JP4096052B2 - Method for decomposing nitrile compounds contained in waste gas - Google Patents

Method for decomposing nitrile compounds contained in waste gas Download PDF

Info

Publication number
JP4096052B2
JP4096052B2 JP2002223479A JP2002223479A JP4096052B2 JP 4096052 B2 JP4096052 B2 JP 4096052B2 JP 2002223479 A JP2002223479 A JP 2002223479A JP 2002223479 A JP2002223479 A JP 2002223479A JP 4096052 B2 JP4096052 B2 JP 4096052B2
Authority
JP
Japan
Prior art keywords
catalyst
waste gas
acrylonitrile
supported
decomposing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2002223479A
Other languages
Japanese (ja)
Other versions
JP2004058019A (en
Inventor
哲哉 難波
存 小渕
潤子 内澤
明彦 大井
紀夫 中山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2002223479A priority Critical patent/JP4096052B2/en
Publication of JP2004058019A publication Critical patent/JP2004058019A/en
Application granted granted Critical
Publication of JP4096052B2 publication Critical patent/JP4096052B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Catalysts (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、廃ガス中に含まれるニトリル化合物の無害化方法に関し、更に詳しくは、該廃ガス中に含まれるニトリル化合物を効率的に分解する方法に関する。
【0002】
【従来の技術】
有機窒素化合物たとえばアクリロニトリルは、合成繊維、合成ゴム、合成樹脂(AA樹脂、ABS樹脂など)、塗料、その他の化学原料として使用される有用な化学物質であり、近年、その年間生産量が66万トン規模までに達しているが、近年、発ガン性をはじめとする人体への強い毒性が指摘されている。
【0003】
アクリロニトリルの大気等への年間排出量は約1500トンと他の揮発性有機化合物に比べると少ないものの、大気中での半減期が2−4日であり、ホルムアルデヒド(数時間)と比べると滞留時間が長いため、本来一般大気中にはそれほど高濃度で存在しないとみられているにも拘わらず、実測によれば、一般大気環境濃度は0.3ppbと高濃度の数値を示している。
このような状況を踏まえ、アクリロニトリルは、環境省により定められた大気汚染物質の中でも22種の優先取組物質の一つとして指定されるに至っている。
【0004】
アクリロニトリルモノマーの製造過程で生じるアクリロニトリルを含むガスからアクリロニトリルを回収する方法としては、たとえば、特開平11−199560号や特開2001−213857号などが知られているが、これらの方法は煩雑で大掛かりな装置を必要とし、またその回収率を高めるのには限界があり、大気排出直前の廃ガス中には依然としてアクリロニトリルが高濃度で残存するといった問題があった。
【0005】
また、大気排出直前の廃ガス中に含まれるアクロトニトリルの大気拡散への処理方法としては、単純な酸化的熱分解(焼却)による方法が考えられるが、この場合には、アクリロニトリル中の窒素原子がHCNもしくはNOxなどの、人体有害物質や環境汚染物質を惹起するといった新たな問題が生じる。
【0006】
そのため、発生源での完全無害化が必須であるとともに、ニトリル類等の有機窒素化合物の使用現場における作業環境保全、大気汚染環境の尊守の観点からも、完全無害化する方法の開発が強く要請されている。
【0007】
【発明が解決しようとする課題】
本発明は上記従来技術の問題点を克服するためになされたものであって、ニトリル化合物を含む処理ガスをHCNもしくはNOxなどの人体有害物質や環境汚染物質を副生することなく効率的に無害化することができ、大気汚染対策や作業環境保全などとして極めて有効な分解処理方法を提供することを目的とする。
【0008】
【課題を解決するための手段】
本発明者らは、上記課題を解決するために鋭意検討した結果、酸化的熱分解作用を示す金属触媒の中でも特定な金属触媒はHCNもしくはNOx等を副生することなくニトリル化合物中の窒素をNまで分解できることを知見し本発明を完成するに至った。
【0009】
すなわち、この出願によれば、以下の発明が提供される。
(1)廃ガス中に含まれるニトリル化合物を、Fe及びCuから選ばれた少なくとも一種の金属もしくは金属化合物をゼオライトに担持させた触媒の存在下、酸素ガスと水蒸気の共存下で、400〜500℃で酸化的に熱分解させることを特徴とする廃ガス中に含まれるニトリル化合物の分解処理方法。
(2)ゼオライトがZSM−5又はフェリエライトであることを特徴とする(1)に記載のニトリル化合物の分解処理方法。
(3)ニトリル化合物がアクリロニトリルであることを特徴とする(1)又は(2)に記載のニトリル化合物の分解処理方法。
【0010】
【発明の実施の形態】
本発明の廃ガスに含まれるニトリル化合物の分解触媒は、Fe及びCuから選ばれた少なくとも一種の金属もしくは金属化合物をゼオライトに担体させたことを特徴としている。
【0011】
一般に、有機化合物を酸化的熱分解処理するに当たり、PtおよびPdなどの金属もしくは金属化合物触媒が一般的に使用されているが、ニトリル化合物を含む廃ガスに対してこのような金属触媒の有効性を検証した例はなく、また、ニトリル化合物に含まれる窒素原子を人体に有害なHCNや環境汚染物質であるNOxなどを副生することなく、Nガスまで転換可能とする特有な触媒についての報告は何らされていない。
【0012】
本発明者らは、環境汚染対策及び作業環境保全等の観点から、廃ガスに含まれるニトリル化合物を酸化的に熱分解処理する際に有効な触媒を長年研究した結果、Fe及びCuから選ばれた少なくとも一種の金属もしくは金属化合物をゼオライトに担持させたものが極めて有効であるとの知見を得た。本発明はこれらの知見に基づいてなされたものである。
【0013】
本明細書でいう、「廃ガスに含まれるニトリル化合物」とは、ポリアクリロニトリルなどの有機窒素系樹脂、合成ゴム、ABS樹脂、AS樹脂、合成塗料、有機窒素化合物モノマーなどの有機窒素化合物を使用、生産、取り扱う化学工場等において排出されるガス中に含まれる微量(1〜300ppm程度)のニトリル化合物を意味する。
このようなニトリル化合物としては、具体的には、アクリロニトリル、アセトニリルなどのニトリル化合物が挙げられるが、特にアクリロニトリルが好ましい。
【0014】
本発明に係る廃ガス中に含まれるニトリル化合物の分解触媒は、Fe及びCuから選ばれた少なくとも一種の金属もしくは金属化合物である
【0015】
この場合、金属化合物としては、たとえば、酸化物、硝酸塩、酢酸塩、塩化物、を挙げることができる。
【0016】
本発明に係る触媒はそのまま直接使用してもよいが、触媒活性や取り扱い性の観点から担体に担持させて用いる。担体としては、ZSM−5、フェリエライト、モルデナイトなどのゼオライト類を用いる。
触媒の使用量は、酸素濃度、水蒸気濃度、排気ガス流速などの条件により適宜定めればよいが、担体を用いる場合、触媒の使用量は担体に対して1〜5重量%程度としおくことが望ましい。
【0017】
本発明に係る触媒は、従来公知の触媒調製法、たとえば、含侵法、共沈法、イオン交換法などによって簡単に調製することができる。
【0018】
本発明において、廃ガス中に含まれる有機窒素化合物を分解するには、有機窒素化合物含有廃ガスを上記触媒の存在下で酸化的に熱分解処理すればよい。
【0019】
酸化的熱分解条件は酸素ガスと水蒸気の共存下で行う。
この場合、酸素濃度1〜20重量%;水蒸気濃度0.5〜10%、酸素/水蒸気比0.1〜40程度の条件を選定するのがよい。
【0020】
応温度に制限はないが、150〜500℃の範囲内の400〜500℃であり、また、反応圧力は減圧、常圧、加圧の何れでもよいが、大気圧で行うことが望ましい。
また、触媒床の体積は、有機窒素化合物を含む廃ガスの供給速度を考慮することにより、適宜定めればよいが、通常、空間速度500〜200000h−1好ましくは50000−100000h−1とされる。
【0021】
また、本発明のニトリル化合物を含む廃ガスを分解処理するために使用される装置に特別な制限はないが、固定床流通反応装置などを用いることが望ましい。
【0022】
【実施例】
以下、本発明を実施例により更に詳細に説明する。
【0023】
実施例1
イオン交換法により、ZSM−5担持Cu触媒体及びフェリエライト担持Cu触媒をそれぞれ以下のように調製した。
ZSM−5担持Cu触媒は、酢酸銅0.4gを100mlのイオン交換蒸留水に溶かし、80℃に加熱した後、NH−ZSM−5 2.9gを本溶液に加えて、還流させながら24時間撹拌し、イオン交換した。その吸引濾過し、100mlのイオン交換蒸留水で洗浄し、110℃12時間乾燥、500℃、4時間焼成して上記各触媒を調製した。
前記で得た各担持触媒0.1gをとり、内径8mmの石英反応管に充填し、その反応管を固定床流通反応装置に設置した。マスフローコントローラーで流量を調節し、5%O/He混合気を160ml/minの流量で反応管に流通し、500℃、2時間前処理した。前処理された各担持触媒は、下記組成(1)からなる、アクリロニトリルと酸化性ガスとの混合ガスを総流量160ml/minで導入した。
(1)アクリロニトリル(200ppm)+O (5%)+H O(0.5%)
ついで、各分解温度で生成するN 濃度をガスクロマトグラフで測定した。その結果を図1に示す。
【0024】
実施例2
酢酸銅に代え塩化鉄( II )を用い固相イオン交換法によりZSM−5担持Fe触媒体及びフェリエライト担持Fe触媒をそれぞれ調製した以外は実施例1と同様にして、各反応分解温度で生成するN 濃度をガスクロマトグラフで測定した。その結果を図2に示す。
【0025】
参考例1
含侵法を用いAl 担持Fe触媒及びTiO 担持Fe触媒をそれぞれ調製した以外は実施例1と同様にして、各反応分解温度で生成するN 濃度をガスクロマトグラフで測定した。その結果を図3に示す。
【0026】
参考例2
含侵法を用いZr 担持Ag触媒及びTiO 担持Ag触媒をそれぞれ調製した以外は実施例1と同様にして、各反応分解温度で生成するN 濃度をガスクロマトグラフで測定した。その結果を図4に示す。
【0027】
参考例3
イオン交換法を用いZSM−5担持Co触媒および含侵法を用いAl 担持Co触媒をそれぞれ調製した以外は実施例1と同様にして、各反応分解温度で生成するN 濃度をガスクロマトグラフで測定した。その結果を図5に示す。
【0028】
比較例1
含侵法を用いAl 担持Pt触媒及びAl 担持Pd触媒をそれぞれ調製した以外は実施例1と同様にして、各反応分解温度で生成するN 濃度をガスクロマトグラフで測定した。その結果を図6に示す。
なお、図中のNOx,e.t.c.は副生成物として得られたNOx、HCN、NH 、N O、アセトニトリルを合計したものである。
【0029】
【発明の効果】
本発明に係る分解処理方法は、ニトリル化合物を含む処理ガスをHCNもしくはNOxなどの人体有害物質や環境汚染物質を副生することなく効率的に無害化することができ、大気汚染対策や作業環境保全などとして極めて有効な方法ということができる。
【図面の簡単な説明】
【図1】 アクリロニトリル中の窒素のNへの転化率と分解温度の関係を示すグラフ(実施例1の分解触媒)
【図2】 アクリロニトリル中の窒素のNへの転化率と分解温度の関係を示すグラフ(実施例2の分解触媒)
【図3】 アクリロニトリル中の窒素のN への転化率と分解温度の関係を示すグラフ(参考例1の分解触媒)
【図4】 アクリロニトリル中の窒素のN への転化率と分解温度の関係を示すグラフ(参考例2の分解触媒)
【図5】 アクリロニトリル中の窒素のN への転化率と分解温度の関係を示すグラフ(参考例3の分解触媒)
【図6】 アクリロニトリル中の窒素のN への転化率と分解温度の関係を示すグラフ(比較例1の分解触媒)
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for detoxifying a nitrile compound contained in waste gas, and more particularly to a method for efficiently decomposing a nitrile compound contained in the waste gas.
[0002]
[Prior art]
An organic nitrogen compound such as acrylonitrile is a useful chemical substance used as a synthetic fiber, synthetic rubber, synthetic resin (AA resin, ABS resin, etc.), paint, and other chemical raw materials. In recent years, strong toxicity to the human body including carcinogenicity has been pointed out.
[0003]
Although the annual discharge of acrylonitrile to the atmosphere is about 1500 tons, which is small compared to other volatile organic compounds, the half-life in air is 2-4 days, and the residence time compared to formaldehyde (several hours) However, although it is considered that it does not exist at a high concentration in the general atmosphere, the general atmospheric environment concentration shows a high concentration value of 0.3 ppb according to actual measurement.
Based on this situation, acrylonitrile has been designated as one of the 22 priority action substances among the air pollutants established by the Ministry of the Environment.
[0004]
As methods for recovering acrylonitrile from a gas containing acrylonitrile generated in the process of producing acrylonitrile monomer, for example, JP-A-11-199560 and JP-A-2001-213857 are known, but these methods are complicated and large-scale. In addition, there is a limit to increasing the recovery rate, and there is a problem that acrylonitrile still remains in a high concentration in the waste gas immediately before being discharged into the atmosphere.
[0005]
In addition, a simple oxidative thermal decomposition (incineration) method can be considered as a method for treating acrylonitrile contained in the waste gas immediately before being discharged into the atmosphere, but in this case, nitrogen in acrylonitrile A new problem arises in which atoms cause harmful substances and environmental pollutants such as HCN or NOx.
[0006]
Therefore, it is indispensable to completely detoxify the source, and development of a method for completely detoxifying is also strong from the viewpoint of working environment conservation and respect for the air pollution environment at the site where organic nitrogen compounds such as nitriles are used. It has been requested.
[0007]
[Problems to be solved by the invention]
The present invention has been made to overcome the above-mentioned problems of the prior art, and the processing gas containing a nitrile compound is efficiently harmless without causing by-product harmful substances such as HCN or NOx and environmental pollutants. It is an object of the present invention to provide a decomposition method that is extremely effective as a measure against air pollution and work environment conservation.
[0008]
[Means for Solving the Problems]
As a result of intensive studies to solve the above-mentioned problems, the present inventors have determined that nitrogen in nitrile compounds does not by-produce HCN or NOx as a specific metal catalyst among metal catalysts exhibiting oxidative pyrolysis. The inventors have found that it can be decomposed to N 2 and have completed the present invention.
[0009]
That is, according to this application, the following invention is provided.
(1) The nitrile compound contained in the waste gas is 400 to 500 in the presence of a catalyst in which at least one metal selected from Fe and Cu or a metal compound is supported on zeolite in the presence of oxygen gas and water vapor. A method for decomposing a nitrile compound contained in waste gas, characterized by oxidative thermal decomposition at ° C.
(2) The method for decomposing a nitrile compound according to (1), wherein the zeolite is ZSM-5 or ferrierite.
(3) The method for decomposing a nitrile compound according to (1) or (2), wherein the nitrile compound is acrylonitrile.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
The decomposition catalyst for nitrile compounds contained in the waste gas of the present invention is characterized in that at least one metal or metal compound selected from Fe and Cu is supported on zeolite.
[0011]
In general, metals or metal compound catalysts such as Pt and Pd are generally used for the oxidative pyrolysis treatment of organic compounds, but the effectiveness of such metal catalysts for waste gas containing nitrile compounds. In addition, there is no example of the verification of a specific catalyst that can convert nitrogen atoms contained in nitrile compounds to N 2 gas without generating by-product HCN harmful to the human body or NOx, which is an environmental pollutant. No reports have been made.
[0012]
As a result of many years of research on an effective catalyst for oxidative thermal decomposition of a nitrile compound contained in waste gas, the present inventors have been selected from Fe and Cu from the viewpoint of environmental pollution countermeasures and work environment protection. In addition, the inventors have found that at least one kind of metal or metal compound supported on zeolite is extremely effective. The present invention has been made based on these findings.
[0013]
As used herein, “nitrile compound contained in waste gas” is an organic nitrogen compound such as polyacrylonitrile, synthetic rubber, ABS resin, AS resin, synthetic paint, or organic nitrogen compound monomer. It means a very small amount (about 1 to 300 ppm) of a nitrile compound contained in a gas discharged in a chemical factory that is produced or handled.
Specific examples of such a nitrile compound include nitrile compounds such as acrylonitrile and acetonilyl, and acrylonitrile is particularly preferable.
[0014]
The decomposition catalyst for the nitrile compound contained in the waste gas according to the present invention is at least one metal or metal compound selected from Fe and Cu .
[0015]
In this case, examples of the metal compound include oxides, nitrates, acetates, and chlorides.
[0016]
Although the catalyst according to the present invention may be used directly as it is, it is used by being supported on a carrier from the viewpoints of catalyst activity and handleability. As the carrier, zeolites such as ZSM-5, ferrierite and mordenite are used.
The amount of catalyst used may be appropriately determined according to conditions such as oxygen concentration, water vapor concentration, exhaust gas flow rate, etc. When using a carrier, the amount of catalyst used may be about 1 to 5% by weight with respect to the carrier. desirable.
[0017]
The catalyst according to the present invention can be easily prepared by a conventionally known catalyst preparation method such as an impregnation method, a coprecipitation method, an ion exchange method and the like.
[0018]
In the present invention, in order to decompose the organic nitrogen compound contained in the waste gas, the organic nitrogen compound-containing waste gas may be oxidatively pyrolyzed in the presence of the catalyst.
[0019]
Oxidative pyrolysis is performed in the presence of oxygen gas and water vapor.
In this case, it is preferable to select conditions with an oxygen concentration of 1 to 20% by weight; a water vapor concentration of 0.5 to 10%, and an oxygen / water vapor ratio of about 0.1 to 40.
[0020]
Although there is no limit to the anti 応温degree is 400 to 500 ° C. in the range of 150 to 500 ° C., The reaction pressure is vacuum to atmospheric pressure, but may be any of pressure, it is preferably carried out in atmospheric pressure.
The volume of the catalyst bed, by considering the feed rate of the waste gas containing an organic nitrogen compound may be determined appropriately, but is usually a space velocity 500~200000H -1 preferably 50000-100000H -1 .
[0021]
Moreover, although there is no special restriction | limiting in the apparatus used in order to decompose | disassemble the waste gas containing the nitrile compound of this invention, It is desirable to use a fixed bed flow reaction apparatus.
[0022]
【Example】
Hereinafter, the present invention will be described in more detail with reference to examples.
[0023]
Example 1
A ZSM-5-supported Cu catalyst body and a ferrierite-supported Cu catalyst were prepared as follows by an ion exchange method.
The ZSM-5-supported Cu catalyst was prepared by dissolving 0.4 g of copper acetate in 100 ml of ion-exchanged distilled water and heating to 80 ° C. Then, 2.9 g of NH 4 -ZSM-5 was added to this solution and refluxed. Stir for hours and ion exchange. The catalyst was suction filtered, washed with 100 ml of ion-exchanged distilled water, dried at 110 ° C. for 12 hours, and calcined at 500 ° C. for 4 hours to prepare each of the above catalysts.
0.1 g of each supported catalyst obtained above was taken and filled in a quartz reaction tube having an inner diameter of 8 mm, and the reaction tube was installed in a fixed bed flow reactor. The flow rate was adjusted with a mass flow controller, and a 5% O 2 / He mixture was passed through the reaction tube at a flow rate of 160 ml / min and pretreated at 500 ° C. for 2 hours. Each pre-treated supported catalyst was introduced with a mixed gas of acrylonitrile and oxidizing gas having the following composition (1) at a total flow rate of 160 ml / min.
(1) Acrylonitrile (200 ppm) + O 2 (5%) + H 2 O (0.5%)
Next, the N 2 concentration produced at each decomposition temperature was measured with a gas chromatograph. The result is shown in FIG.
[0024]
Example 2
Produced at each reaction decomposition temperature in the same manner as in Example 1 except that ZSM-5-supported Fe catalyst body and ferrierite-supported Fe catalyst were prepared by solid-phase ion exchange using iron chloride ( II ) instead of copper acetate. The N 2 concentration to be measured was measured with a gas chromatograph. The result is shown in FIG.
[0025]
Reference example 1
The N 2 concentration produced at each reaction decomposition temperature was measured by a gas chromatograph in the same manner as in Example 1 except that an Al 2 O 3 supported Fe catalyst and a TiO 2 supported Fe catalyst were prepared using the impregnation method . The result is shown in FIG.
[0026]
Reference example 2
The N 2 concentration produced at each reaction decomposition temperature was measured with a gas chromatograph in the same manner as in Example 1 except that a Zr 2 O 3 supported Ag catalyst and a TiO 2 supported Ag catalyst were prepared using the impregnation method . The result is shown in FIG.
[0027]
Reference example 3
The N 2 concentration produced at each reaction decomposition temperature was determined in the same manner as in Example 1 except that a ZSM-5 supported Co catalyst using an ion exchange method and an Al 2 O 3 supported Co catalyst using an impregnation method were prepared. Measured with a graph. The result is shown in FIG.
[0028]
Comparative Example 1
The N 2 concentration produced at each reaction decomposition temperature was measured by a gas chromatograph in the same manner as in Example 1 except that an impregnation method was used to prepare an Al 2 O 3 supported Pt catalyst and an Al 2 O 3 supported Pd catalyst, respectively . . The result is shown in FIG.
In the figure, NOx, e. t. c. Is a total of NOx, HCN, NH 3 , N 2 O, and acetonitrile obtained as by-products .
[0029]
【The invention's effect】
The decomposition treatment method according to the present invention is capable of efficiently detoxifying a treatment gas containing a nitrile compound without generating by-product harmful substances or environmental pollutants such as HCN or NOx, and measures against air pollution and working environment. It can be said that it is a very effective method for maintenance.
[Brief description of the drawings]
FIG. 1 is a graph showing the relationship between the conversion rate of nitrogen in acrylonitrile to N 2 and the decomposition temperature (decomposition catalyst of Example 1).
FIG. 2 is a graph showing the relationship between the conversion rate of nitrogen in acrylonitrile to N 2 and the decomposition temperature (decomposition catalyst of Example 2).
FIG. 3 is a graph showing the relationship between the conversion rate of nitrogen in acrylonitrile to N 2 and the decomposition temperature (decomposition catalyst of Reference Example 1).
FIG. 4 is a graph showing the relationship between the conversion rate of nitrogen in acrylonitrile to N 2 and the decomposition temperature (decomposition catalyst of Reference Example 2).
FIG. 5 is a graph showing the relationship between the conversion rate of nitrogen in acrylonitrile to N 2 and the decomposition temperature (decomposition catalyst of Reference Example 3).
FIG. 6 is a graph showing the relationship between the conversion rate of nitrogen in acrylonitrile to N 2 and the decomposition temperature (decomposition catalyst of Comparative Example 1).

Claims (3)

廃ガス中に含まれるニトリル化合物を、Fe及びCuから選ばれた少なくとも一種の金属もしくは金属化合物をゼオライトに担持させた触媒の存在下、酸素ガスと水蒸気の共存下で、400〜500℃で酸化的に熱分解させることを特徴とする廃ガス中に含まれるニトリル化合物の分解処理方法。The nitrile compound contained in the waste gas is oxidized at 400 to 500 ° C. in the presence of oxygen gas and water vapor in the presence of a catalyst in which at least one metal selected from Fe and Cu or a metal compound is supported on zeolite. A method for decomposing a nitrile compound contained in waste gas, characterized by thermally decomposing it. ゼオライトがZSM−5又はフェリエライトであることを特徴とする請求項1に記載のニトリル化合物の分解処理方法。The method for decomposing a nitrile compound according to claim 1, wherein the zeolite is ZSM-5 or ferrierite. ニトリル化合物がアクリロニトリルであることを特徴とする請求項1又は2に記載のニトリル化合物の分解処理方法。The method for decomposing a nitrile compound according to claim 1 or 2, wherein the nitrile compound is acrylonitrile.
JP2002223479A 2002-07-31 2002-07-31 Method for decomposing nitrile compounds contained in waste gas Expired - Lifetime JP4096052B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002223479A JP4096052B2 (en) 2002-07-31 2002-07-31 Method for decomposing nitrile compounds contained in waste gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002223479A JP4096052B2 (en) 2002-07-31 2002-07-31 Method for decomposing nitrile compounds contained in waste gas

Publications (2)

Publication Number Publication Date
JP2004058019A JP2004058019A (en) 2004-02-26
JP4096052B2 true JP4096052B2 (en) 2008-06-04

Family

ID=31943220

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002223479A Expired - Lifetime JP4096052B2 (en) 2002-07-31 2002-07-31 Method for decomposing nitrile compounds contained in waste gas

Country Status (1)

Country Link
JP (1) JP4096052B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1787720B1 (en) 2004-07-15 2016-11-02 Nikki-Universal Co., Ltd. Catalyst for purifying exhaust gas containing organic nitrogen compound and method for purifying such exhaust gas
KR20210106509A (en) 2018-12-27 2021-08-30 니키 유니바사루 가부시키가이샤 Catalyst for ammonia decomposition and treatment method of exhaust gas

Also Published As

Publication number Publication date
JP2004058019A (en) 2004-02-26

Similar Documents

Publication Publication Date Title
López-Fonseca et al. Catalytic combustion of chlorinated hydrocarbons over H-BETA and PdO/H-BETA zeolite catalysts
EA005631B1 (en) Method for reducing the content of n2o and no2 in glass
US5851950A (en) Catalytic oxidation of organic nitrogen containing compounds
Ying et al. A comparative study of the dichloromethane catalytic combustion over ruthenium-based catalysts: Unveiling the roles of acid types in dissociative adsorption and by-products formation
Tahir et al. Catalytic destruction of volatile organic compound emissions by platinum based catalyst
CN1283132A (en) Catalyst based on ferrierite/iron for catalytic reduction of nitrous oxide content in gases, method for obtaining same and application
US6596664B2 (en) Method, catalyst, and photocatalyst for the destruction of phosgene
US6464951B1 (en) Method, catalyst, and photocatalyst for the destruction of phosgene
JP4096052B2 (en) Method for decomposing nitrile compounds contained in waste gas
EP1029580B1 (en) Method for removing nitrogen oxides in exhaust gas
Heylen et al. Selective Catalytic Oxidation of Ammonia into Dinitrogen over a Zeolite‐Supported Ruthenium Dioxide Catalyst
JPH0653212B2 (en) Method for decomposing and removing nitrous oxide in gas mixture
KR101154040B1 (en) Regeneration method for activity of spent activated carbon catalyst for selective catalytic reduction
CN110538570B (en) N in caprolactam production waste gas 2 O and VOC co-processing system and method
JP2000000471A (en) Waste gas treating catalyst, waste gas treatment and treating device
JP3457917B2 (en) Exhaust gas treatment catalyst, exhaust gas treatment method and treatment apparatus
JP2000015106A (en) Catalyst for treatment of waste gas, treatment of waste gas and treating apparatus
CN210786898U (en) N in caprolactam production waste gas2System for co-processing O and VOC
JP2000024500A (en) Catalyst for exhaust gas treatment, exhaust gas treatment and treatment apparatus
JP3287301B2 (en) Decomposition method of dioxins
JP3790943B2 (en) Exhaust gas purification catalyst and exhaust gas purification method
EP0516850A1 (en) Method of removing organic halides
CN111189056A (en) Handle heat accumulation burner that contains chlorine volatile organic compounds waste gas
KR100460665B1 (en) A method for simultaneous removal of nitrogen oxides and dioxins from waste gases
CZ302209B6 (en) Decomposition method of chlorine-containing organic compound comprised in combustion products and catalyst used in this method

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060509

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060606

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060612

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060808

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060830

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071204

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080109

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080212

R150 Certificate of patent or registration of utility model

Ref document number: 4096052

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term