JPH06182153A - Methyl bromide decomposing method and catalyst therefor - Google Patents

Methyl bromide decomposing method and catalyst therefor

Info

Publication number
JPH06182153A
JPH06182153A JP4355312A JP35531292A JPH06182153A JP H06182153 A JPH06182153 A JP H06182153A JP 4355312 A JP4355312 A JP 4355312A JP 35531292 A JP35531292 A JP 35531292A JP H06182153 A JPH06182153 A JP H06182153A
Authority
JP
Japan
Prior art keywords
methyl bromide
catalyst
manganese
carbon monoxide
present
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4355312A
Other languages
Japanese (ja)
Inventor
Hiroshi Hori
浩志 堀
Hideaki Miki
英了 三木
Hideki Sugi
秀樹 椙
Sumimasa Seo
純将 瀬尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Kayaku Co Ltd
Original Assignee
Nippon Kayaku Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Kayaku Co Ltd filed Critical Nippon Kayaku Co Ltd
Priority to JP4355312A priority Critical patent/JPH06182153A/en
Publication of JPH06182153A publication Critical patent/JPH06182153A/en
Pending legal-status Critical Current

Links

Landscapes

  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Catalysts (AREA)

Abstract

PURPOSE:To provide a methyl bromide decomposing method and a catalyst for it which does not need a large scale apparatus and produces no carbon monoxide by oxidizing and decomposing methyl bromide in the presence of oxide catalyst containing copper and manganese. CONSTITUTION:Methyl bromide which is released from chemical plants or fumigating facilities is easily oxidized and decomposed by setting the atomic ratio of oxide catalyst composing copper to manganese 1:(1.5-50). Exhaust gas containing methyl bromide is brought into contact with an oxidization catalyst to oxidize and decompose methyl bromide in gas phase. At that time, oxide as much as 2-5 times mole of methyl bromide is used and the temperature is set to be 100-500 deg.C, preferably, 200-400 deg.C. By using the catalyst with the above mentioned constitution, oxidization and decomposition is carried out at low temperature and since carbon monoxide is not at all produced, post- treatment by a carbon monoxide conversion catalyst, etc., is not needed. As a result, the apparatus is simplified greatly and made to be compact and economical. The method is highly safe and does not produce by-products which are hard to be collected.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は臭化メチルを一酸化炭素
を全く生成せずに酸化分解する方法、及び該酸化分解に
有用な触媒に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for oxidatively decomposing methyl bromide without producing carbon monoxide, and a catalyst useful for the oxidative decomposition.

【0002】[0002]

【従来の技術】臭化メチルは化学工場において生産さ
れ、主に土壌くん蒸や防疫くん蒸に用いられている。
Methyl bromide is produced in chemical plants and is mainly used for soil fumigation and epidemics fumigation.

【0003】臭化メチルは現在、何も処理されずに大気
放出されているが、近年この臭化メチルがオゾン層を破
壊するという報告があり、このままでは使用が禁止され
るか若しくは厳しい規制が行われる予定である。しか
し、くん蒸で用いられる臭化メチルは防疫上必要不可欠
なものであり、臭化メチルにとって代わる代替物はない
ため、臭化メチルの使用禁止による今後の貿易くん蒸に
与える影響は、甚大なものと推定される。
Methyl bromide is currently released to the atmosphere without any treatment, but in recent years it has been reported that this methyl bromide destroys the ozone layer, and its use is banned or strict regulations are imposed. It will be held. However, since methyl bromide used in fumigation is essential for epidemics and there is no substitute for methyl bromide, the impact on the future trade fumigation by prohibiting the use of methyl bromide is enormous. Presumed.

【0004】そこで臭化メチルを含む排ガス中の臭化メ
チルを除去する方法が以前より検討されている。しか
し、排ガスに含まれる臭化メチルの濃度は、通常多くて
も数千から数十ppmであるため、この少量の臭化メチ
ルを効率よくごく低濃度まで排ガス中から除去する事は
困難である。以前より検討されてきた除去方法としては
吸着法、燃焼法、薬液法、プラズマ分解法、接触分解法
が挙げられる。
Therefore, methods for removing methyl bromide in exhaust gas containing methyl bromide have been previously studied. However, since the concentration of methyl bromide contained in the exhaust gas is usually at most several thousands to several tens ppm, it is difficult to efficiently remove this small amount of methyl bromide from the exhaust gas to a very low concentration. . Removal methods that have been studied before include adsorption method, combustion method, chemical solution method, plasma decomposition method, and catalytic decomposition method.

【0005】そのうち吸着法については、吸着材として
活性炭が用いられているため、寿命が短い事、大量の活
性炭が必要となる事、その活性炭に引火するなどの危険
がある等という実用化には極めて困難な課題があり、実
用化されていない。
In the adsorption method, activated carbon is used as an adsorbent, so that it has a short life, a large amount of activated carbon is required, and there is a danger of igniting the activated carbon. There is an extremely difficult problem and it has not been put to practical use.

【0006】また、燃焼法については、通常500℃以
上の高温を要し、非経済的でもあり、さらに裸火を直接
使用するため、倉庫・くん蒸庫など可燃物を使用する付
近では使用不可能であり、非現実的である。
Further, the combustion method usually requires a high temperature of 500 ° C. or higher, is uneconomical, and uses an open flame directly, so that it cannot be used in the vicinity of the use of combustible materials such as warehouses and fumigation warehouses. And unrealistic.

【0007】さらに薬液法は特殊な薬品を使用し、大量
の薬液を必要とする。よって装置重量がかさみ、又、大
規模な場所を必要とする。さらに、騒音が激しい事、薬
液での除去率が低いといった欠点が存在し、これも実用
化されていない。
Further, the chemical liquid method uses a special chemical and requires a large amount of chemical liquid. Therefore, the weight of the device is heavy, and a large-scale place is required. In addition, there are drawbacks such as high noise and low removal rate with a chemical solution, which has not been put into practical use.

【0008】又、プラズマ法も近年考案されたがプラズ
マ生成にあたり、大量の電力及び大規模な装置と場所、
ヘリウムガスまたはアルゴンガス等の高価な希ガスを必
要とする。よってこれもまた、倉庫・くん蒸庫などとい
った場所ではコスト的にも不適当である。
A plasma method has also been devised in recent years, but in generating plasma, a large amount of electric power and a large-scale device and place,
An expensive noble gas such as helium gas or argon gas is required. Therefore, this is also inadequate in cost in places such as warehouses and fumigation warehouses.

【0009】又、接触分解法では既に特公昭54−22
792号公報により開示された方法があるが、この方法
では炭素成分として大量の一酸化炭素を生成する。この
ため、一酸化炭素を一酸化炭素変換触媒により二酸化炭
素に変換しなければならない。このため、反応装置が大
きくなり、設置コストが大きくなる。
In the catalytic cracking method, Japanese Patent Publication No. 54-22 has already been used.
There is a method disclosed in Japanese Patent No. 792, but this method produces a large amount of carbon monoxide as a carbon component. Therefore, carbon monoxide must be converted to carbon dioxide by a carbon monoxide conversion catalyst. Therefore, the reactor becomes large and the installation cost becomes large.

【0010】さらに前記公告公報に開示された接触分解
法では金属置換された合成ゼオライトが用いられている
が、合成ゼオライトは高価である。よって、安価な触媒
を用いた一酸化炭素を生成しない臭化メチルの酸化分解
方法が望まれている。
Further, in the catalytic cracking method disclosed in the above publication, metal-substituted synthetic zeolite is used, but the synthetic zeolite is expensive. Therefore, an oxidative decomposition method of methyl bromide which does not generate carbon monoxide using an inexpensive catalyst is desired.

【0011】[0011]

【発明が解決しようとする課題】本発明は上記従来の欠
点を解決し、大規模な装置を必要とせず一酸化炭素を生
成しない臭化メチルの分解方法及び触媒を提供するもの
である。
SUMMARY OF THE INVENTION The present invention solves the above-mentioned drawbacks of the prior art and provides a method and a catalyst for decomposing methyl bromide which does not require large-scale equipment and does not generate carbon monoxide.

【0012】[0012]

【課題を解決するための手段】本発明者は前記の問題点
に鑑み鋭意研究し、改良を重ねた結果、除毒方法を接触
分解法にて行なう際に用いる触媒として、従来の触媒で
は大量に生成していた一酸化炭素を全く生成せず、更に
低温においても臭化メチルを完全に分解する安価な触媒
を開発する事に成功し、本発明に至った。
The inventors of the present invention have made extensive studies in view of the above problems, and as a result of repeated improvements, as a catalyst to be used when the detoxification method is carried out by the catalytic cracking method, a large amount of conventional catalysts are used. The present invention has been succeeded in developing an inexpensive catalyst that does not generate carbon monoxide that had been formed in Example 1 and completely decomposes methyl bromide even at low temperatures, and has reached the present invention.

【0013】即ち、本発明は(1)臭化メチルを銅及び
マンガンを含む酸化物触媒の存在下において酸化分解す
る事を特徴とする臭化メチルの分解方法、(2)酸化物
触媒が、銅とマンガンが1:1.5〜50の原子比で存
在する酸化物触媒である上記(1)記載の分解方法、
That is, the present invention provides (1) a method for decomposing methyl bromide, which comprises oxidizing and decomposing methyl bromide in the presence of an oxide catalyst containing copper and manganese, and (2) an oxide catalyst. The decomposition method according to (1) above, which is an oxide catalyst in which copper and manganese are present in an atomic ratio of 1: 1.5 to 50.

【0014】(3)臭化メチルを酸化分解するための、
銅及びマンガンを含む酸化物触媒、(4)銅とマンガン
が1:1.5〜50の原子比で存在する上記(3)記載
の酸化物触媒、
(3) For oxidative decomposition of methyl bromide,
An oxide catalyst containing copper and manganese, (4) an oxide catalyst according to (3) above, wherein copper and manganese are present in an atomic ratio of 1: 1.5 to 50,

【0015】次に本発明について詳細に説明する。本発
明において酸化分解する臭化メチルは通常は化学工場や
くん蒸施設等から得られる排ガス中に含まれるものであ
るがこれに限定されるものではなく、例えばガス中に高
濃度〜低濃度で存在する臭化メチルは本発明により容易
に酸化分解できる。
Next, the present invention will be described in detail. Methyl bromide which is oxidatively decomposed in the present invention is usually contained in the exhaust gas obtained from a chemical factory, a fumigation facility, etc., but is not limited thereto, and is present in a gas at a high concentration to a low concentration. Methyl bromide is easily oxidatively decomposed by the present invention.

【0016】次に本発明の酸化物触媒について説明す
る。銅及びマンガンを含む酸化物触媒は公知のものが使
用できる。この酸化物触媒は種々の公知の方法により調
製する事ができる。例えば、銅及びマンガンの化合物を
水の存在下に混合しそれを乾燥後好ましくは200〜6
00℃で焼成して酸化物とすることによって調製する事
が出来る。
Next, the oxide catalyst of the present invention will be described. Known oxide catalysts containing copper and manganese can be used. This oxide catalyst can be prepared by various known methods. For example, a compound of copper and manganese is mixed in the presence of water, and after drying it, preferably 200 to 6
It can be prepared by firing at 00 ° C. to give an oxide.

【0017】銅及びマンガンの化合物としては、例えば
それぞれの硝酸塩、硫酸塩、酢酸塩、錯体塩等が挙げら
れるが、最終的に酸化物触媒を形成しうるものであれば
何れもが使用可能であり、特に限定されない。また、こ
れらは2種以上組み合わせて用いても差し支えない。
The compounds of copper and manganese include, for example, respective nitrates, sulfates, acetates, complex salts and the like, but any compounds can be used as long as they can finally form an oxide catalyst. There is no particular limitation. Further, these may be used in combination of two or more kinds.

【0018】また、本発明の酸化物触媒はさらに他の種
々の元素の酸化物を含む事ができる。例えば、鉄、コバ
ルト、ニッケル、と言った遷移金属、白金、パラジウ
ム、金といった貴金属、アンチモン、ビスマス、サマリ
ウム等といった金属の酸化物が挙げられる。
The oxide catalyst of the present invention may further contain oxides of various other elements. Examples thereof include transition metals such as iron, cobalt, and nickel, precious metals such as platinum, palladium, and gold, and oxides of metals such as antimony, bismuth, and samarium.

【0019】本発明発明の酸化物触媒において、銅とマ
ンガンは1:1〜100の原子比で存在することが好ま
しく、特に1:1.5〜50の原子比で存在することが
好ましい。
In the oxide catalyst of the present invention, copper and manganese are preferably present in an atomic ratio of 1: 1 to 100, and particularly preferably in an atomic ratio of 1: 1.5 to 50.

【0020】本発明の触媒は粉末状で使用する事が出
来、また、適当な大きさ及び形状に成形して、または適
当な担体に担持した形で使用する事もできる。本発明の
触媒を成形して使用する場合、結合剤を使用する事がで
き、ベントナイト、モンモリロナイト塩類、カオリン、
エリオナイト、アルミナ等を結合剤として使用しても何
等差し支えない。
The catalyst of the present invention can be used in the form of powder, and can also be used by being molded into a suitable size and shape or supported on a suitable carrier. When molding and using the catalyst of the present invention, a binder can be used, and bentonite, montmorillonite salts, kaolin,
There is no problem even if erionite, alumina or the like is used as a binder.

【0021】本発明において、臭化メチルの酸化分解
は、液相で行うこともできるが好ましくは気相で行う。
例えば、化学工場やくん蒸施設等から得られる臭化メチ
ルを含む排ガスを、本発明の触媒に接触させ、排ガス中
に含まれる臭化メチルを気相で酸化分解する。該排ガス
中に含まれる臭化メチルの量は通常100−10000
ppmである。
In the present invention, the oxidative decomposition of methyl bromide can be carried out in the liquid phase, but is preferably carried out in the gas phase.
For example, an exhaust gas containing methyl bromide obtained from a chemical factory or a fumigation facility is brought into contact with the catalyst of the present invention to oxidatively decompose methyl bromide contained in the exhaust gas in the gas phase. The amount of methyl bromide contained in the exhaust gas is usually 100-10000.
It is ppm.

【0022】酸化分解は酸素の存在下に行うが酸素は通
常は臭化メチルに対し、2倍モル以上好ましくは5倍モ
ル以上用いる。これら酸素は、排ガス中に含まれる酸素
をそのまま利用する事が出来、また空気中の酸素を利用
する事も可能である。
Oxidative decomposition is carried out in the presence of oxygen, and the amount of oxygen is usually 2 times or more, preferably 5 times or more, that of methyl bromide. As the oxygen, the oxygen contained in the exhaust gas can be used as it is, and the oxygen in the air can also be used.

【0023】本発明により、臭化メチルを酸化分解する
際の温度は、100〜500℃が好ましく、さらに好ま
しくは200〜400℃の範囲である。又、臭化メチル
を含む排ガスを触媒に接触させる際の供給量は、空間速
度(SV)にして100000hr-1以下が好ましく、
特に好ましくは20000hr-1以下である。又、被処
理ガス中に含まれる他成分についての制限は特に無い。
According to the present invention, the temperature for oxidative decomposition of methyl bromide is preferably 100 to 500 ° C, more preferably 200 to 400 ° C. Further, the supply amount when the exhaust gas containing methyl bromide is brought into contact with the catalyst is preferably 100,000 hr -1 or less in space velocity (SV),
It is particularly preferably 20,000 hr -1 or less. Further, there is no particular limitation on other components contained in the gas to be treated.

【0024】本発明の方法により酸化分解して得られる
生成ガス中には一酸化炭素が全く存在しないため、一酸
化炭素変換触媒などによる後処理は不要である。又分解
後臭化水素が生成されるが、これらはNaOH,KO
H,NH4 OH,アミン等のアルカリ水溶液で容易に吸
収除去する事ができる。
Since no carbon monoxide is present in the product gas obtained by oxidative decomposition by the method of the present invention, post-treatment with a carbon monoxide conversion catalyst or the like is unnecessary. Also, hydrogen bromide is generated after decomposition, but these are NaOH and KO.
It can be easily absorbed and removed with an alkaline aqueous solution such as H, NH4 OH, or amine.

【0025】本発明によれば酸化分解を低温で行う事が
出来、且つ一酸化炭素が全く生成しないため、一酸化炭
素変換触媒等による後処理が不要である。よって装置の
大幅な簡略化が可能となり、安価でかつ小型化が可能に
なる。又、本発明の方法は安全性に優れた方法である。
According to the present invention, oxidative decomposition can be carried out at a low temperature, and since carbon monoxide is not produced at all, post-treatment with a carbon monoxide conversion catalyst or the like is unnecessary. Therefore, the apparatus can be greatly simplified, and the apparatus can be inexpensive and downsized. Further, the method of the present invention is a method having excellent safety.

【0026】さらにこの方法では捕集困難な有害副生成
物が少なく、本発明の方法による二次的な環境汚染も発
生する事はない。
Furthermore, this method has few harmful by-products which are difficult to collect, and secondary pollution by the method of the present invention does not occur.

【0027】[0027]

【実施例】次に実施例、比較例により本発明をさらに詳
述する。但し、本発明はこれら実施例に限定されるもの
ではない。
EXAMPLES The present invention will be described in more detail with reference to Examples and Comparative Examples. However, the present invention is not limited to these examples.

【0028】実施例 1 臭化メチル1vol%及び水分3vol%を含むガス
(他の成分:乾燥空気)を被処理ガスとして用いた。
又、硝酸銅73g,硝酸マンガン127gを水1リット
ル中で混合し水溶液とし、これを蒸発乾固し、300℃
で2時間焼成して酸化物とし、この酸化物を粉砕したも
の10gに、ベントナイトを1.0gと水50mlを加
え混合し、110℃で乾燥しこれを直径4mm位に砕い
たものを酸化物触媒(銅とマンガンの原子比1:2.
3)として使用した。
Example 1 A gas containing 1 vol% of methyl bromide and 3 vol% of water (other components: dry air) was used as a gas to be treated.
Further, 73 g of copper nitrate and 127 g of manganese nitrate are mixed in 1 liter of water to form an aqueous solution, which is evaporated to dryness and then heated to 300 ° C.
It was baked for 2 hours at 40 ° C to obtain an oxide, and 1.0 g of bentonite and 50 ml of water were added to and mixed with 10 g of the oxide, which was dried at 110 ° C and crushed to a diameter of 4 mm or so. Catalyst (copper to manganese atomic ratio 1: 2.
Used as 3).

【0029】酸化物触媒を2g、内径8mmのパイレッ
クス管に充填した。この反応管に被処理ガスを、200
ml/min(SV=6000hr-1 NTP換算)で導
入し250℃から350℃まで昇温させた。その時の各
温度での臭化メチル分解率を下に示す。
2 g of the oxide catalyst was filled in a Pyrex tube having an inner diameter of 8 mm. The gas to be treated is introduced into the reaction tube at 200
It was introduced at a rate of ml / min (SV = 6000 hr −1 NTP conversion) and the temperature was raised from 250 ° C. to 350 ° C. The decomposition rate of methyl bromide at each temperature at that time is shown below.

【0030】 反応温度(℃) 臭化メチル分解率(%) 250 42 300 58 350 75Reaction temperature (° C.) Methyl bromide decomposition rate (%) 250 42 300 58 350 75

【0031】実施例 2 硝酸銅を24g、硝酸マンガンを161g用い、その他
は実施例1と同様にして酸化物触媒(銅とマンガンの原
子比1:9)を調製し、これを用い実施例1と同様に試
験を行った。その時の各温度での臭化メチル分解率を下
に示す。
Example 2 An oxide catalyst (atomic ratio of copper to manganese 1: 9) was prepared in the same manner as in Example 1 except that 24 g of copper nitrate and 161 g of manganese nitrate were used, and Example 1 was used. The test was conducted in the same manner as. The decomposition rate of methyl bromide at each temperature at that time is shown below.

【0032】 反応温度(℃) 臭化メチル分解率(%) 250 24 300 47 350 81Reaction temperature (° C.) Decomposition rate of methyl bromide (%) 250 24 300 47 350 81

【0033】実施例 3 硝酸銅を48g、硝酸マンガンを144g用い、その他
は実施例1と同様にして酸化物触媒(銅とマンガンの原
子比は1:4)を調製し、これを用い200℃から35
0℃まで昇温させた他は実施例1と同様に試験を行っ
た。その時の各温度での臭化メチル分解率を下に示す。
Example 3 An oxide catalyst (atom ratio of copper to manganese 1: 4) was prepared in the same manner as in Example 1 except that 48 g of copper nitrate and 144 g of manganese nitrate were used, and this was used at 200 ° C. To 35
The test was performed in the same manner as in Example 1 except that the temperature was raised to 0 ° C. The decomposition rate of methyl bromide at each temperature at that time is shown below.

【0034】 反応温度(℃) 臭化メチル分解率(%) 200 31 250 82 300 99 350 100Reaction temperature (° C.) Methyl bromide decomposition rate (%) 200 31 250 82 300 300 99 350 100

【0035】比較例1 硝酸銅を96g用い、硝酸マンガンを使用せず、その他
は実施例1と同様にして酸化物触媒を調製し、これを用
い実施例1と同様に試験を行った。その時の各温度での
臭化メチル分解率を下に示す。
Comparative Example 1 An oxide catalyst was prepared in the same manner as in Example 1 except that 96 g of copper nitrate was used, manganese nitrate was not used, and the same test was conducted as in Example 1. The decomposition rate of methyl bromide at each temperature at that time is shown below.

【0036】 反応温度(℃) 臭化メチル分解率(%) 250 0 300 0 350 0Reaction temperature (° C.) Degradation rate of methyl bromide (%) 250 0 300 0 350 0

【0037】比較例2 硝酸マンガンを89gを用い、硝酸銅を使用せず、その
他は実施例1と同様にして酸化物触媒を調製し、これを
用い実施例1と同様に試験を行った。その時の各温度で
の臭化メチル分解率を下に示す。
Comparative Example 2 An oxide catalyst was prepared in the same manner as in Example 1 except that 89 g of manganese nitrate was used, copper nitrate was not used, and the same test as in Example 1 was conducted using the oxide catalyst. The decomposition rate of methyl bromide at each temperature at that time is shown below.

【0038】 反応温度(℃) 臭化メチル分解率(%) 250 0 300 1 350 7Reaction temperature (° C.) Decomposition rate of methyl bromide (%) 250 0 300 1 350 7

【0039】ここで各実施例における臭化メチル分解率
は、次の式に従って計算した。 臭化メチル分解率(%)=(A−B)/A×100 但し A:入口での臭化メチル濃度 B:出口での臭化メチル濃度
Here, the decomposition rate of methyl bromide in each example was calculated according to the following formula. Degradation rate of methyl bromide (%) = (AB) / A × 100 where A: methyl bromide concentration at the inlet B: methyl bromide concentration at the outlet

【0040】又、実施例1〜3のいずれの実施例におい
ても、分解した臭化メチルのうち、炭素成分は全て二酸
化炭素に変換されていた。
Further, in all of Examples 1 to 3, all carbon components of the decomposed methyl bromide were converted to carbon dioxide.

【0041】[0041]

【発明の効果】本発明によれば、低温においてハロゲン
含有有機物を、一酸化炭素を生成することなく酸化分解
することができる。
According to the present invention, a halogen-containing organic substance can be oxidatively decomposed at a low temperature without producing carbon monoxide.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】臭化メチルを銅及びマンガンを含む酸化物
触媒の存在下において酸化分解する事を特徴とする臭化
メチルの分解方法。
1. A method for decomposing methyl bromide, which comprises oxidizing and decomposing methyl bromide in the presence of an oxide catalyst containing copper and manganese.
【請求項2】酸化物触媒が、銅とマンガンが1:1.5
〜50の原子比で存在する酸化物触媒である請求項1の
分解方法。
2. An oxide catalyst containing copper and manganese in a ratio of 1: 1.5.
The decomposition method according to claim 1, wherein the oxide catalyst is present in an atomic ratio of -50.
【請求項3】臭化メチルを酸化分解するための、銅及び
マンガンを含む酸化物触媒。
3. An oxide catalyst containing copper and manganese for oxidative decomposition of methyl bromide.
【請求項4】銅とマンガンが1:1.5〜50の原子比
で存在する請求項3の酸化物触媒。
4. The oxide catalyst according to claim 3, wherein copper and manganese are present in an atomic ratio of 1: 1.5 to 50.
JP4355312A 1992-12-21 1992-12-21 Methyl bromide decomposing method and catalyst therefor Pending JPH06182153A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4355312A JPH06182153A (en) 1992-12-21 1992-12-21 Methyl bromide decomposing method and catalyst therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4355312A JPH06182153A (en) 1992-12-21 1992-12-21 Methyl bromide decomposing method and catalyst therefor

Publications (1)

Publication Number Publication Date
JPH06182153A true JPH06182153A (en) 1994-07-05

Family

ID=18443192

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4355312A Pending JPH06182153A (en) 1992-12-21 1992-12-21 Methyl bromide decomposing method and catalyst therefor

Country Status (1)

Country Link
JP (1) JPH06182153A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011224546A (en) * 2010-03-31 2011-11-10 Tokyo Metropolitan Industrial Technology Research Institute Inorganic oxide molded catalyst and method for manufacturing the same
JP2012200628A (en) * 2011-03-24 2012-10-22 Tokyo Metropolitan Industrial Technology Research Institute Carrier catalyst for volatile organic compound and method for producing the catalyst
JP2019502534A (en) * 2015-11-24 2019-01-31 セイルエフエー カンパニー リミテッド Composite composition for removing harmful gas containing copper-manganese catalyst

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011224546A (en) * 2010-03-31 2011-11-10 Tokyo Metropolitan Industrial Technology Research Institute Inorganic oxide molded catalyst and method for manufacturing the same
JP2012200628A (en) * 2011-03-24 2012-10-22 Tokyo Metropolitan Industrial Technology Research Institute Carrier catalyst for volatile organic compound and method for producing the catalyst
JP2019502534A (en) * 2015-11-24 2019-01-31 セイルエフエー カンパニー リミテッド Composite composition for removing harmful gas containing copper-manganese catalyst

Similar Documents

Publication Publication Date Title
US6596915B1 (en) Catalysts for destruction of organophosphonate compounds
WO1990009227A1 (en) Exhaust gas cleaning method
Jo et al. Plasma–catalytic ceramic membrane reactor for volatile organic compound control
Bufalini et al. Contamination effects on ozone formation in smog chambers
JPH0768131A (en) Method for decreasing content of nitrogen suboxide in exhaust gas, especially exhaust gas of synthesis process containing nitric acid oxidation
JPH06182153A (en) Methyl bromide decomposing method and catalyst therefor
WO1992011202A1 (en) Process for producing formed active coke for desulfurization and denitrification with high denitrification performance
KR101270509B1 (en) Catalyst using mesoporous materials and manganese oxide, and method for decomposing volatile organic compounds using the same
Muradov et al. Selective photocatalytic destruction of airborne VOCs
JP3506767B2 (en) Decomposition method and catalyst for halogen-containing organic compound
JP3508947B2 (en) Decomposition method and catalyst for halogen-containing organic compound
KR20040097738A (en) Mn oxide catalyst for decomposing ozone and the method therefor
Roh et al. Superior decomposition of NO over plasma-assisted catalytic system induced by microwave
JPH06165915A (en) Method for decomposing halogen-containing organic matter and catalyst for the same
CN118103136A (en) Method for regenerating catalyst for decomposing nitrous oxide and method for decomposing nitrous oxide
JPH06304447A (en) Decomposition of organic compound containing halogen and catalyst therefor
GONZÁLEZ-VELASCO et al. Catalytic oxidation of volatile organic compounds: Chlorinated hydrocarbons
JPH06277518A (en) Catalyst for oxidation decomposition of organic halide and oxidation decomposition method
JP3360353B2 (en) Method for treating volatile organic halogen compounds
JP3475204B2 (en) Combustion decomposition remover for hydrocarbons and halogen-containing organic substances
US20030135082A1 (en) Destruction of organophosphonate compounds
KR100622993B1 (en) Dual Functional Catalyst System Performing Reaction of Adsorbent and Catalyst of VOC
Magureanu VOC removal from air by plasma‐assisted catalysis‐experimental work
JP4096052B2 (en) Method for decomposing nitrile compounds contained in waste gas
JPH10309437A (en) Ammonia decomposition treatment apparatus