JPH06182326A - Removing method for ammonium ion - Google Patents

Removing method for ammonium ion

Info

Publication number
JPH06182326A
JPH06182326A JP33753192A JP33753192A JPH06182326A JP H06182326 A JPH06182326 A JP H06182326A JP 33753192 A JP33753192 A JP 33753192A JP 33753192 A JP33753192 A JP 33753192A JP H06182326 A JPH06182326 A JP H06182326A
Authority
JP
Japan
Prior art keywords
liquid
ammonia
ammonium ions
water vapor
deaeration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP33753192A
Other languages
Japanese (ja)
Other versions
JP3235801B2 (en
Inventor
Takekatsu Enomoto
武勝 榎本
Munehisa Okada
宗久 岡田
Yukio Nagahashi
由規雄 長橋
Tsutomu Watanabe
力 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tohoku Electric Power Co Inc
Nippon Rensui Co
Mitsubishi Kasei Corp
Original Assignee
Tohoku Electric Power Co Inc
Nippon Rensui Co
Mitsubishi Kasei Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tohoku Electric Power Co Inc, Nippon Rensui Co, Mitsubishi Kasei Corp filed Critical Tohoku Electric Power Co Inc
Priority to JP33753192A priority Critical patent/JP3235801B2/en
Publication of JPH06182326A publication Critical patent/JPH06182326A/en
Application granted granted Critical
Publication of JP3235801B2 publication Critical patent/JP3235801B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To remove ammonium ions with a stabilized efficiency which cannot be attained by the conventional removing methods of ammonium ions in a liquid by setting the temperature of liquid fed into a deaeration film device at 20 deg.C or over in a method of removing ammonia ions by means of membrane permeation. CONSTITUTION:An alkali is added to an ion containing-liquid from a storage tank 1, and then the liquid is agitated by a mixer 3, and its pH is adjusted, then it is heated by a heater 5 up to 20 deg.C or over and fed into a dearation device 7. A hydrophobic porous deaeration module is fitted on the deaeration membrance device 7, and the temperature of the liquid through-side of the deaeration film module is set high and the water vapor pressure is set sufficiently high to make the movement amount of water vapor from the liquid through- side to the vacuum side through a film sufficiently mush, and the accompanying and moving ammonia mount increases, the removing ratio of ammonium ions in the liquid also increases. On the other hand, the water vapor and ammonia moved to the vacuum side are cooled by a condenser 10, and the water vapor is recovered as condensate, while ammonia is absorbed and recovered as ammonia water.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、アンモニウムイオン除
去方法に係り、詳しくは脱気膜装置を用いたアンモニウ
ムイオンの除去方法の改良に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for removing ammonium ions, and more particularly to improvement of a method for removing ammonium ions using a degassing membrane device.

【0002】[0002]

【従来の技術】アンモニウムイオンを含む液からアンモ
ニウムイオンを除去する方法として本発明者等は、該液
にアルカリを添加してアルカリ性にし、アンモニウムイ
オンをアンモニアにした後、気体は透過するが水は透過
させない脱気膜装置に供給して、該アンモニアを水蒸気
とともに膜透過させてアンモニウムイオンを除去する液
中のアンモニウムイオンの除去方法を提案した。
As a method for removing ammonium ions from a liquid containing ammonium ions, the present inventors have added alkali to the liquid to make it alkaline, and after making ammonium ions into ammonia, gas permeates but water We proposed a method for removing ammonium ions in a liquid, which is supplied to a non-permeating deaeration membrane device to permeate the ammonia together with water vapor to remove ammonium ions.

【0003】このアンモニウムイオンの除去方法は、被
処理液を膜を介して脱気を行うため被処理液を直接真空
に接触させ脱気させるものと比較して、装置をコンパク
トにでき、しかも脱気したアンモニアは臭気公害を発生
させることなくアンモニア水として容易に回収できると
いう大きな利点を有する。しかしながら、脱気膜を用い
た方法では、脱気膜モジュールの能力によりモジュール
1本当たりの液中のアンモニウムイオンの脱気性能に限
界があり、そのため各種用途先で要求される程度まで常
に安定して液中のアンモニウムイオンの脱気性能を高め
た運転を行うことが難しいという欠点を有している。
This method of removing ammonium ions degasses the liquid to be treated through the membrane, so that the device can be made compact and the degassing can be performed as compared with the method of directly degassing the liquid to be treated by directly contacting it with a vacuum. The vaporized ammonia has a great advantage that it can be easily recovered as ammonia water without causing odor pollution. However, in the method using the degassing membrane, the degassing performance of ammonium ion in the liquid per module is limited due to the capacity of the degassing membrane module, so that it is always stable to the extent required by various applications. However, it has a drawback that it is difficult to perform an operation in which the degassing performance of ammonium ions in the liquid is enhanced.

【0004】[0004]

【発明が解決しようとする課題】脱気膜を用いる方法で
高い除去性能を得るには、一般的には脱気膜モジュール
の膜面積を大きくする、すなわち、脱気膜モジュールを
通液方向に長くする方法、あるいは脱気膜モジュールを
複数個直列に多段につなげ処理する方法がとられてい
る。そこで脱気膜によりアンモニウムイオンを脱気する
にあたり、アンモニウムイオンの脱気性能を高めること
を鋭意検討した結果、液中のアンモニウムイオンを脱気
する場合、液中のアンモニウムイオンをアンモニアに変
えて脱気膜モジュールに通液すると、脱気膜モジュール
の出口では液温が低下していることを見いだした。すな
わち、脱気膜モジュール内では被処理液の一部が水蒸気
としてアンモニアを同伴して膜を介して液側から真空側
へ移動する際に、液から蒸発潜熱を奪うので、被処理液
の液温は液側の水蒸気圧が真空側の圧力と等しくなるま
で徐々に下がり、液温が低下してくると液側の水蒸気の
発生が低下するので、アンモニアの移動も低下すると考
えた。
In order to obtain high removal performance by the method using a degassing membrane, generally, the membrane area of the degassing membrane module is increased, that is, the degassing membrane module is passed in the liquid passing direction. A method of increasing the length or a method of connecting a plurality of degassing membrane modules in series in multiple stages is used. Therefore, when degassing ammonium ions with a degassing membrane, as a result of diligent studies to improve the degassing performance of ammonium ions, when degassing ammonium ions in the liquid, the ammonium ions in the liquid were changed to ammonia and degassed. It was found that the liquid temperature decreased at the outlet of the degassing membrane module when the liquid was passed through the gas membrane module. That is, in the degassing membrane module, when a part of the liquid to be treated entrains ammonia as water vapor and moves from the liquid side to the vacuum side through the membrane, the latent heat of vaporization is removed from the liquid, so that the liquid of the liquid to be treated is removed. It was considered that the temperature gradually decreased until the vapor pressure on the liquid side became equal to the pressure on the vacuum side, and when the liquid temperature decreased, the generation of water vapor on the liquid side decreased, so that the movement of ammonia also decreased.

【0005】さらに、アンモニウムイオンをアンモニア
に変えた後に脱気除去するにあたっては、脱気膜モジュ
ールを通液方向に長くし膜面積を広くしても、また、モ
ジュールを直列につないで多段で処理しても液中のアン
モニウムイオンの除去性能はほとんど向上しないことを
知見した。そこで、本発明者等は液中のアンモニウムイ
オンをアンモニアに変えた後、脱気膜モジュールで処理
を行う際に、脱気膜モジュールの入口の液の温度を変え
てアンモニウムイオンの除去性能を検討した結果、液温
が20℃未満では液の水蒸気圧が低く、膜を介して液側
から真空側へ移動する水蒸気量が十分ではないのでアン
モニアの移動量も少ないが、液温が20℃以上になると
水蒸気の移動量も十分になり、安定した高い脱気性能が
得られることを見いだし、本発明を完成させるに至った
ものである。
Further, in degassing and removing after changing ammonium ions to ammonia, even if the degassing membrane module is lengthened in the liquid passage direction to widen the membrane area, the modules are connected in series and treated in multiple stages. It was found that even if the removal performance of ammonium ions in the liquid is not improved even if it is used. Therefore, the present inventors examined the removal performance of ammonium ions by changing the temperature of the liquid at the inlet of the degassing membrane module when performing the treatment in the degassing membrane module after changing the ammonium ions in the liquid to ammonia. As a result, when the liquid temperature is less than 20 ° C, the water vapor pressure of the liquid is low, and the amount of water vapor moving from the liquid side to the vacuum side through the membrane is not sufficient, so the amount of movement of ammonia is also small, but the liquid temperature is 20 ° C or more. Then, it was found that the moving amount of water vapor was sufficient, and stable high deaeration performance was obtained, and the present invention was completed.

【0006】[0006]

【課題を解決するための手段】本発明は上記の知見に基
づいて更に検討を重ねた結果達成されたもので、その要
旨は、アンモニウムイオンを含む液からアンモニウムイ
オンを除去するにあたり、該液にアルカリを添加してア
ルカリ性にし、アンモニウムイオンをアンモニアに変え
た後、気体は透過するが水は透過させない脱気膜モジュ
ールを設備した脱気膜装置に該液を供給し、該アンモニ
アを水蒸気とともに膜透過させてアンモニウムイオンを
除去する方法において、該脱気膜装置に供給する該液の
温度を20℃以上で供給することを特徴とするアンモニ
ウムイオンの除去方法である。
Means for Solving the Problems The present invention has been achieved as a result of further studies based on the above findings, and the gist thereof is to remove ammonium ion from a solution containing ammonium ion After adding alkali to make it alkaline and changing ammonium ion into ammonia, the liquid is supplied to a degassing membrane device equipped with a degassing membrane module that allows gas to permeate but does not allow water to permeate, and the ammonia is mixed with water vapor into a membrane. In the method of removing ammonium ions by permeation, the temperature of the liquid supplied to the degassing membrane device is supplied at 20 ° C. or higher, which is a method of removing ammonium ions.

【0007】以下、本発明方法の具体的構成を図示の実
施例により詳細に説明する。図1は本発明の液中のアン
モニウムイオン除去方法の一例を示すフロー図、図2は
脱気膜モジュールを多段に直列につないだ場合の処理方
法の概念略図を示す。図1において、貯槽1からポンプ
2により送られたアンモニウムイオン含有液は、アルカ
リ添加後ミキサー3で攪拌されpH調整される。pHは
アンモニウムイオンがアンモニアに変換するpH9〜1
0付近に調整する。pH調整された被処理液は、ヒータ
ー5で20℃以上に加温後脱気膜装置7に供給される。
The specific constitution of the method of the present invention will be described below in detail with reference to the embodiments shown in the drawings. FIG. 1 is a flow chart showing an example of a method for removing ammonium ions in a liquid of the present invention, and FIG. 2 is a conceptual schematic diagram of a treatment method when degassing membrane modules are connected in series in multiple stages. In FIG. 1, the ammonium ion-containing liquid sent from the storage tank 1 by the pump 2 is stirred by the mixer 3 after the addition of alkali, and the pH is adjusted. The pH is 9 to 1 at which ammonium ion is converted to ammonia.
Adjust to around 0. The pH-adjusted liquid to be treated is heated to 20 ° C. or higher by the heater 5 and then supplied to the degassing membrane device 7.

【0008】脱気膜装置7には疎水性多孔質脱気膜モジ
ュールが装着されており、脱気膜モジュールは膜を介し
て通液側と真空側に分かれるが、本発明方法によれば通
液側の温度を高くし水蒸気圧を十分高くすることによ
り、膜を介して通液側から真空側への水蒸気の移動量が
十分となり、同伴され移動するアンモニア量も多くな
り、液中のアンモニウムイオンの除去率が増加する。
The degassing membrane device 7 is equipped with a hydrophobic porous degassing membrane module, and the degassing membrane module is divided into a liquid-passing side and a vacuum side through the membrane. By increasing the temperature of the liquid side and making the water vapor pressure sufficiently high, the amount of water vapor moving from the liquid passage side to the vacuum side through the membrane becomes sufficient, and the amount of ammonia that is entrained and moved increases, and the ammonium in the liquid The removal rate of ions increases.

【0009】一方、真空側へ移動した水蒸気とアンモニ
アは、真空ポンプ9出口の凝縮器10で10℃以下に冷
却することにより水蒸気は凝縮水となり、凝縮水にアン
モニアが吸収されるので、アンモニア水として回収でき
る。なお、真空側の圧力を通液側の水蒸気圧より低くす
ることが必須条件であるが、十分な水蒸気の移動を生じ
させるためには、真空側圧力は8〜12mmHgが望ま
しい。
On the other hand, the water vapor and ammonia that have moved to the vacuum side are cooled to 10 ° C. or less by the condenser 10 at the outlet of the vacuum pump 9, and the water vapor becomes condensed water, and the condensed water absorbs ammonia. Can be collected as. It is an essential condition that the pressure on the vacuum side be lower than the water vapor pressure on the liquid side, but the pressure on the vacuum side is preferably 8 to 12 mmHg in order to cause sufficient movement of water vapor.

【0010】また、被処理液の液温は20℃以上であれ
ば、安定した高いアンモニウムイオンの除去率が得られ
るが、液温が高くなるほどアンモニアの移動量以上に水
蒸気の移動量も増加するので、高い回収アンモニア水濃
度を得るには被処理液の液温は20〜40℃が望まし
い。さらに、複数のモジュールを直列に接続して行う場
合には、各モジュールの入口にヒーターを直結させ被処
理液を加温できるようにしておくと良い。以下に、実施
例を挙げて本発明の効果をさらに詳述する。
Further, if the liquid temperature of the liquid to be treated is 20 ° C. or higher, a stable high removal rate of ammonium ions can be obtained. Therefore, the liquid temperature of the liquid to be treated is preferably 20 to 40 ° C. in order to obtain a high concentration of the recovered ammonia water. Further, when a plurality of modules are connected in series, it is advisable to directly connect a heater to the inlet of each module so that the liquid to be treated can be heated. Hereinafter, the effects of the present invention will be described in more detail with reference to examples.

【0011】[0011]

【実施例】図1のフローに準じて実験を行った。pH
7、アンモニウムイオン1,000mg/lを含む液に
NaOH溶液を加えpH10に調整した後、中空糸膜型
疎水性多孔質膜モジュール(外径30mm、長さ200
mm、有効面積0.4m2 )で処理する実験を行った。
その際、通液側の液温は変化させ、真空側の圧力を10
mmHg,凝縮器の冷却温度は10℃とした。脱気膜モ
ジュールでのアンモニウムイオンの除去性能は、被処理
液のアンモニウムイオンの除去率、および回収アンモニ
ア水濃度をチェックした。結果は図3のようであった。
EXAMPLE An experiment was conducted according to the flow of FIG. pH
7. After adding a NaOH solution to a liquid containing 1,000 mg / l of ammonium ion to adjust the pH to 10, a hollow fiber membrane type hydrophobic porous membrane module (outer diameter 30 mm, length 200
mm, effective area 0.4 m 2 ) was tested.
At that time, the liquid temperature on the liquid passing side is changed to reduce the pressure on the vacuum side to 10
mmHg, and the cooling temperature of the condenser was 10 ° C. For the removal performance of ammonium ions in the degassing membrane module, the removal rate of ammonium ions in the liquid to be treated and the concentration of recovered aqueous ammonia were checked. The result was as shown in FIG.

【0012】図3に示すように、脱気膜モジュールで処
理した場合、通液側の水蒸気圧が真空側圧力と等しい液
温(11.2℃)ではアンモニウムイオンの除去率は、
0%となり、液温が20℃まで上がるにつれ除去率は急
激に増加し、液温20℃以上ではアンモニウムイオン除
去率はほぼ一定となる。一方、回収アンモニア水のアン
モニア濃度は液温が高いほど高く、液温が40℃を越え
ると急激に低下する。
As shown in FIG. 3, when treated with a degassing membrane module, the removal rate of ammonium ions at a liquid temperature (11.2 ° C.) at which the water vapor pressure on the liquid passing side is equal to the pressure on the vacuum side,
It becomes 0%, and the removal rate rapidly increases as the liquid temperature rises to 20 ° C., and the ammonium ion removal rate becomes almost constant at the liquid temperature of 20 ° C. or higher. On the other hand, the ammonia concentration of the recovered ammonia water is higher as the liquid temperature is higher, and sharply decreases when the liquid temperature exceeds 40 ° C.

【0013】[0013]

【発明の効果】以上のように本発明方法によれば、従来
の方法の液中のアンモニウムイオンの除去では得ること
のできない安定した効率よい除去をすることができる。
As described above, according to the method of the present invention, stable and efficient removal, which cannot be obtained by the conventional method of removing ammonium ions in the liquid, can be performed.

【図面の簡単な説明】[Brief description of drawings]

【図1】液中のアンモニウムイオン除去方法の一例を示
すフロー図。
FIG. 1 is a flow chart showing an example of a method for removing ammonium ions in a liquid.

【図2】本発明の脱気膜モジュール各段入口の液温を2
0℃以上にして供給する処理の概念略図。
FIG. 2 shows that the liquid temperature at each stage inlet of the degassing membrane module of the present invention is 2
Schematic sketch of the process of supplying at 0 ° C or higher.

【図3】各温度におけるアンモニウムイオンの除去率お
よび回収アンモニア濃度の関係図を示すグラフである。
図中左縦軸はアンモニウムイオン除去率、右縦軸は回収
アンモニア濃度(重量%)および横軸は温度(℃)を示
し、曲線1はアンモニウムイオンの除去率の関係を示
し、曲線2はアンモニア濃度の関係を示す。
FIG. 3 is a graph showing a relationship diagram between the removal rate of ammonium ions and the concentration of recovered ammonia at each temperature.
In the figure, the left vertical axis shows the ammonium ion removal rate, the right vertical axis shows the recovered ammonia concentration (wt%) and the horizontal axis shows the temperature (° C), curve 1 shows the ammonium ion removal rate, and curve 2 shows the ammonia ion removal rate. The relationship of concentration is shown.

【符号の説明】[Explanation of symbols]

1 貯槽 2 ポンプ 3 ミキサー 4 pH検出器 5 加熱器 6 温度検出器 7 脱気膜装置 8 処理水槽 9 真空ポンプ 10 凝縮器 11 冷却水 12 回収槽 N モジュール段数 1 Storage Tank 2 Pump 3 Mixer 4 pH Detector 5 Heater 6 Temperature Detector 7 Degassing Membrane Device 8 Treated Water Tank 9 Vacuum Pump 10 Condenser 11 Cooling Water 12 Recovery Tank N Number of Module Stages

───────────────────────────────────────────────────── フロントページの続き (72)発明者 岡田 宗久 東京都千代田区丸の内二丁目5番2号 三 菱化成株式会社内 (72)発明者 長橋 由規雄 東京都千代田区丸の内三丁目2番3号 日 本錬水株式会社内 (72)発明者 渡辺 力 東京都千代田区丸の内三丁目2番3号 日 本錬水株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inoue Munehisa Okada 2-5-2, Marunouchi, Chiyoda-ku, Tokyo Sanryo Kasei Co., Ltd. (72) Inventor Yukio Nagahashi 3- 2-3, Marunouchi, Chiyoda-ku, Tokyo In Nihon Renshui Co., Ltd. (72) Inventor Tsutomu Watanabe 3 2-3 Marunouchi, Chiyoda-ku, Tokyo In Nihon Renrenshi Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 アンモニウムイオンを含む液から、アン
モニウムイオンを除去するにあたり、該液にアルカリを
添加してアルカリ性にし、該アンモニウムイオンをアン
モニアに変えた後、気体は透過するが水は透過させない
脱気膜モジュールを設備した脱気膜装置に該液を供給
し、該アンモニアを水蒸気とともに膜透過させてアンモ
ニウムイオンを除去する方法において、該脱気膜装置に
供給する該液の温度を20℃以上とすることを特徴とす
るアンモニウムイオンの除去方法。
1. When removing ammonium ions from a solution containing ammonium ions, alkali is added to the solution to make it alkaline, and the ammonium ions are changed to ammonia. In the method of supplying the liquid to a degassing device equipped with a gas film module and removing ammonium ions through the permeation of ammonia with water vapor, the temperature of the liquid supplied to the degassing device is 20 ° C. or higher. A method for removing ammonium ions, comprising:
JP33753192A 1992-12-17 1992-12-17 How to remove ammonium ions Expired - Fee Related JP3235801B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33753192A JP3235801B2 (en) 1992-12-17 1992-12-17 How to remove ammonium ions

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33753192A JP3235801B2 (en) 1992-12-17 1992-12-17 How to remove ammonium ions

Publications (2)

Publication Number Publication Date
JPH06182326A true JPH06182326A (en) 1994-07-05
JP3235801B2 JP3235801B2 (en) 2001-12-04

Family

ID=18309529

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33753192A Expired - Fee Related JP3235801B2 (en) 1992-12-17 1992-12-17 How to remove ammonium ions

Country Status (1)

Country Link
JP (1) JP3235801B2 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5762684A (en) * 1995-11-30 1998-06-09 Dainippon Screen Mfg. Co., Ltd. Treating liquid supplying method and apparatus
US5871566A (en) * 1994-11-09 1999-02-16 Lang Apparatebau Gmbh Vented metering pump
GB2449180A (en) * 2007-05-11 2008-11-12 Enpar Technologies Inc Wastewater ammonium extraction and electrolytic conversion to nitrogen gas
CN103183431A (en) * 2013-04-03 2013-07-03 江苏夏航环境工程有限公司 Ammonia-nitrogen wastewater treatment technology
JP2013202475A (en) * 2012-03-28 2013-10-07 Sumitomo Metal Mining Engineering Co Ltd Method of removing ammonia from ammonia-containing wastewater
CN103896354A (en) * 2013-04-03 2014-07-02 江苏夏航环境工程有限公司 Ammonia-nitrogen wastewater treatment device
US9560839B2 (en) 2010-11-17 2017-02-07 Technion Research And Development Foundation Ltd. Physico-chemical process for removal of nitrogen species from recirculated aquaculture systems
CN106745419A (en) * 2016-11-30 2017-05-31 江西蓝星星火有机硅有限公司 The reactive evaporation device of ammonia in a kind of recovery sewage
CN107857395A (en) * 2017-11-27 2018-03-30 浙江海盐力源环保科技股份有限公司 A kind of condensate polishing treatment regenerative wastewater ammonia recovery system
KR102241013B1 (en) * 2020-11-09 2021-04-16 한성크린텍주식회사 Wastewater treatment system containing nitrogen discharged from semiconductor facility process
KR102241014B1 (en) * 2020-11-09 2021-04-19 한성크린텍주식회사 Disposal system according to wastewater discharge characteristics in each process of semiconductor facilities
US10980220B2 (en) 2016-03-08 2021-04-20 Technion Research & Development Foundation Limited Disinfection and removal of nitrogen species from saline aquaculture systems

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5871566A (en) * 1994-11-09 1999-02-16 Lang Apparatebau Gmbh Vented metering pump
US5762684A (en) * 1995-11-30 1998-06-09 Dainippon Screen Mfg. Co., Ltd. Treating liquid supplying method and apparatus
GB2449180A (en) * 2007-05-11 2008-11-12 Enpar Technologies Inc Wastewater ammonium extraction and electrolytic conversion to nitrogen gas
GB2449180B (en) * 2007-05-11 2012-06-13 Enpar Technologies Inc Wastewater ammonium extraction and electrolytic conversion to nitrogen gas
US9560839B2 (en) 2010-11-17 2017-02-07 Technion Research And Development Foundation Ltd. Physico-chemical process for removal of nitrogen species from recirculated aquaculture systems
JP2013202475A (en) * 2012-03-28 2013-10-07 Sumitomo Metal Mining Engineering Co Ltd Method of removing ammonia from ammonia-containing wastewater
CN103896354A (en) * 2013-04-03 2014-07-02 江苏夏航环境工程有限公司 Ammonia-nitrogen wastewater treatment device
CN103183431A (en) * 2013-04-03 2013-07-03 江苏夏航环境工程有限公司 Ammonia-nitrogen wastewater treatment technology
US10980220B2 (en) 2016-03-08 2021-04-20 Technion Research & Development Foundation Limited Disinfection and removal of nitrogen species from saline aquaculture systems
CN106745419A (en) * 2016-11-30 2017-05-31 江西蓝星星火有机硅有限公司 The reactive evaporation device of ammonia in a kind of recovery sewage
CN107857395A (en) * 2017-11-27 2018-03-30 浙江海盐力源环保科技股份有限公司 A kind of condensate polishing treatment regenerative wastewater ammonia recovery system
CN107857395B (en) * 2017-11-27 2024-01-09 浙江海盐力源环保科技股份有限公司 Condensate fine treatment regeneration wastewater ammonia recovery system
KR102241013B1 (en) * 2020-11-09 2021-04-16 한성크린텍주식회사 Wastewater treatment system containing nitrogen discharged from semiconductor facility process
KR102241014B1 (en) * 2020-11-09 2021-04-19 한성크린텍주식회사 Disposal system according to wastewater discharge characteristics in each process of semiconductor facilities

Also Published As

Publication number Publication date
JP3235801B2 (en) 2001-12-04

Similar Documents

Publication Publication Date Title
KR890000168B1 (en) Temperature-regenerating method for an aqueous solution and apparatus therefor
CN112933987B (en) Organic solvent purification system and method
JPH06182326A (en) Removing method for ammonium ion
CN109319998B (en) Near-zero emission treatment system and process for ternary precursor material production wastewater
JP6636111B2 (en) Organic solvent purification system and method
EP0361499B1 (en) Liquid separating apparatus
KR20170002698A (en) Vacuum membrane distillation desalination device for ship
CN109836020B (en) Treatment system and method for zero discharge of old landfill leachate
JP2016030232A (en) Organic solvent refining system and method
JP3235800B2 (en) Method for removing ammonium ions from liquid
JP2000051606A (en) Gas permeation membrane apparatus
CN104724776A (en) Device and method for mixing secondary steam into pressurized water in pressurized evaporation
JP7106474B2 (en) N-methyl-2-pyrrolidone purification method, purification device, recovery purification method, and recovery purification system
KR101298724B1 (en) Forward osmotic desalination device using membrane distillation method in which a part of draw solution is directly fed to a forward osmotic type separator
JPH11253745A (en) Method and apparatus for recovering ammonia
CN113262624B (en) Pressurization neutralization method for treating melamine tail gas
JPH0510964B2 (en)
CN104415666B (en) The immersion vacuum membrane distillation method for concentration of ethylene glycol solution
CN209740941U (en) Treatment system for zero discharge of aged landfill leachate
JP3280098B2 (en) Ammonia degasser
JPH0263592A (en) Distillation device
JP2952741B2 (en) Pure water production system for fuel cell power plant
US2184923A (en) Process of recovering ammonia from used cuprammonium artificial silk precipitation liquors
CN111715076B (en) Air energy vacuum membrane distillation device and distillation method
JP5900745B2 (en) Fresh water production method and fresh water production apparatus

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20010912

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees