JPH06181192A - Fabrication of semiconductor device - Google Patents

Fabrication of semiconductor device

Info

Publication number
JPH06181192A
JPH06181192A JP4331945A JP33194592A JPH06181192A JP H06181192 A JPH06181192 A JP H06181192A JP 4331945 A JP4331945 A JP 4331945A JP 33194592 A JP33194592 A JP 33194592A JP H06181192 A JPH06181192 A JP H06181192A
Authority
JP
Japan
Prior art keywords
film
sio
polishing
processed
wiring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4331945A
Other languages
Japanese (ja)
Inventor
Hiroyuki Yano
博之 矢野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP4331945A priority Critical patent/JPH06181192A/en
Priority to US08/066,375 priority patent/US5445996A/en
Priority to GB9611090A priority patent/GB2298960B/en
Priority to GB9326510A priority patent/GB2275130B/en
Priority to GB9611070A priority patent/GB2299895B/en
Priority to GB9326509A priority patent/GB2275129B/en
Priority to GB9310909A priority patent/GB2267389B/en
Priority to GB9611104A priority patent/GB2298961B/en
Publication of JPH06181192A publication Critical patent/JPH06181192A/en
Priority to US08/451,226 priority patent/US5597341A/en
Priority to US08/897,570 priority patent/US5948205A/en
Priority to US08/897,324 priority patent/US5914275A/en
Priority to KR1019980001478A priority patent/KR0153906B1/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To provide a method for planarizing an irregular layer formed on a substrate completely. CONSTITUTION:The method for fabricating semiconductor device comprises a step for forming a polysilicon film 5 having polishing rate lower than an SiO2 film 4 entirely on the irregular SiO2 film 4 formed on an Si substrate 1, and a step for polishing the polysilicon film 5 and the SiO2 film 4 thus planarizing the SiO2 film 4.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、半導体装置の製造方法
に係り、特に研磨により被加工膜を平坦化する平坦化技
術に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a semiconductor device, and more particularly to a flattening technique for flattening a film to be processed by polishing.

【0002】[0002]

【従来の技術】近年、コンピュ−タ−や通信機器の重要
部分には、多数のトランジスタや抵抗等を電気回路を達
成するようにむすびつけ、1チップ上に集積化して形成
した大規模集積回路(LSI)が多用されている。この
ため、機器全体の性能は、LSI単体の性能と大きく結
び付いている。
2. Description of the Related Art In recent years, a large-scale integrated circuit formed by integrating a large number of transistors, resistors, etc., on one chip in an important part of a computer or communication equipment so as to achieve an electric circuit ( LSI) is frequently used. Therefore, the performance of the entire device is largely linked to the performance of the LSI alone.

【0003】LSI単体の性能向上は、集積度を高める
こと、つまり、素子の微細化により実現できる。このた
め、近年、半導体装置の高集積化が進み、これに伴い配
線幅,配線膜厚の微小化や多層配線化が進められてきて
いる。
The performance improvement of the LSI itself can be realized by increasing the degree of integration, that is, by miniaturizing the elements. For this reason, in recent years, the degree of integration of semiconductor devices has increased, and along with this, miniaturization of wiring width and wiring film thickness and multilayer wiring have been promoted.

【0004】多層配線化の実現に際して重要な技術の一
つとして平坦化技術がある。従来の平坦化技術を図9の
工程断面図を用いて説明すると、まず、図9(a)に示
すように、Si基板41上にSiO2 膜42を形成し、
この後、SiO2 膜42上に厚さ1.1μmの金属配線
43を形成する。
A planarization technique is one of the important techniques for realizing multi-layer wiring. The conventional planarization technique will be described with reference to the process sectional view of FIG. 9. First, as shown in FIG. 9A, a SiO 2 film 42 is formed on a Si substrate 41,
Then, a 1.1 μm thick metal wiring 43 is formed on the SiO 2 film 42.

【0005】次に図9(b)に示すように、全面にSi
2 膜44を堆積する。このとき、金属配線43のパタ
ーンに対応してSiO2 膜44の表面に凹凸が生じる。
次いでSiO2 膜44の表面を研磨し、SiO2 膜44
の表面の凹凸を除去する。このSiO2 膜44の研磨は
図10に示す研磨装置を用いて行なう。
Next, as shown in FIG. 9 (b), Si is formed on the entire surface.
The O 2 film 44 is deposited. At this time, irregularities are formed on the surface of the SiO 2 film 44 corresponding to the pattern of the metal wiring 43.
Next, the surface of the SiO 2 film 44 is polished to remove the SiO 2 film 44.
To remove the irregularities on the surface. The SiO 2 film 44 is polished by using the polishing apparatus shown in FIG.

【0006】すなわち、Si基板41を荷重体103に
セットし、このSi基板41をターンテーブル100上
で回転させる。ターンテーブル100上には、研磨剤供
給パイプ101が設けられており、これにより、研磨の
間、研磨剤が供給され続けられるようになっている。そ
して、Si基板41の研磨面とターンテーブル100と
の間には研磨クロス102が設けられており、この研磨
クロス102と研磨剤の粒子とによって、基板表面の凹
凸が削られる。
That is, the Si substrate 41 is set on the load body 103, and the Si substrate 41 is rotated on the turntable 100. A polishing agent supply pipe 101 is provided on the turntable 100, so that the polishing agent can be continuously supplied during polishing. A polishing cloth 102 is provided between the polishing surface of the Si substrate 41 and the turntable 100, and the polishing cloth 102 and the particles of the polishing agent scrape the surface of the substrate.

【0007】なお、ここでは、荷重体103には40k
fgの荷重が加わっており、100rpmの速さで回転
させている。また、ターンテーブル100は100rp
mの速さで回転させている。
In this case, the load body 103 is 40 k
The load of fg is applied and it is rotating at a speed of 100 rpm. The turntable 100 is 100 rp
It is rotating at a speed of m.

【0008】しかしながら、この種の方法では、図9
(c)に示すように、SiO2 膜44の表面のもともと
の凹凸は緩和されるが、金属配線43間のSiO2 膜4
4が若干くぼみ、いわゆる、ディッシングが発生する。
However, in this type of method, as shown in FIG.
As shown in (c), the original irregularities on the surface of the SiO 2 film 44 are alleviated, but the SiO 2 film 4 between the metal wirings 43 is removed.
4 is slightly depressed, so-called dishing occurs.

【0009】この様子を詳細に調べた結果を図11に示
す。この評価は金属配線43の幅が500μmで、金属
配線43のピッチ間が1000μmの場合のものであ
る。図中、横軸は図9(c)の工程における研磨時間
(秒)を示している。縦軸はSiO2 膜42の表面から
SiO2 膜44の表面までの距離を示している。
FIG. 11 shows the result of detailed examination of this situation. This evaluation is for the case where the width of the metal wiring 43 is 500 μm and the pitch between the metal wiring 43 is 1000 μm. In the figure, the horizontal axis represents the polishing time (seconds) in the step of FIG. 9C. The vertical axis represents the distance from the surface of the SiO 2 film 42 to the surface of the SiO 2 film 44.

【0010】研磨を行なう前は、金属配線43がある部
分(凸部)のSiO2 膜42の表面からSiO2 膜44
の表面までの距離(図中の実線)と、金属配線43がな
い部分(凹部)のSiO2 膜42の表面からSiO2
44の表面までの距離(図中の点線)との差は、金属配
線43の膜厚と同じ1.1μmである。
Before polishing, the surface of the SiO 2 film 42 where the metal wiring 43 is present (projection) is removed from the surface of the SiO 2 film 44.
The distance (solid line in the figure) from the surface of the SiO 2 film 42 to the surface of the SiO 2 film 44 (the dotted line in the figure) at the portion (concave portion) where the metal wiring 43 is absent. It is 1.1 μm, which is the same as the film thickness of the metal wiring 43.

【0011】研磨が進むと、凸部のSiO2 膜44の研
磨速度が凹部のそれより速いため、凸部におけるSiO
2 膜42・SiO2 膜44間の距離と凸部におけるそれ
との差は縮まっていく。ここで、凸部のSiO2 膜44
の研磨速度が凹部のそれより速い理由は、凸部のSiO
2 膜44に荷重が集中するためである。
As the polishing progresses, the polishing rate of the SiO 2 film 44 on the convex portions is higher than that on the concave portions, so that
The difference between the distance between the 2nd film 42 and the SiO 2 film 44 and that at the convex portion becomes smaller. Here, the convex portion of the SiO 2 film 44
The reason why the polishing speed of the
This is because the load concentrates on the two films 44.

【0012】しかしながら、凸部におけるSiO2 膜4
2・SiO2 膜44間の距離と凹部におけるそれとの差
が縮まっていく速度は非常に遅く、研磨を約70秒間行
ない、凸部のSiO2 膜44を約1.0μm研磨で除去
した場合、凹部のSiO2 膜44も約0.65μm研磨
で除去され、結果として、凸部におけるSiO2 膜42
・SiO2 膜44間の距離と凹部におけるそれとの差は
約0.35μmとなる。
However, the SiO 2 film 4 on the convex portion
The speed at which the difference between the distance between the 2 · SiO 2 films 44 and that in the recesses shrinks very slowly, and when polishing is performed for about 70 seconds and the SiO 2 film 44 on the protrusions is removed by polishing by about 1.0 μm, The SiO 2 film 44 in the concave portion is also removed by polishing by about 0.65 μm, and as a result, the SiO 2 film 42 in the convex portion is removed.
The difference between the distance between the SiO 2 films 44 and that in the recess is about 0.35 μm.

【0013】この方法により、SiO2 膜44の表面を
完全に平坦化するには、研磨量を増やせば良い。すなわ
ち、SiO2 膜44を厚く形成して研磨を行なえば良
い。
In order to completely flatten the surface of the SiO 2 film 44 by this method, the polishing amount may be increased. That is, the SiO 2 film 44 may be thickly formed and polished.

【0014】しかし、この方法では、研磨時間が非常に
長くなり、このような研磨時間の長時間化は生産コスト
の上昇の原因となる。更に、研磨速度の被研磨基体面内
のばらつきは、研磨量に比例して拡大するため、上記の
如きに研磨量を増やすのは望ましくない。
However, with this method, the polishing time becomes very long, and such a long polishing time causes an increase in production cost. Further, since the variation of the polishing rate within the surface of the substrate to be polished increases in proportion to the polishing amount, it is not desirable to increase the polishing amount as described above.

【0015】上記方法に伴う凹部のディッシングを防止
するには、例えば、窒化シリコンなどの膜を凹部の研磨
ストッパとして設けることにより、凹部のSiO2 膜4
4の研磨を抑制し、凸部のSiO2 膜44の膜厚と凹部
のそれとの差が縮まる速度を速くすれば良い。
In order to prevent the dishing of the concave portion caused by the above method, for example, a film of silicon nitride or the like is provided as a polishing stopper for the concave portion to form the SiO 2 film 4 in the concave portion.
It is sufficient to suppress the polishing of No. 4 and increase the speed at which the difference between the thickness of the SiO 2 film 44 at the convex portion and that at the concave portion is reduced.

【0016】この方法を図12の工程断面図を用いて説
明すると、まず、図12(a)に示すように、先の方法
と同様に、Si基板61上にSiO2 膜62,金属配線
63(厚さ1.1μm)を形成する。次に図12(b)
に示すように、金属配線63が隠れるように全面にSi
2膜64を堆積する。
This method will be described with reference to the process sectional view of FIG. 12. First, as shown in FIG. 12A, as in the previous method, the SiO 2 film 62 and the metal wiring 63 are formed on the Si substrate 61. (Thickness 1.1 μm) is formed. Next, FIG. 12 (b)
, The entire surface is covered with Si so that the metal wiring 63 is hidden.
The O 2 film 64 is deposited.

【0017】次に図12(c)に示すように、SiO2
膜64上に窒化シリコン膜65を堆積した後、この窒化
シリコン膜65をパターニングして、金属配線63がな
い凹部のSiO2 膜64上にのみに窒化シリコン膜65
を選択的に残置する。この後、先の方法と同様に、図1
0に示す研磨装置を用いて、SiO2 膜64の表面を研
磨する。
Next, as shown in FIG. 12 (c), SiO 2
After depositing the silicon nitride film 65 on the film 64, the silicon nitride film 65 is patterned so that the silicon nitride film 65 is formed only on the SiO 2 film 64 in the concave portion where the metal wiring 63 is not formed.
Selectively leave. After this, as in the previous method, FIG.
The surface of the SiO 2 film 64 is polished by using the polishing apparatus shown in FIG.

【0018】この方法によれば、図12(d)に示すよ
うに、SiO2 膜64の表面のもともとの凹凸を緩和で
きると共に、凹部のディッシングの発生も防止できる。
しかしながら、金属配線63間のSiO2 膜64が若干
出っ張り、研磨後のSiO2膜64の形状は、研磨前の
形状と凹凸が反転したものとなる。
According to this method, as shown in FIG. 12D, it is possible to alleviate the original unevenness of the surface of the SiO 2 film 64 and prevent the dishing of the recess.
However, the SiO 2 film 64 between the metal wirings 63 is slightly protruded, and the shape of the SiO 2 film 64 after polishing has a concavo-convex shape reverse to the shape before polishing.

【0019】この様子を詳細に調べた結果を図13に示
す。この評価は金属配線63の幅が500μmで、金属
配線63のピッチ間が1000μmの場合のものであ
る。図中、横軸は図12(d)の工程における研磨時間
(秒)を示している。縦軸はSiO2 膜62の表面から
SiO2 膜44の表面までの距離を示している。
FIG. 13 shows the result of detailed examination of this situation. In this evaluation, the width of the metal wiring 63 is 500 μm and the pitch between the metal wiring 63 is 1000 μm. In the figure, the horizontal axis represents the polishing time (seconds) in the process of FIG. The vertical axis represents the distance from the surface of the SiO 2 film 62 to the surface of the SiO 2 film 44.

【0020】研磨を行なう前は、金属配線63がある部
分(凸部)のSiO2 膜62の表面からSiO2 膜64
の表面までの距離(図中の実線)と、金属配線63がな
い部分(凹部)のSiO2 膜62の表面からSiO2
64の表面までの距離(図中の点線)とは、ともに金属
配線63の膜厚と同じ1.1μmである。
Before polishing, the surface of the SiO 2 film 62 where the metal wiring 63 is present (projection) is removed from the surface of the SiO 2 film 64.
The distance from the surface of the SiO 2 film 62 to the surface of the SiO 2 film 64 (dotted line in the figure) is both metal. It is 1.1 μm, which is the same as the film thickness of the wiring 63.

【0021】研磨を開始すると、凸部のSiO2 膜64
の研磨速度が凹部のそれより速いため、凸部におけるS
iO2 62・SiO2 膜64間の距離と凹部におけるそ
れとの差は縮まっていく。ここで、凸部のSiO2 膜6
4の研磨速度が凹部のそれより速い理由は、凹凸を有す
るものを研磨すると、凸部に荷重が集中するからであ
る。更に、この方法では、凹部にストッパ膜としての窒
化シリコン膜65を設けているため、凹部のSiO2
64の研磨速度は凸部のそれに比べて非常に遅く、凸部
のSiO2 膜64の研磨速度により凸部におけるSiO
2 膜62・SiO2 膜64間の距離と凹部におけるそれ
との差が縮まっていく。
When polishing is started, the convex portion of the SiO 2 film 64 is formed.
Since the polishing speed of S is higher than that of the concave,
The difference between the distance between the iO 2 62 and SiO 2 films 64 and that in the recesses is getting smaller. Here, the convex portion of the SiO 2 film 6
The reason that the polishing speed of No. 4 is higher than that of the concave portions is that when polishing those having irregularities, the load is concentrated on the convex portions. Further, in this method, since the silicon nitride film 65 as a stopper film is provided in the concave portion, the polishing rate of the SiO 2 film 64 in the concave portion is much slower than that of the convex portion, and the SiO 2 film 64 in the convex portion is Depending on the polishing rate, SiO in the convex part
The difference between the distance between the 2nd film 62 and the SiO 2 film 64 and that in the recess decreases.

【0022】そして、研磨開始後、約70秒で凹部にお
けるSiO2 膜62・SiO2 膜64間の距離と凹部に
おけるそれとの差がほぼ0になり、SiO2 膜64の表
面が平坦になる。しかしながら、SiO2 膜64の表面
が平坦になっても、この後も研磨が続くため、窒化シリ
コン膜65で被覆されていない部分、つまり、凸部のS
iO2 膜64は研磨されて薄くなっていく。
Then, about 70 seconds after the start of polishing, the difference between the distance between the SiO 2 film 62 and the SiO 2 film 64 in the recess and that in the recess becomes almost zero, and the surface of the SiO 2 film 64 becomes flat. However, even if the surface of the SiO 2 film 64 becomes flat, polishing continues thereafter, so that the portion not covered with the silicon nitride film 65, that is, the S
The iO 2 film 64 is polished and becomes thinner.

【0023】この結果、凸部におけるSiO2 膜62・
SiO2 膜64間の距離は凹部におけるそれよりも小さ
くなり、研磨後のSiO2 膜64の形状は、研磨前の形
状と凹凸が反転したものとなる。
As a result, the SiO 2 film 62
The distance between the SiO 2 films 64 is smaller than that in the recesses, and the shape of the SiO 2 film 64 after polishing has the irregularities reversed from the shape before polishing.

【0024】このようなSiO2 膜64の形状の反転を
防止するには、SiO2 膜64の表面が平坦になる時点
で、窒化シリコン膜65が消失するように、窒化シリコ
ン膜65の膜厚を最適化すれば良いが、最適な膜厚範囲
が狭く、実用性に欠けるという問題がある。更に、この
方法では必須な工程である、窒化シリコン膜65などの
ストッパ膜を形成し、これをパターニングするという工
程は、複雑でコストがかかるいう難点もある。
[0024] To prevent the reversal of such a shape of the SiO 2 film 64, when the surface of the SiO 2 film 64 becomes flat, so that the silicon nitride film 65 disappears, the thickness of the silicon nitride film 65 However, there is a problem that the optimum film thickness range is narrow and it is not practical. In addition, the step of forming a stopper film such as the silicon nitride film 65 and patterning it, which is an essential step in this method, is complicated and costly.

【0025】[0025]

【発明が解決しようとする課題】上述の如く、従来の研
磨による絶縁膜の平坦化方法では、凹部にディッシング
が生じ、完全な平坦化が困難であるという問題があっ
た。そこで、ディッシングの発生を抑制するために、凹
部に窒化シリコン膜などのストッパ膜を選択的に設けて
研磨を行なうという方法が試みられた。
As described above, the conventional method of flattening an insulating film by polishing has a problem that dishing occurs in the concave portion and complete flattening is difficult. Therefore, in order to suppress the occurrence of dishing, a method has been attempted in which a stopper film such as a silicon nitride film is selectively provided in the recess and polishing is performed.

【0026】しかし、この方法にあっては、研磨により
絶縁膜の平坦化が達成された直後に、ストッパ膜がない
凸部の絶縁膜にディッシングが生じるため、この場合
も、完全な平坦化が困難であるという問題があった。
In this method, however, dishing occurs in the insulating film on the convex portion having no stopper film immediately after the flattening of the insulating film is achieved by polishing. There was a problem that it was difficult.

【0027】本発明は、上記事情を考慮してなされたも
ので、その目的とするところは、被加工層を完全に平坦
化できる工程を有する半導体装置の製造方法を提供する
ことを目的とする。
The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a method of manufacturing a semiconductor device having a step of completely planarizing a layer to be processed. .

【0028】[0028]

【課題を解決するための手段】上記の目的を達成するた
めに、本発明の半導体装置の製造方法は、基板上に形成
された凹凸部を有する被加工膜の全面に、研磨速度が前
記被加工膜のそれより遅い研磨補助膜を形成する工程
と、前記研磨補助膜が形成された側の基板表面を研磨し
て、前記被加工膜を平坦化する工程とを備えたことを特
徴とする。
In order to achieve the above object, in the method for manufacturing a semiconductor device of the present invention, a polishing rate is applied to the entire surface of a film to be processed having an uneven portion formed on a substrate. The method further comprises a step of forming a polishing auxiliary film slower than that of the processed film, and a step of polishing the surface of the substrate on the side where the polishing auxiliary film is formed to flatten the film to be processed. .

【0029】[0029]

【作用】本発明者等の研究によれば、凹凸部を有する被
加工膜の全面に、研磨速度が被加工膜のそれより遅い研
磨補助膜を形成した後、研磨補助膜,被加工膜の研磨を
行なうと、ディッシングを招くこと無く、被加工膜の凹
凸部を除去でき、被加工膜を平坦化できることが分かっ
た。この平坦化は次のような理由によって実現されてい
ると考えられる。一般に、凸部にかかる荷重は凹部のそ
れより大きいため、凸部の研磨速度は凹部のそれより速
いものとなる。このため、研磨の初期段階では、凸部の
研磨補助膜が主として研磨されると考えられる。この段
階では、まだ、被加工膜の凹凸は緩和されない。凸部の
研磨補助膜の研磨が進み、凸部の研磨補助膜が消滅する
と、次には凸部の被加工膜が主として研磨され、被加工
膜の凹凸の緩和が進む。
According to the research conducted by the present inventors, after forming a polishing auxiliary film having a polishing rate slower than that of the film to be processed on the entire surface of the film to be processed having an uneven portion, the polishing auxiliary film and the film to be processed are formed. It was found that the polishing can remove the uneven portion of the film to be processed and flatten the film to be processed without causing dishing. It is considered that this flattening is realized for the following reasons. Generally, since the load applied to the convex portion is larger than that of the concave portion, the polishing rate of the convex portion is faster than that of the concave portion. Therefore, in the initial stage of polishing, it is considered that the polishing assisting film on the convex portion is mainly polished. At this stage, the unevenness of the film to be processed is not yet relaxed. When the polishing auxiliary film on the convex portion is polished and the polishing auxiliary film on the convex portion disappears, then the film to be processed on the convex portion is mainly polished, and the unevenness of the film to be processed is alleviated.

【0030】そして、被加工膜の凹凸の緩和が進むに従
って、凹部の研磨補助膜が徐々に薄くなり、ある時点で
凹部の研磨補助膜が消滅する。このとき、被加工膜が平
坦になると考えられる。このため、これ以降は平坦な形
状が保たれたまま研磨が進行するので、ディッシングを
招くこと無く、被加工膜を平坦化できることになる。ま
た、本発明者等の研究によれば、研磨補助膜の膜厚にあ
まり依存せずに、平坦性に優れた研磨が行なえ、実用性
が高いことが分かった。
Then, as the unevenness of the film to be processed is alleviated, the polishing assisting film in the recess gradually becomes thinner, and at some point the polishing assisting film in the recess disappears. At this time, it is considered that the film to be processed becomes flat. Therefore, after that, since the polishing proceeds while keeping the flat shape, the film to be processed can be flattened without causing dishing. Further, according to the research conducted by the present inventors, it has been found that polishing with excellent flatness can be performed without depending much on the film thickness of the polishing auxiliary film, which is highly practical.

【0031】[0031]

【実施例】以下、図面を参照しながら実施例を説明す
る。図1は、本発明の一実施例に係る層間絶縁膜の平坦
化方法を示す工程断面図である。まず、図1(a)に示
すように、所望の半導体素子(不図示)が形成されたS
i基板1上に下地としてのSiO2 膜2を堆積する。次
に図1(b)に示すように、このSiO2 膜2上に厚さ
1.1μmのAl配線3を形成する。次に図1(c)に
示すように、Al配線3が形成された基板表面の全面に
SiO2 膜4を約1.2μmの厚さに堆積する。
Embodiments will be described below with reference to the drawings. 1A to 1D are process cross-sectional views showing a method of planarizing an interlayer insulating film according to an embodiment of the present invention. First, as shown in FIG. 1A, an S having a desired semiconductor element (not shown) is formed.
A SiO 2 film 2 as a base is deposited on the i substrate 1. Next, as shown in FIG. 1B, an Al wiring 3 having a thickness of 1.1 μm is formed on the SiO 2 film 2. Next, as shown in FIG. 1C, a SiO 2 film 4 is deposited to a thickness of about 1.2 μm on the entire surface of the substrate on which the Al wiring 3 is formed.

【0032】次に図1(d)に示すように、SiO2
4上に、このSiO2 膜4よりも研磨速度が遅い膜とし
て、ポリシリコン膜5(研磨補助膜)を約0.1μmの
厚さに堆積する。
[0032] Next, as shown in FIG. 1 (d), on the SiO 2 film 4, as a slow film polishing rate than the SiO 2 film 4, the polysilicon film 5 (polishing auxiliary layer) of about 0.1μm Deposited to a thickness of.

【0033】この後、図10に示された研磨装置を用い
てポリシリコン膜5,SiO2 膜4を研磨し、SiO2
膜4の表面の凹凸を除去する。研磨材としては、例え
ば、1wt%の酸化セリウム懸濁液を使用する。このよ
うな研磨工程により、図1(e)に示すように、SiO
2 膜4を完全に平坦化できた。
[0033] Thereafter, the polysilicon film is polished 5, SiO 2 film 4 by using the polishing apparatus shown in FIG. 10, SiO 2
The irregularities on the surface of the film 4 are removed. As the abrasive, for example, a 1 wt% cerium oxide suspension is used. By such a polishing process, as shown in FIG.
2 The film 4 could be completely flattened.

【0034】この様子を詳細に調べた結果を図2に示
す。この評価はAl配線3の幅が500μmで、Al配
線43のピッチ間が1000μmの場合のものである。
図中、横軸は図1(e)の工程における研磨時間(秒)
を示している。縦軸はSiO2膜2の表面からSiO2
膜4の表面までの距離を示している。
FIG. 2 shows the result of detailed examination of this situation. In this evaluation, the width of the Al wiring 3 is 500 μm and the pitch between the Al wirings 43 is 1000 μm.
In the figure, the horizontal axis is the polishing time (seconds) in the process of FIG.
Is shown. The vertical axis is from the surface of the SiO 2 film 2 to SiO 2
The distance to the surface of the membrane 4 is shown.

【0035】研磨を行なう前は、Al配線3がある部分
(凸部)のSiO2 膜2の表面からSiO2 膜4の表面
までの距離(図中の実線)と、Al配線3がない部分
(凹部)のSiO2 膜2の表面からSiO2 膜4の表面
までの距離(図中の点線)とは、ともにAl配線3の膜
厚と同じ1.1μmである。
Before polishing, the distance (solid line in the figure) from the surface of the SiO 2 film 2 to the surface of the SiO 2 film 4 in the portion (convex portion) where the Al wiring 3 is present and the portion where the Al wiring 3 is not present. The distance (dotted line in the drawing) from the surface of the SiO 2 film 2 to the surface of the SiO 2 film 4 in the (concave portion) is 1.1 μm, which is the same as the film thickness of the Al wiring 3.

【0036】研磨を行なうと、まず、凸部のポリシリコ
ン膜5が除去されていき、研磨時間が約30秒のところ
で、凸部のポリシリコン膜5が完全に除去され、凸部の
SiO2 膜4が露出する。凸部のポリシリコン膜5が優
先的に除去されるのは、凸部にかかる荷重のほうが凹部
のそれより大きいからである。
When the polishing is performed, first, the convex polysilicon film 5 is removed. When the polishing time is about 30 seconds, the convex polysilicon film 5 is completely removed and the convex SiO 2 film is removed. The film 4 is exposed. The convex portion of the polysilicon film 5 is removed preferentially because the load applied to the convex portion is larger than that of the concave portion.

【0037】凸部のポリシリコン膜5が消滅すると、次
には凸部のSiO2 膜4が研磨によって除去されてい
く。この間、凹部のポリシリコン膜5は少しずつ研磨に
よって除去されていく。しかし、凹部にかかる荷重は凸
部のそれに比べて小さいため、凸部のSiO2 膜4が研
磨によって除去されている間も、凹部にはポリシリコン
膜5が残存し続ける。
When the convex polysilicon film 5 disappears, the convex SiO 2 film 4 is then removed by polishing. During this time, the polysilicon film 5 in the recess is gradually removed by polishing. However, since the load applied to the concave portion is smaller than that of the convex portion, the polysilicon film 5 remains in the concave portion even while the SiO 2 film 4 of the convex portion is removed by polishing.

【0038】凸部のSiO2 膜4が研磨によって除去さ
れていくにしたがって、SiO2 膜4の表面の凹凸が緩
和されていく。そして、研磨時間が約100秒のところ
で、凹部のポリシリコン膜5はほぼ完全に消滅すると共
に、SiO2 膜4の表面がほぼ完全に平坦になった。し
たがって、ディッシングが生じること無く、必要最低源
の削り量でSiO2 膜4の平坦化が達成される。そし
て、研磨時間が約100秒を経過した後は、平坦になっ
たSiO2 膜4を研磨することになるので、再び凹凸が
現れることはない。
As the convex SiO 2 film 4 is removed by polishing, the irregularities on the surface of the SiO 2 film 4 are alleviated. Then, when the polishing time was about 100 seconds, the polysilicon film 5 in the recess disappeared almost completely, and the surface of the SiO 2 film 4 became almost completely flat. Therefore, the flattening of the SiO 2 film 4 can be achieved with the required minimum amount of scraping without causing dishing. After the polishing time of about 100 seconds, the flattened SiO 2 film 4 is polished, so that the unevenness does not appear again.

【0039】以上述べたように本実施例の研磨による平
坦化方法によれば、SiO2 膜4上に、これよりも研磨
速度の遅いポリシリコン膜5を設けて研磨を行なってい
るので、必要最低限の削り量でSiO2 膜4の平坦化が
行なえる。更に、SiO2 膜4の平坦化が達成された後
さらに研磨を続けても、SiO2 膜4に凹凸が生じるこ
とはない。
As described above, according to the flattening method by polishing of the present embodiment, the polishing is performed by providing the polysilicon film 5 having a polishing rate slower than that on the SiO 2 film 4, which is necessary. The SiO 2 film 4 can be flattened with a minimum amount of shaving. Further, even if polishing is continued after the flattening of the SiO 2 film 4 is achieved, the SiO 2 film 4 does not have irregularities.

【0040】また、本実施例では、ポリシリコン膜5の
膜厚を0.1μmとしたが、凹部のポリシリコン膜5
は、凸部のポリシリコン膜5に対応して研磨されるた
め、ポリシリコン膜5の膜厚のマージンは広いものとな
る。実際に、膜厚が0.08μm,0.15μmのポリ
シリコン膜を用いても同様な結果が得られた。
Further, in this embodiment, the thickness of the polysilicon film 5 is set to 0.1 μm, but the polysilicon film 5 in the recess is formed.
Is polished corresponding to the convex polysilicon film 5, so that the margin of the film thickness of the polysilicon film 5 becomes wide. Actually, similar results were obtained by using a polysilicon film having a film thickness of 0.08 μm and 0.15 μm.

【0041】このように本実施例の平坦化方法は、ポリ
シリコン膜5の膜厚のマージンが大きく、しかも、従来
のように、窒化シリコン膜などのストッパ膜を形成し
て、これをパターニングするという、複雑でコストがか
かる工程が不要なので、実用性の高いものとなる。ま
た、本発明者等の研究によれば、配線幅/ピッチ間隔に
関係なく、被加工膜としてのSiO2 膜は、図2と同様
な経時変化を示すことが分かった。
As described above, in the flattening method of this embodiment, the film thickness margin of the polysilicon film 5 is large, and a stopper film such as a silicon nitride film is formed and patterned as in the conventional case. That is, it is highly practical because it does not require a complicated and costly process. Further, according to the research conducted by the present inventors, it has been found that the SiO 2 film as the film to be processed exhibits the same temporal change regardless of the wiring width / pitch interval.

【0042】図3〜図7には、それぞれ、配線幅/ピッ
チ間隔が、2,50,100,200,500の場合に
ついての、凸部における下地としてのSiO2 膜の表面
から被加工膜としてのSiO2 膜の表面までの距離、お
よび凹部のおける下地としてのSiO2 膜の表面から被
加工膜としてのSiO2 膜の表面までの距離が示されて
いる。
3 to 7, the wiring width / pitch interval is 2, 50, 100, 200, 500, respectively, from the surface of the SiO 2 film as the base in the convex portion to the processed film. 2 to the surface of the SiO 2 film, and the distance from the surface of the SiO 2 film as the base in the recess to the surface of the SiO 2 film as the film to be processed.

【0043】これら図3〜図7から、どの配線幅/ピッ
チ間隔の場合でも、研磨の初期段階では凹部の被加工膜
としてのSiO2 膜は研磨されず、研磨開始から一定時
間後に凹部および凸部の被加工膜としてのSiO2 膜が
ほぼ等しい速度で研磨されていくことが分かる。
From these FIGS. 3 to 7, the SiO 2 film as the film to be processed in the recesses is not polished at the initial stage of polishing regardless of the wiring width / pitch interval, and the recesses and protrusions are formed after a certain time from the start of polishing. It can be seen that the SiO 2 film as the film to be processed in some portions is polished at almost the same rate.

【0044】また、本発明者等の研究によれば、図1
(d)の如きの構造の場合、Al配線3(Al配線とは
限らない、つまり、被加工膜の凹凸部の原因となる下地
膜)の厚さxが、0.5≦x≦1.5の範囲であれば、
ポリシリコン膜5(ポリシリコン膜とは限らない、つま
り、被加工膜よりも研磨速度の遅い膜)の厚さおよびそ
の研磨速度をそれぞれAおよびa、更に、SiO2 膜4
(SiO2 膜とは限らない、つまり、被加工膜)の研磨
速度をbとした場合に、100a≦b・B≦250aの
条件で良好な結果が得られることが分かった。
Further, according to the study by the present inventors, FIG.
In the case of the structure as shown in (d), the thickness x of the Al wiring 3 (which is not limited to the Al wiring, that is, the base film which causes the uneven portion of the film to be processed) is 0.5 ≦ x ≦ 1. If the range is 5,
The thickness and polishing rate of the polysilicon film 5 (which is not limited to the polysilicon film, that is, a film having a slower polishing rate than the film to be processed) are A and a, respectively, and the SiO 2 film 4 is used.
It has been found that good results can be obtained under the condition of 100a ≦ b · B ≦ 250a, where b is the polishing rate of (not limited to the SiO 2 film, that is, the film to be processed).

【0045】すなわち、下地膜の厚さが、0.5≦x≦
1.5の範囲の場合、上記条件で研磨を行なえば、被加
工膜の膜厚に関係なく、被加工膜を完全に平坦に研磨で
きることが分かった。
That is, the thickness of the base film is 0.5 ≦ x ≦
It has been found that in the case of the range of 1.5, if the polishing is performed under the above conditions, the film to be processed can be completely flattened regardless of the film thickness of the film to be processed.

【0046】なお、本発明の場合、被加工膜上の研磨速
度の遅い膜(研磨補助膜膜)は、その研磨速度が被加工
膜のそれよりも遅くなければいけないので、次のような
点に留意する必要がある。
In the case of the present invention, the film having a low polishing rate (polishing auxiliary film) on the film to be processed must have a polishing rate lower than that of the film to be processed. It is necessary to pay attention to.

【0047】すなわち、被加工膜の研磨速度が研磨補助
膜のそれより速くなるように、図8(c)に示すよう
に、荷重体の荷重をWに設定しても、研磨の最中に荷重
が小さいほうに変動すると、被加工膜aの研磨速度が研
磨補助膜bのそれより遅くなる恐れがある。このため、
図8(a),(b)に示すように、荷重の値に係わら
ず、常に被加工膜aの研磨速度が研磨補助膜bのそれよ
り速くなるようにすることが重要である。
That is, even if the load of the load body is set to W, as shown in FIG. 8C, so that the polishing rate of the film to be processed is faster than that of the auxiliary film for polishing, the polishing is not performed during polishing. If the load fluctuates toward the smaller side, the polishing rate of the film to be processed a may be slower than that of the auxiliary polishing film b. For this reason,
As shown in FIGS. 8A and 8B, it is important that the polishing speed of the film to be processed a is always higher than that of the auxiliary polishing film b regardless of the value of the load.

【0048】なお、本発明は上述した実施例に限定され
るものではない。例えば、上記実施例では、被加工膜と
してSiO2 膜、被加工膜よりも研磨速度の遅い膜とし
てポリシリコン膜を用いた場合について説明したが、こ
れら膜が他のものであっても良いし、更に、研磨剤も酸
化セリウムに限定されるものではない。
The present invention is not limited to the above embodiment. For example, in the above-described embodiment, the case where the SiO 2 film is used as the film to be processed and the polysilicon film is used as the film whose polishing rate is slower than that of the film to be processed has been described, but these films may be other films. Furthermore, the abrasive is not limited to cerium oxide.

【0049】表1には、研磨剤(1wt%の酸化セリウ
ム懸濁液,SiO2 粒子を分散させたコロイダルシル
カ)と被加工膜(アンドープのSiO2 膜,SiN膜,
ポリシリコン膜,炭素膜,BとPとを含むSiO2 膜)
との研磨速度関係が示されている。
Table 1 shows an abrasive (1 wt% cerium oxide suspension, colloidal silker having SiO 2 particles dispersed therein), a film to be processed (undoped SiO 2 film, SiN film,
(Polysilicon film, carbon film, SiO 2 film containing B and P)
And the polishing rate relationship with is shown.

【0050】[0050]

【表1】 [Table 1]

【0051】この表1から、研磨剤,被加工膜として、
それぞれ、酸化セリウム懸濁液,SiO2 膜(アンドー
プ)を用いた場合には、研磨速度の遅い膜として、ポリ
シリコン膜の他、窒化シリコン膜や炭素膜などを用いる
ことができること分かる。
From Table 1, as the polishing agent and the film to be processed,
It can be seen that when a cerium oxide suspension and a SiO 2 film (undoped) are used, a silicon nitride film, a carbon film, or the like can be used as the film having a slow polishing rate, in addition to the polysilicon film.

【0052】また、研磨剤,被加工膜として、それぞ
れ、コロイダルシルカ,SiO2 膜(アンドープ)を用
いた場合にも、窒化シリコン膜や炭素膜などを用いるこ
とができること分かる。
It is also understood that the silicon nitride film and the carbon film can be used even when colloidal silker and SiO 2 film (undoped) are used as the polishing agent and the film to be processed, respectively.

【0053】また、上記実施例では、被加工膜が絶縁膜
の場合について説明したが、本発明は、金属膜にも適用
できる。この場合、例えば、表面に溝を有するSiO2
膜の全面に被加工膜としてのW膜,研磨速度の遅い膜と
してのCu膜を順次堆積してW膜,Cu膜を研磨する。
この場合、Cu膜はW膜に比べて十分に研磨され難いの
で、研磨剤の種類は広い範囲のものとなる。また、本発
明は、Si基板以外の半導体基板や半絶縁性基板にも適
用できる。その他、本発明の要旨を逸脱しない範囲で、
種々変形して実施できる。
Further, although the case where the film to be processed is an insulating film has been described in the above embodiment, the present invention can be applied to a metal film. In this case, for example, SiO 2 having grooves on the surface
A W film as a film to be processed and a Cu film as a film having a slow polishing rate are sequentially deposited on the entire surface of the film to polish the W film and the Cu film.
In this case, the Cu film is hard to be sufficiently polished as compared with the W film, so that the types of abrasives are in a wide range. The present invention can also be applied to semiconductor substrates other than Si substrates and semi-insulating substrates. In addition, within the scope of the present invention,
Various modifications can be implemented.

【0054】[0054]

【発明の効果】以上詳述したように本発明によれば、凹
凸部を有する被加工膜上に、研磨速度が被加工膜のそれ
より遅い研磨補助膜を形成した後に、被加工膜,研磨補
助膜の研磨を行なうことにより、ディッシングや工程数
の増加を招くこと無く、被加工膜を平坦化できる。
As described in detail above, according to the present invention, after forming a polishing auxiliary film having a polishing rate slower than that of a film to be processed on the film to be processed having an uneven portion, the film to be processed and the polishing are performed. By polishing the auxiliary film, the film to be processed can be planarized without causing dishing or an increase in the number of steps.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例に係る層間絶縁膜の平坦化方
法を示す工程断面図。
FIG. 1 is a process sectional view showing a method of planarizing an interlayer insulating film according to an embodiment of the present invention.

【図2】本発明の平坦化法による被加工膜としてのSi
2 膜の経時変化を示す図。
FIG. 2 Si as a film to be processed by the planarization method of the present invention
Shows the time course of the O 2 film.

【図3】配線幅/ピッチ間隔が2の場合の本発明の平坦
化方法による被加工膜としてのSiO2 膜の経時変化を
示す図。
FIG. 3 is a diagram showing changes with time of a SiO 2 film as a film to be processed by the planarizing method of the present invention when the wiring width / pitch interval is 2.

【図4】配線幅/ピッチ間隔が50の場合の本発明の平
坦化方法による被加工膜としてのSiO2 膜の経時変化
を示す図。
FIG. 4 is a diagram showing a change with time of a SiO 2 film as a film to be processed by a planarizing method of the present invention when a wiring width / pitch interval is 50.

【図5】配線幅/ピッチ間隔が100の場合の本発明の
平坦化方法による被加工膜としてのSiO2 膜の経時変
化を示す図。
FIG. 5 is a diagram showing a change with time of a SiO 2 film as a film to be processed by the planarizing method of the present invention when the wiring width / pitch interval is 100.

【図6】配線幅/ピッチ間隔が200の場合の本発明の
平坦化方法による被加工膜としてのSiO2 膜の経時変
化を示す図。
FIG. 6 is a diagram showing changes with time of a SiO 2 film as a film to be processed by the planarization method of the present invention when the wiring width / pitch interval is 200.

【図7】配線幅/ピッチ間隔が500の場合の本発明の
平坦化方法による被加工膜としてのSiO2 膜の経時変
化を示す図。
FIG. 7 is a diagram showing changes with time of a SiO 2 film as a film to be processed by the planarizing method of the present invention when the wiring width / pitch interval is 500.

【図8】荷重をパラメータとした場合の被加工膜の研磨
速度と研磨補助膜のそれとの好ましい関係を説明するた
めの図。
FIG. 8 is a view for explaining a preferable relationship between a polishing rate of a film to be processed and that of an auxiliary polishing film when a load is used as a parameter.

【図9】従来の平坦化技術を説明するための工程断面
図。
FIG. 9 is a process cross-sectional view for explaining a conventional flattening technique.

【図10】研磨装置の概略構成を示す模式図。FIG. 10 is a schematic diagram showing a schematic configuration of a polishing apparatus.

【図11】従来の平坦化法による被加工膜としてのSi
2 膜の経時変化を示す図。
FIG. 11: Si as a film to be processed by a conventional planarization method
Shows the time course of the O 2 film.

【図12】従来の他の平坦化技術を説明するための工程
断面図。
FIG. 12 is a process sectional view for explaining another conventional flattening technique.

【図13】従来の他の平坦方法による被加工膜としての
SiO2 膜の経時変化を示す図。
FIG. 13 is a view showing a change with time of a SiO 2 film as a film to be processed by another conventional flattening method.

【符号の説明】[Explanation of symbols]

1,41,61…Si基板 2,42,62…SiO2 膜 3,43,63…金属(Al)配線 4,44,64…SiO2 膜(被加工膜) 5…ポリシリコン膜(研磨補助膜) 6…窒化シリコン膜 100…ターンテーブル 101…研磨剤供給パイプ 102…研磨クロス 103…荷重体1, 41, 61 ... Si substrate 2, 42, 62 ... SiO 2 film 3, 43, 63 ... Metal (Al) wiring 4, 44, 64 ... SiO 2 film (working film) 5 ... Polysilicon film (polishing assistance) Film 6) Silicon nitride film 100 ... Turntable 101 ... Abrasive supply pipe 102 ... Polishing cloth 103 ... Load body

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】基板上に形成された凹凸部を有する被加工
膜の全面に、研磨速度が前記被加工膜のそれより遅い研
磨補助膜を形成する工程と、 前記研磨補助膜が形成された側の基板表面を研磨して、
前記被加工膜を平坦化する工程とを有することを特徴と
する半導体装置の製造方法。
1. A process of forming a polishing auxiliary film having a polishing rate slower than that of the film to be processed on the entire surface of the film to be processed having an uneven portion formed on a substrate, and the film of the polishing auxiliary is formed. Side substrate surface,
And a step of planarizing the film to be processed.
JP4331945A 1992-05-26 1992-12-11 Fabrication of semiconductor device Pending JPH06181192A (en)

Priority Applications (12)

Application Number Priority Date Filing Date Title
JP4331945A JPH06181192A (en) 1992-12-11 1992-12-11 Fabrication of semiconductor device
US08/066,375 US5445996A (en) 1992-05-26 1993-05-25 Method for planarizing a semiconductor device having a amorphous layer
GB9326509A GB2275129B (en) 1992-05-26 1993-05-26 Method for planarizing a layer on a semiconductor wafer
GB9326510A GB2275130B (en) 1992-05-26 1993-05-26 Polishing apparatus and method for planarizing layer on a semiconductor wafer
GB9611070A GB2299895B (en) 1992-05-26 1993-05-26 polishing apparatus for planarizing layer on a semiconductor wafer
GB9611090A GB2298960B (en) 1992-05-26 1993-05-26 Polishing apparatus and method for planarizing layer on a semiconductor wafer
GB9310909A GB2267389B (en) 1992-05-26 1993-05-26 Polishing method for planarizing layer on a semiconductor wafer
GB9611104A GB2298961B (en) 1992-05-26 1993-05-26 Polishing apparatus for planarizing layer on a semiconductor wafer
US08/451,226 US5597341A (en) 1992-05-26 1995-05-26 Semiconductor planarizing apparatus
US08/897,570 US5948205A (en) 1992-05-26 1997-07-21 Polishing apparatus and method for planarizing layer on a semiconductor wafer
US08/897,324 US5914275A (en) 1992-05-26 1997-07-21 Polishing apparatus and method for planarizing layer on a semiconductor wafer
KR1019980001478A KR0153906B1 (en) 1992-05-26 1998-01-12 A polishing apparatus and a polishing method, and an apparatus for planarizing a semiconductor wafer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4331945A JPH06181192A (en) 1992-12-11 1992-12-11 Fabrication of semiconductor device

Publications (1)

Publication Number Publication Date
JPH06181192A true JPH06181192A (en) 1994-06-28

Family

ID=18249406

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4331945A Pending JPH06181192A (en) 1992-05-26 1992-12-11 Fabrication of semiconductor device

Country Status (1)

Country Link
JP (1) JPH06181192A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014183221A (en) * 2013-03-19 2014-09-29 Toshiba Corp Method of manufacturing semiconductor device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014183221A (en) * 2013-03-19 2014-09-29 Toshiba Corp Method of manufacturing semiconductor device

Similar Documents

Publication Publication Date Title
US5753967A (en) Damascene process for reduced feature size
US5954975A (en) Slurries for chemical mechanical polishing tungsten films
US5494857A (en) Chemical mechanical planarization of shallow trenches in semiconductor substrates
KR0133483B1 (en) Polishstop planarization structure
JP2872647B2 (en) Semiconductor element wiring forming method
JP3032684B2 (en) Chemical-mechanical polishing method for insulating layer for planarization
US6365520B1 (en) Small particle size chemical mechanical polishing composition
JPH0745616A (en) Manufacture of semiconductor device
JP2001015460A (en) Fabrication of semiconductor device
JP3152788B2 (en) Method for manufacturing semiconductor device
JP4202826B2 (en) Chemical mechanical polishing method of organic film and manufacturing method of semiconductor device
US6251789B1 (en) Selective slurries for the formation of conductive structures
JP3302142B2 (en) Method for manufacturing semiconductor device
JPH06181192A (en) Fabrication of semiconductor device
JP2000012543A (en) Manufacture of semiconductor integrated circuit device
JP2000021882A (en) Manufacture of semiconductor integrated circuit device and the device
JPH1056014A (en) Substrate processing method
JP2002158194A (en) Slurry for chemically and mechanically polishing and method for manufacturing semiconductor device
JP3311486B2 (en) Integrated circuit planarization method
US5633207A (en) Method of forming a wiring layer for a semiconductor device
JPH0969495A (en) Manufacture of semiconductor device
JP3495143B2 (en) Abrasive, polishing method and method of manufacturing semiconductor device
JP3531079B2 (en) Polishing method and semiconductor device manufacturing method
JP3529926B2 (en) Polishing method and semiconductor device manufacturing method
JPH0621054A (en) Manufacture of integrated circuit provided with flattened polycrystalline silicon gate