simple coagulation-sedimentation method to advanced technology using a membrane or the like. As the separation membrane used for water treatment,
For example, microfiltration membrane (MF membrane), ultrafiltration membrane (UF membrane),
Reverse osmosis membranes (RO membranes), dialysis membranes, electrodialysis membranes, etc. are known and are appropriately selected and used according to the quality of the water to be treated and the intended use of the treated water. By the way, the tertiary treated water of middle water and sewage contains a relatively large amount of organic matter,
Usually, it is treated by the following method and is supplied to a filtration device equipped with a separation membrane. That is, first, sodium hypochlorite, polyaluminum chloride, etc. are added to raw water, and the mixture is supplied to a flocculation pressure flotation device or a flocculation sedimentation device to separate flocculates, and then passed through a two-layer filter, and then a separation membrane. A method of supplying water to a filtration device equipped with is adopted. In such water treatment, the separation membrane is contaminated with organic substances in raw water, and the amount of water permeated through the membrane decreases in a relatively short time. When the amount of water permeated through the membrane decreases, chemical cleaning is usually carried out, but in this case, a great deal of labor is required and a large amount of drainage is unavoidable.

【0003】[0003]

【発明が解決しようとする課題】本発明は、このような
事情のもとで、中水・下水の三次処理水などの処理にお
いて分離膜を用いる場合、該膜の汚染による透過水量の
低下を抑制しうるとともに、膜の薬品洗浄回数を大幅に
減らすことができ、膜装置の安定運転が可能な給水の処
理方法を提供することを目的としてなされたものであ
る。
Under these circumstances, the present invention reduces the amount of permeated water due to contamination of the membrane when a separation membrane is used in the treatment of tertiary treated water such as intermediate water and sewage. The present invention has been made for the purpose of providing a method of treating water supply which can suppress the number of times of chemical cleaning of the membrane and can stably operate the membrane device.

【0004】[0004]

【課題を解決するための手段】本発明者らは、前記目的
を達成するために鋭意研究を重ねた結果、給水を高温加
熱処理したのち、常温まで冷却し、分離膜を装着したろ
過装置に提供することにより、その目的を達成しうるこ
とを見い出し、この知見に基づいて本発明を完成するに
至った。 すなわち、本発明は、給水を100〜200℃の温度で
加熱後、冷却処理したのち、分離膜を装着したろ過装置
に供給してろ過することを特徴とする給水の処理方法を
提供するものである。以下、本発明を詳細に説明する。
本発明方法が適用される原水(被処理水)については膜
汚染有機物質が含まれているものであればよく、特に制
限はない。このような原水としては、工業用水、雨水、
中・下水の三次処理水などが挙げられるが、有機物質を
比較的多く含有する中・下水の三次処理水が好適であ
る。本発明においては、前記原水をそのまま加熱処理工
程へ供給してもよいが、原水の水質によっては、該原水
に次亜塩素酸ナトリウム及ポリ塩化アルミニウムなどを
添加し、凝集加圧浮上装置又は凝集沈殿装置において凝
集物を分離したのち、二層ろ過器を通したものを加熱処
理工程へ供給してもよい。本発明における加熱処理は、
100〜200℃、好ましくは130〜180℃の範囲
の温度において行われる。この温度が100℃未満では
本発明の効果が十分に発揮されないし、200℃を超え
ると温度が高い割には効果の向上が認められず、むしろ
設備費やエネルギーコストが高くつき、経済的に不利と
なる。また、処理時間は処理温度によって左右され、す
なわち処理温度が高いと処理時間は短くてすみ、処理温
度が低いと処理時間は長くなり、一概に決めることはで
きないが、通常5〜60分間程度である。本発明におい
ては、このようにして加熱処理された原水を、通常40
℃以下の常温に冷却したのち、分離膜が装着されたろ過
装置に供給してろ過処理を行う。この際、熱回収のため
に、加熱処理後の高温の原水と加熱処理前の低温の原水
との間で熱交換を行うのが有利である。該分離膜につい
ては特に制限はなく、従来水処理に慣用されているも
の、例えば精密ろ過膜、限外ろ過膜、逆浸透膜、透析
膜、電気透析膜などが用いられるが、これらの中で精密
ろ過膜、限外ろ過膜及び逆浸透膜が好適である。
Means for Solving the Problems As a result of intensive studies for achieving the above-mentioned object, the present inventors have conducted a high-temperature heat treatment of feed water, cooled it to room temperature, and installed it in a filtration device equipped with a separation membrane. It was found that the object can be achieved by providing the information, and the present invention has been completed based on this finding. That is, the present invention provides a method for treating feed water, which comprises heating the feed water at a temperature of 100 to 200 ° C., cooling it, and then supplying it to a filtration device equipped with a separation membrane for filtration. is there. Hereinafter, the present invention will be described in detail.
Raw water (water to be treated) to which the method of the present invention is applied is not particularly limited as long as it contains a membrane-contaminating organic substance. Such raw water includes industrial water, rainwater,
Examples thereof include tertiary treated water of medium / sewage, and tertiary treated water of medium / sewage containing a relatively large amount of organic substances is preferable. In the present invention, the raw water may be directly supplied to the heat treatment step, but depending on the water quality of the raw water, sodium hypochlorite and polyaluminum chloride are added to the raw water, and the flocculation pressurization flotation device or the flocculation device is used. After separating the agglomerates in the settling device, the one that has passed through the two-layer filter may be supplied to the heat treatment step. The heat treatment in the present invention is
It is carried out at a temperature in the range 100 to 200 ° C, preferably 130 to 180 ° C. If the temperature is lower than 100 ° C., the effect of the present invention is not sufficiently exerted, and if the temperature exceeds 200 ° C., the effect is not improved despite the high temperature. It will be a disadvantage. Further, the treatment time depends on the treatment temperature, that is, if the treatment temperature is high, the treatment time is short, and if the treatment temperature is low, the treatment time is long, which cannot be determined unconditionally, but usually about 5 to 60 minutes. is there. In the present invention, the raw water heat-treated as described above is usually added to 40
After cooling to room temperature below ℃, it is supplied to a filtration device equipped with a separation membrane for filtration treatment. At this time, in order to recover heat, it is advantageous to perform heat exchange between the high temperature raw water after the heat treatment and the low temperature raw water before the heat treatment. The separation membrane is not particularly limited, and those conventionally used for water treatment, such as microfiltration membranes, ultrafiltration membranes, reverse osmosis membranes, dialysis membranes, electrodialysis membranes, etc., can be used. Microfiltration membranes, ultrafiltration membranes and reverse osmosis membranes are preferred.

【0005】図1に、本発明方法を実施するための1例
の工程概略図を示す。原水はストレーナー1により砂な
どの固形分を除去したのち、熱回収用の熱交換器2に供
給される。この熱交換器において、低温の原水と加熱処
理された高温の原水との間で熱交換が行われる。熱交換
器2で加温された原水はボイラー4により蒸気加熱され
る熱交換器3に供給され100〜200℃の温度に加熱
されたのち、反応塔5に供給される。この反応塔5は滞
留時間をとるためのものであり、この反応塔において、
該原水の加熱処理が完了する。反応塔5を出た高温の原
水は熱交換器2に供給され、加熱処理前の低温の原水と
の熱交換により、通常40℃以下に冷却されたのち、分
離膜が装着されたろ過装置6に供給され、ろ過される。
このように、原水を高温加熱処理することにより、膜汚
染による透過水量の低下を抑制することができる。その
理由については必ずしも明確ではないが、原水中の微生
物、バクテリアの粘質物、ケイ藻類などが、加熱処理す
ることにより、例えば逆浸透膜などでろ過されやすい物
質に改質されるためと思われる。
FIG. 1 shows a schematic diagram of an example of steps for carrying out the method of the present invention. The raw water is supplied to the heat exchanger 2 for heat recovery after the solid content such as sand is removed by the strainer 1. In this heat exchanger, heat exchange is performed between the low temperature raw water and the heat-treated high temperature raw water. The raw water heated by the heat exchanger 2 is supplied to the heat exchanger 3 that is steam-heated by the boiler 4, heated to a temperature of 100 to 200 ° C., and then supplied to the reaction tower 5. This reaction tower 5 is for taking residence time, and in this reaction tower,
The heat treatment of the raw water is completed. The high temperature raw water leaving the reaction tower 5 is supplied to the heat exchanger 2 and is usually cooled to 40 ° C. or lower by heat exchange with the low temperature raw water before the heat treatment, and then the filtration device 6 equipped with the separation membrane. And is filtered.
As described above, by subjecting the raw water to the high-temperature heat treatment, it is possible to suppress a decrease in the amount of permeated water due to membrane contamination. The reason for this is not clear, but it is considered that microorganisms in raw water, mucilage of bacteria, diatoms, etc. are modified by heat treatment into substances that are easily filtered by, for example, reverse osmosis membranes. .

【0006】[0006]

【実施例】次に、実施例により本発明をさらに詳細に説
明するが、本発明はこれらの例によってなんら限定され
るものではない。なお、試験には、次に示す性状の原水
を用いた。試験用原水の性状 種類:栗田工業(株)総合研究所中水 電導度:約200μs/cm、pH:約6.5 濁度:10度以下 TOC:約4ppm、COD(Mn):約1ppm Fe:0.2ppm M−アルカリ度:約20ppm(CaCO3換算) カルシウム硬度:約50ppm(CaCO3換算) シリカ:約25ppm(SiO2換算) MFろ過時間:15分2秒/リットル 実施例1 試験用原水を加熱処理装置(処理量:5リットル/hr)
に供給して、170℃で加熱処理した。滞留時間は約1
0分である。その後、加熱処理装置内で常温まで冷却し
た。グラスフィルターに直径47mmのセルロース製精密
ろ過膜(日本ミリポア社製、Type:HA、0.45
μm)を敷いたものを枝管付き厚口三角フラスコに取り
付け、枝管を真空ポンプに連結し、上記の処理水をグラ
スフィルターに供給後、真空ポンプを運転して500mm
Hg程度に減圧し、1リットルの処理水をろ過する時間を
測定した。ろ過時間は1分30秒(90秒)であった。
この時間が長いほど、給水のろ過性が悪いということに
なる。なお、この水の場合、170℃で加熱処理しても
TOCはほとんど低減しなかった。 比較例1 実施例1において、加熱処理水の代わりに、未処理の試
験用原水を用いた以外は、実施例1と同様にしてろ過試
験を行った。その結果ろ過時間15分2秒(902秒)
であった。 比較例2 実施例1において、加熱処理水の代わりに、試験用原水
にポリ塩化アルミニウム30ppm添加し(pH6.5)、さ
らに次亜塩素酸ナトリウム20ppmを添加して凝集加圧
浮上ろ過処理したものを用いた以外は、実施例1と同様
にしてろ過試験を行った。その結果ろ過時間は4分25
秒(265秒)であった。 参考例1 実施例1において、加熱処理水の代わりに、超純水を用
いた以外は、実施例1と同様にしてろ過試験を行った。
その結果ろ過時間は1分25秒(85秒)であった。以
上の結果を第2図にまとめて示す。この第2図から明ら
かなように、本発明方法に従って加熱処理されたもの
は、超純水に匹敵するほどろ過時間が短かく、加熱処理
が極めて顕著な効果を発揮することが分かる。
The present invention will be described in more detail by way of examples, which should not be construed as limiting the invention thereto. In addition, raw water having the following properties was used for the test. Characteristics of raw water for test Kind: Central Research Laboratory, Kurita Water Industries Ltd. Conductivity: about 200 μs / cm, pH: about 6.5 Turbidity: 10 degrees or less TOC: about 4 ppm, COD (Mn): about 1 ppm Fe : 0.2 ppm M-alkalinity: Approximately 20 ppm (CaCO 3 conversion) Calcium hardness: Approximately 50 ppm (CaCO 3 conversion) Silica: Approximately 25 ppm (SiO 2 conversion) MF filtration time: 15 minutes 2 seconds / liter Example 1 For test Heat treatment device for raw water (treatment amount: 5 liters / hr)
And heated at 170 ° C. Residence time is about 1
0 minutes. Then, it cooled to normal temperature in the heat processing apparatus. A glass filter with a diameter of 47 mm made of cellulose microfiltration membrane (manufactured by Japan Millipore, Type: HA, 0.45).
The thick tube Erlenmeyer flask equipped with a branch pipe is attached to the thick-tube Erlenmeyer flask, the branch pipe is connected to a vacuum pump, the treated water is supplied to a glass filter, and the vacuum pump is operated to 500 mm.
The pressure was reduced to about Hg, and the time for filtering 1 liter of treated water was measured. The filtration time was 1 minute and 30 seconds (90 seconds).
The longer this time is, the worse the filterability of the water supply is. In addition, in the case of this water, TOC was hardly reduced even if it heat-processed at 170 degreeC. Comparative Example 1 A filtration test was performed in the same manner as in Example 1 except that untreated raw water for test was used instead of the heat-treated water. As a result, filtration time 15 minutes 2 seconds (902 seconds)
Met. Comparative Example 2 In Example 1, instead of the heat-treated water, polyaluminum chloride (30 ppm) was added to the test raw water (pH 6.5), and sodium hypochlorite (20 ppm) was further added to perform coagulation pressure floating filtration treatment. A filtration test was conducted in the same manner as in Example 1 except that was used. As a result, the filtration time is 4 minutes 25
Seconds (265 seconds). Reference Example 1 A filtration test was performed in the same manner as in Example 1 except that ultrapure water was used instead of the heat-treated water.
As a result, the filtration time was 1 minute 25 seconds (85 seconds). The above results are shown together in FIG. As is apparent from FIG. 2, the heat treatment according to the method of the present invention has a filtration time as short as that of ultrapure water, and the heat treatment exhibits a very remarkable effect.

【0007】[0007]

【発明の効果】本発明によると、膜の汚染による透過水
量の低下を抑制しうるとともに、膜の薬品洗浄回数を大
幅に減らすことができる。従来の方法では年6回以上の
膜の薬品洗浄が必要であるが、本発明方法では年2回以
内ですみ、膜装置の安定運転が可能となる。
According to the present invention, it is possible to suppress the decrease in the amount of permeated water due to the contamination of the membrane, and it is possible to greatly reduce the number of times the membrane is chemically cleaned. The conventional method requires chemical cleaning of the membrane at least 6 times a year, but the method of the present invention requires no more than 2 times a year, which enables stable operation of the membrane device.

【図面の簡単な説明】[Brief description of drawings]

【図1】図1は、本発明方法を実施するための1例の工
程概略図である。
FIG. 1 is a process schematic view of an example for carrying out the method of the present invention.

【図2】図2は、本発明実施例、比較例及び参考例の結
果を示す図である。
FIG. 2 is a diagram showing the results of Examples of the present invention, Comparative Examples and Reference Examples.

【符号の説明】[Explanation of symbols]

1 ストレーナー 2 熱交換器(熱回収用) 3 熱交換器(昇温用) 4 ボイラー 5 反応塔 6 膜装置 1 Strainer 2 Heat Exchanger (for heat recovery) 3 Heat Exchanger (for temperature rise) 4 Boiler 5 Reaction tower 6 Membrane device

───────────────────────────────────────────────────── フロントページの続き (72)発明者 松渓 直樹 東京都新宿区西新宿3丁目4番7号 栗田 工業株式会社内 (72)発明者 黒部 洋 東京都新宿区西新宿3丁目4番7号 栗田 工業株式会社内 ─────────────────────────────────────────────────── ─── Continued front page (72) Inventor Naoki Matsukei 3-4-7 Nishishinjuku, Shinjuku-ku, Tokyo Kurita Industry Co., Ltd. (72) Inventor Hiroshi Kurobe 3-4-7 Nishishinjuku, Shinjuku-ku, Tokyo Kurita Industry Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】給水を100〜200℃の温度で加熱後、
冷却処理したのち、分離膜を装着したろ過装置に供給し
てろ過することを特徴とする給水の処理方法。
1. After heating the feed water at a temperature of 100 to 200 ° C.,
After the cooling treatment, the treatment method of water supply is characterized in that the water is supplied to a filtration device equipped with a separation membrane for filtration.
JP4355017A 1992-12-17 1992-12-17 Treatment method for water supply Pending JPH06182340A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4355017A JPH06182340A (en) 1992-12-17 1992-12-17 Treatment method for water supply

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4355017A JPH06182340A (en) 1992-12-17 1992-12-17 Treatment method for water supply

Publications (1)

Publication Number Publication Date
JPH06182340A true JPH06182340A (en) 1994-07-05

Family

ID=18441413

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4355017A Pending JPH06182340A (en) 1992-12-17 1992-12-17 Treatment method for water supply

Country Status (1)

Country Link
JP (1) JPH06182340A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003053155A (en) * 2001-08-13 2003-02-25 Asahi Kasei Corp Membrane filtration method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003053155A (en) * 2001-08-13 2003-02-25 Asahi Kasei Corp Membrane filtration method

Similar Documents

Publication Publication Date Title
Lafi et al. Treatment of textile wastewater by a hybrid ultrafiltration/electrodialysis process
Rahman et al. Performance of a crossflow membrane bioreactor (CF–MBR) when treating refinery wastewater
US20030127391A1 (en) Method for treatment of circulating cooling water
US20090039020A1 (en) Methods for reducing boron concentration in high salinity liquid
US5338456A (en) Water purification system and method
WO2006100937A1 (en) Apparatus for producing pure water
CN106587451B (en) Deionization integrated treatment method and device for micro-polluted water source water treatment
Futselaar et al. Direct capillary nanofiltration—a new high-grade purification concept
JPH10272495A (en) Treatment of organic waste water containing salts of high concentration
JP3871749B2 (en) Treatment method of flue gas desulfurization waste water
JP3800449B2 (en) Method and apparatus for treating organic wastewater containing high concentrations of salts
JP2001191086A (en) Water treating apparatus
RU2222371C1 (en) The improvements brought in filtration using membranes
JPH1199389A (en) Treatment of water containing organic component and manganese
JPH06182340A (en) Treatment method for water supply
JP3944973B2 (en) Reverse osmosis membrane treatment method
JP3444202B2 (en) Water treatment equipment
JP2002346347A (en) Method and apparatus for filtration
JP3697938B2 (en) Wastewater treatment equipment
JP2003340247A (en) Device and method for treating water
Lee et al. Acrylic wastewater treatment and long-term operation using a membrane separation system
JPH11277060A (en) Apparatus for treating water containing manganese
JPH10137755A (en) Membrane treating device of waste water
JPH1028994A (en) Device for treating waste water of thermal power plant
KR960003918B1 (en) Method for treatment of iron from waste-water by osmosis membrane