JP3280098B2 - Ammonia degasser - Google Patents

Ammonia degasser

Info

Publication number
JP3280098B2
JP3280098B2 JP33753292A JP33753292A JP3280098B2 JP 3280098 B2 JP3280098 B2 JP 3280098B2 JP 33753292 A JP33753292 A JP 33753292A JP 33753292 A JP33753292 A JP 33753292A JP 3280098 B2 JP3280098 B2 JP 3280098B2
Authority
JP
Japan
Prior art keywords
ammonia
condenser
water
degassing
liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP33753292A
Other languages
Japanese (ja)
Other versions
JPH06182110A (en
Inventor
武勝 榎本
成幸 吉田
由規雄 長橋
力 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tohoku Electric Power Co Inc
Original Assignee
Tohoku Electric Power Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tohoku Electric Power Co Inc filed Critical Tohoku Electric Power Co Inc
Priority to JP33753292A priority Critical patent/JP3280098B2/en
Publication of JPH06182110A publication Critical patent/JPH06182110A/en
Application granted granted Critical
Publication of JP3280098B2 publication Critical patent/JP3280098B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Physical Water Treatments (AREA)
  • Removal Of Specific Substances (AREA)
  • Degasification And Air Bubble Elimination (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、液中のアンモニアの除
去を脱気膜を用いて行うアンモニアの脱気装置に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an ammonia degassing apparatus for removing ammonia in a liquid using a degassing membrane.

【0002】[0002]

【従来技術】近年、液中のアンモニアの除去方法とし
て、臭気公害を発生させることなく、しかも除去したア
ンモニアはアンモニア水として回収できる膜脱気法が提
案され、実用に供されつつある。この方法には、アンモ
ニアを含有する液を気体は透過させるが液は透過しない
脱気膜で区画された脱気膜モジュールを設備した脱気膜
装置に供給し、一方の側に被処理液を供給し、他方の側
は真空にすることにより、被処理液中のアンモニアを水
蒸気とともに膜透過させ、真空側に移動したアンモニア
と水蒸気を真空ポンプ入口に設けた凝縮器で冷却するこ
とにより、アンモニア水として回収する脱気膜装置が採
用される。
2. Description of the Related Art In recent years, as a method for removing ammonia from a liquid, a membrane deaeration method has been proposed in which odor pollution is not caused and the removed ammonia can be recovered as ammonia water, and is being put to practical use. In this method, a liquid containing ammonia is supplied to a degassing membrane device equipped with a degassing membrane module partitioned by a degassing membrane that allows gas to permeate but does not permeate the liquid, and supplies the liquid to be treated to one side. Supply, and the other side is evacuated so that the ammonia in the liquid to be treated permeates through the membrane together with the water vapor, and the ammonia and the water vapor moved to the vacuum side are cooled by a condenser provided at the vacuum pump inlet, whereby the ammonia is supplied. A degassing membrane device that recovers as water is employed.

【0003】[0003]

【発明が解決しようとする課題】ところが、このような
従来用いられている脱気膜装置でアンモニアの脱気を行
う場合には、回収アンモニア水の濃度は、脱気膜を透過
して真空側へ移動した水蒸気量とアンモニアの量で決ま
るが、濃度の低いアンモニア水しか得られないという問
題点がある。
However, when ammonia is degassed by such a conventionally used degassing membrane device, the concentration of the recovered ammonia water passes through the degassing membrane and is on the vacuum side. Although it is determined by the amount of water vapor and the amount of ammonia that have migrated, there is a problem that only low-concentration aqueous ammonia can be obtained.

【0004】[0004]

【課題を解決するための手段】本発明者等は前記した従
来の脱気膜装置によるアンモニアの脱気に伴う問題点を
解決すべく鋭意検討した結果、脱気装置における水蒸気
とアンモニアの挙動については、脱気膜を介して真空側
へ移動した水蒸気とアンモニアは、従来設置されている
真空ポンプの、入り口側の凝縮器に通したとしても、真
空状態では大部分の水蒸気は凝縮水に変わるものの、一
部のアンモニアはこの凝縮水に吸収されるが大部分のア
ンモニアは、一部の水蒸気とともに凝縮器を通り過ぎて
しまうこと、さらに真空ポンプの出口側に新たな凝縮器
を設け常圧における凝縮について検討したところ、高濃
度アンモニア水が回収できることを見いだし、本発明に
至った。
The present inventors have conducted intensive studies to solve the problems associated with the degassing of ammonia by the above-mentioned conventional degassing membrane device, and have found that the behavior of water vapor and ammonia in the degassing device. Means that most of the water vapor and ammonia that have moved to the vacuum side through the degassing membrane are converted to condensed water in vacuum even if they pass through the condenser on the inlet side of the conventional vacuum pump. However, some ammonia is absorbed by this condensed water, but most of the ammonia passes through the condenser together with some water vapor, and a new condenser is provided at the outlet side of the vacuum pump. After studying the condensation, they found that high-concentration aqueous ammonia could be recovered, leading to the present invention.

【0005】本発明は上記の知見に基づいて更に検討を
重ねた結果達成されたもので、その要旨は、脱気膜を用
いたアンモニア脱気装置であって、該脱気装置の真空ポ
ンプの入口配管及び出口配管の各々に凝縮器を接続して
なることを特徴とするアンモニア脱気装置に存する。以
下、本発明方法の具体的構成を図示の実施例により詳細
に説明する。
The present invention has been accomplished as a result of further studies based on the above findings. The gist of the present invention is to provide an ammonia degassing apparatus using a degassing membrane, and a vacuum pump for the degassing apparatus. An ammonia degassing apparatus characterized in that a condenser is connected to each of an inlet pipe and an outlet pipe. Hereinafter, a specific configuration of the method of the present invention will be described in detail with reference to the illustrated embodiment.

【0006】図1は液中のアンモニア除去方法の一例を
示すフロー図、図2は本発明装置の概念略図を示す。図
1において、貯槽1からポンプ2により送られたアンモ
ニウムイオン含有液は、アルカリ添加後ミキサー3で攪
拌されpH調整される。pHはアンモニウムイオンがア
ンモニアに変換するpH9〜10付近に調整する。pH
調整された被処理液は、必要に応じてヒーター5で20
〜40℃に加温後、脱気膜モジュールを設備した脱気装
置7に供給され、脱気されたアンモニアは水蒸気ととも
に真空ポンプ9出口の凝縮器10で冷却され、生成凝縮
水に吸収され、アンモニア水として回収槽12に回収さ
れる。
FIG. 1 is a flow chart showing an example of a method for removing ammonia from a liquid, and FIG. 2 is a schematic conceptual view of the apparatus of the present invention. In FIG. 1, the ammonium ion-containing liquid sent from a storage tank 1 by a pump 2 is stirred by a mixer 3 after alkali addition to adjust the pH. The pH is adjusted to around pH 9 to 10 at which ammonium ions are converted to ammonia. pH
The adjusted liquid to be treated is added to the heater 5 as needed.
After heating to 4040 ° C., it is supplied to a deaerator 7 equipped with a degassing membrane module, and the degassed ammonia is cooled together with water vapor in a condenser 10 at the outlet of a vacuum pump 9 and is absorbed by generated condensed water. It is collected in the recovery tank 12 as ammonia water.

【0007】図2において、脱気膜モジュール7内で液
側から真空側に移動したアンモニアと水蒸気は、真空側
の凝縮器10で約5℃に冷却され水蒸気の大部分が凝縮
水になるが、水蒸気側と凝縮水側のアンモニアの気液平
衡から、アンモニアの一部分が凝縮水に溶解するだけで
ある。真空側の凝縮器10からリークした水蒸気の一部
分とアンモニアの大部分は、真空ポンプ9出口に設けた
常圧側の凝縮器14に送られ、アンモニア水として回収
されるが、常圧側では、凝縮水は少量であっても水に対
するアンモニアの溶解度が非常に大きいため、高濃度の
アンモニア水が得られる。
In FIG. 2, ammonia and water vapor moved from the liquid side to the vacuum side in the degassing membrane module 7 are cooled to about 5 ° C. in the condenser 10 on the vacuum side, and most of the water vapor becomes condensed water. From the vapor-liquid equilibrium of ammonia on the water vapor side and the condensed water side, only part of the ammonia is dissolved in the condensed water. Part of the water vapor leaked from the condenser 10 on the vacuum side and most of the ammonia are sent to the condenser 14 on the normal pressure side provided at the outlet of the vacuum pump 9 and are recovered as ammonia water. Since the solubility of ammonia in water is very large even in a small amount, a high concentration of aqueous ammonia can be obtained.

【0008】真空側での凝縮器10の冷却温度は、真空
度10Torrの場合水蒸気圧が10mHgとなる水温
11.2℃より低い水温にする必要があり、5〜8℃が
望ましい。一方、常圧側では、液温が低い方がアンモニ
アの溶解度が増えるが、アンモニアの水に対する溶解度
は温度20℃で34.6wt%、温度10℃で40.6
wt%であり、凝縮器冷却温度は10℃以下が望まし
い。凝縮器は、水蒸気を凝縮水に変えられれば良く、特
に制限はされるものではない。
The cooling temperature of the condenser 10 on the vacuum side needs to be lower than 11.2 ° C. at which the steam pressure becomes 10 mHg when the degree of vacuum is 10 Torr, and preferably 5 to 8 ° C. On the other hand, on the normal pressure side, the lower the liquid temperature, the higher the solubility of ammonia. However, the solubility of ammonia in water is 34.6 wt% at a temperature of 20 ° C. and 40.6 wt% at a temperature of 10 ° C.
wt%, and the condenser cooling temperature is desirably 10 ° C or less. The condenser is not particularly limited as long as it can convert steam into condensed water.

【0009】[0009]

【実施例】図2のフローで示される装置で実験を行っ
た。pH7、アンモニウムイオン1,000mg/lを
含む液にNaOH溶液を加えてpH10に調整し、25
℃に加温後中空糸膜型疎水性多孔質膜モジュール(外径
30mm、長さ200mm、有効膜面積0.4m2 )で
処理する実験を行った。
EXAMPLE An experiment was conducted using the apparatus shown in the flow chart of FIG. NaOH solution was added to a solution containing 1,000 mg / l of ammonium ion at pH 7 to adjust the pH to 10, and 25
After heating to ° C., an experiment was conducted in which the hollow fiber membrane type hydrophobic porous membrane module (outer diameter 30 mm, length 200 mm, effective membrane area 0.4 m 2 ) was used.

【0010】真空ポンプの真空側は、圧力を10mmH
gとし、真空側凝縮器の冷却水温度を5℃に、常圧側凝
縮器の冷却水温度を10℃にした。また、凝縮水量は、
脱気処理2時間での液量を測定した。その結果は表1の
通りである。
The pressure on the vacuum side of the vacuum pump is 10 mmH.
g, the cooling water temperature of the vacuum side condenser was 5 ° C., and the cooling water temperature of the normal pressure side condenser was 10 ° C. The amount of condensed water is
The liquid amount in 2 hours of the degassing treatment was measured. Table 1 shows the results.

【0011】[0011]

【表1】 [Table 1]

【0012】[0012]

【発明の効果】以上のように本発明装置によれば、従来
の装置で得ることのできない濃度の高いアンモニア水を
回収できる。
As described above, according to the apparatus of the present invention, high-concentration aqueous ammonia which cannot be obtained by the conventional apparatus can be recovered.

【図面の簡単な説明】[Brief description of the drawings]

【図1】従来のアンモニア脱気膜装置の一例を示すフロ
ー図。
FIG. 1 is a flowchart showing an example of a conventional ammonia degassing membrane device.

【図2】本発明の脱気膜装置の真空ポンプの入口配管及
び出口配管の各々に凝縮器を接続してなるアンモニア脱
気装置の概念略図。
FIG. 2 is a conceptual schematic diagram of an ammonia degassing apparatus in which a condenser is connected to each of an inlet pipe and an outlet pipe of a vacuum pump of the degassing membrane device of the present invention.

【符号の説明】[Explanation of symbols]

1 貯槽 2 ポンプ 3 ミキサー 4 pH検出器 5 加熱器 6 温度検出器 7 脱気膜装置 8 処理水槽 9 真空ポンプ 10 凝縮器(真空側) 11 冷却水 12 回収槽 13 凝縮水槽 14 凝縮器(常圧側) DESCRIPTION OF SYMBOLS 1 Storage tank 2 Pump 3 Mixer 4 pH detector 5 Heater 6 Temperature detector 7 Deaeration membrane device 8 Processing water tank 9 Vacuum pump 10 Condenser (vacuum side) 11 Cooling water 12 Recovery tank 13 Condensed water tank 14 Condenser (Normal pressure side) )

───────────────────────────────────────────────────── フロントページの続き (72)発明者 吉田 成幸 北九州市八幡西区黒崎城石1番1号 三 菱化成株式会社黒崎工場内 (72)発明者 長橋 由規雄 東京都千代田区丸の内三丁目2番3号 日本錬水株式会社内 (72)発明者 渡辺 力 東京都千代田区丸の内三丁目2番3号 日本錬水株式会社内 (56)参考文献 特開 平6−182149(JP,A) 特開 平6−182326(JP,A) 特開 平6−182325(JP,A) 特開 平4−171004(JP,A) 特開 昭63−310719(JP,A) (58)調査した分野(Int.Cl.7,DB名) B01D 19/00 C02F 1/20 C02F 1/58 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Shigeyuki Yoshida 1-1 Kurosaki Castle Stone, Yawatanishi-ku, Kitakyushu City Inside the Kurosaki Plant of Mitsubishi Chemical Co., Ltd. (72) Inventor Yukio Nagahashi 3-2-2 Marunouchi, Chiyoda-ku, Tokyo No. Nippon Rensui Co., Ltd. (72) Inventor Tsutomu Watanabe 2-3-2 Marunouchi, Chiyoda-ku, Tokyo Nippon Rensui Co., Ltd. (56) References JP-A-6-182149 (JP, A) JP-A Heisei JP-A-6-182325 (JP, A) JP-A-6-182325 (JP, A) JP-A-4-171004 (JP, A) JP-A-63-310719 (JP, A) (58) Fields investigated (Int. Cl. 7, DB name) B01D 19/00 C02F 1/20 C02F 1/58

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 脱気膜を用いたアンモニア脱気装置であ
って、該脱気装置の真空ポンプの入口配管及び出口配管
の各々に凝縮器を接続してなることを特徴とするアンモ
ニア脱気装置。
An ammonia deaerator using a deaeration film, wherein a condenser is connected to each of an inlet pipe and an outlet pipe of a vacuum pump of the deaerator. apparatus.
JP33753292A 1992-12-17 1992-12-17 Ammonia degasser Expired - Fee Related JP3280098B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33753292A JP3280098B2 (en) 1992-12-17 1992-12-17 Ammonia degasser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33753292A JP3280098B2 (en) 1992-12-17 1992-12-17 Ammonia degasser

Publications (2)

Publication Number Publication Date
JPH06182110A JPH06182110A (en) 1994-07-05
JP3280098B2 true JP3280098B2 (en) 2002-04-30

Family

ID=18309539

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33753292A Expired - Fee Related JP3280098B2 (en) 1992-12-17 1992-12-17 Ammonia degasser

Country Status (1)

Country Link
JP (1) JP3280098B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013035035A1 (en) * 2011-09-06 2013-03-14 Koninklijke Philips Electronics N.V. Heat exchange in fluid degassing

Also Published As

Publication number Publication date
JPH06182110A (en) 1994-07-05

Similar Documents

Publication Publication Date Title
KR890000168B1 (en) Temperature-regenerating method for an aqueous solution and apparatus therefor
US4953694A (en) Distilling apparatus
CN102666394B (en) Thermal desalination
JPH0677728B2 (en) Waste liquid concentrator and waste liquid treatment device
US3361645A (en) Distillation of saline water using silicone rubber membrane
JP3235801B2 (en) How to remove ammonium ions
JP2520317B2 (en) Ultrapure water production apparatus and method
JP3235800B2 (en) Method for removing ammonium ions from liquid
JP3280098B2 (en) Ammonia degasser
JP2007000789A (en) Method for concentrating waste water and its apparatus
JP6853648B2 (en) Amine-containing wastewater treatment method and treatment equipment
WO2016063581A1 (en) Treatment method and treatment apparatus for ammonia-containing wastewater
JP6853661B2 (en) Amine-containing wastewater treatment method and treatment equipment
JPS60190298A (en) Preparation of ultra-pure water
JPS60147201A (en) Treatment of aqueous solution containing volatile substance
JPH01115493A (en) Method for regenerating water from domestic waste water
JPH0263592A (en) Distillation device
JP2000325949A (en) Apparatus for salt-to-fresh water distillation
JP2898080B2 (en) Operation method of degassing membrane device
US3922210A (en) Process of avoiding mercury emission from mercury-using plants
JPH0699165A (en) Ultrapure water manufacturing device
CN217535536U (en) Seawater desalination device
WO2024203967A1 (en) Condenser and boiler system comprising condenser
JPH0275387A (en) Apparatus for treating waste water containing surfactant
JPH04176382A (en) Device for producing ultra-pure water from seawater

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20020204

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees