JPH061801U - Pressure oil supply device - Google Patents

Pressure oil supply device

Info

Publication number
JPH061801U
JPH061801U JP4677792U JP4677792U JPH061801U JP H061801 U JPH061801 U JP H061801U JP 4677792 U JP4677792 U JP 4677792U JP 4677792 U JP4677792 U JP 4677792U JP H061801 U JPH061801 U JP H061801U
Authority
JP
Japan
Prior art keywords
pressure
port
spool
check valve
valve portion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4677792U
Other languages
Japanese (ja)
Other versions
JP2577675Y2 (en
Inventor
和義 石浜
和則 池井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Komatsu Ltd
Original Assignee
Komatsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Komatsu Ltd filed Critical Komatsu Ltd
Priority to JP1992046777U priority Critical patent/JP2577675Y2/en
Publication of JPH061801U publication Critical patent/JPH061801U/en
Application granted granted Critical
Publication of JP2577675Y2 publication Critical patent/JP2577675Y2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

(57)【要約】 (修正有) 【目的】 慣性体をハンチングなしにスムーズに動作制
御できるようにする。 【構成】 弁ブロック30のスプール孔31に主スプー
ル49を嵌挿して方向制御弁22とし,チェック弁用孔
37にスプール60を嵌挿してチェック弁部23とし,
減圧弁用孔38にスプール64を嵌挿して第1圧力室6
5と第2圧力室66とを構成する。第1圧力室65を方
向制御弁22の負荷圧検出ポートに連通し,第2圧力室
66を第2ポート43に連通し,そのスプール64をば
ね69でスプール60側に押して減圧弁部24とする。
ポンプポート39と第1ポート42にポンプ吐出路を接
続し,第2ポート43,負荷圧検出回路を接続してチェ
ック弁部23と減圧弁部とで圧力補償弁25とする。主
スプールに第1・第2絞り100,101を形成してア
クチュエータポートの圧油をブリードオフして圧力上昇
を緩かにする。
(57) [Summary] (Modified) [Purpose] To enable smooth motion control of inertial bodies without hunting. A main spool 49 is inserted into a spool hole 31 of a valve block 30 to form a directional control valve 22, and a spool 60 is inserted into a check valve hole 37 to form a check valve portion 23.
The spool 64 is fitted into the pressure reducing valve hole 38, and the first pressure chamber 6
5 and the second pressure chamber 66. The first pressure chamber 65 communicates with the load pressure detection port of the directional control valve 22, the second pressure chamber 66 communicates with the second port 43, and the spool 64 is pushed toward the spool 60 side by the spring 69 so that the pressure reducing valve section 24 is formed. To do.
The pump discharge path is connected to the pump port 39 and the first port 42, the second port 43 and the load pressure detection circuit are connected, and the check valve portion 23 and the pressure reducing valve portion form the pressure compensating valve 25. The first and second throttles 100 and 101 are formed on the main spool to bleed off the pressure oil in the actuator port to moderate the pressure increase.

Description

【考案の詳細な説明】[Detailed description of the device]

【0001】[0001]

【産業上の利用分野】[Industrial applications]

本考案は、1つの油圧ポンプの吐出圧油を複数のアクチュエータに供給する圧 油供給装置に関する。 The present invention relates to a hydraulic oil supply device that supplies the hydraulic oil discharged from one hydraulic pump to a plurality of actuators.

【0002】[0002]

【従来の技術】[Prior art]

特開昭60−11706号公報に示す圧油供給装置が知られている。 すなわち、図1に示すように油圧ポンプ1の吐出導管2に複数の圧力補償弁3 ,13を並列に接続し、各圧力補償弁3,13の出口導管4,14に方向制御弁 5,15をそれぞれ設けこの各方向制御弁5,15の出力側をアクチュエータ6 ,16にそれぞれ接続し、前記圧力補償弁3,13をポンプ吐出圧と方向制御弁 出口圧で開き方向に押され、方向制御弁入口圧と最も高い負荷圧で閉じ方向に押 される構造とした圧油供給装置である。 この圧油供給装置であれば、複数の方向制御弁3,13を同時操作した時に各 アクチュエータにポンプ吐出圧油を所定の分配比で供給できる。 A pressure oil supply device disclosed in Japanese Patent Laid-Open No. 60-11706 is known. That is, as shown in FIG. 1, a plurality of pressure compensating valves 3 and 13 are connected in parallel to a discharge conduit 2 of a hydraulic pump 1, and directional control valves 5 and 15 are connected to outlet conduits 4 and 14 of each pressure compensating valve 3 and 13. The output sides of the directional control valves 5 and 15 are connected to the actuators 6 and 16, respectively, and the pressure compensating valves 3 and 13 are pushed in the opening direction by the pump discharge pressure and the directional control valve outlet pressure to control the direction. It is a pressure oil supply device that is structured to be pushed in the closing direction by the valve inlet pressure and the highest load pressure. With this pressure oil supply device, the pump discharge pressure oil can be supplied to each actuator at a predetermined distribution ratio when a plurality of directional control valves 3 and 13 are simultaneously operated.

【0003】 かかる圧油供給装置であるとアクチュエータの負荷圧を比較して高い方の負荷 圧を圧力補償弁に供給するためにシャトル弁7が必ず必要であり、しかもこのシ ャトル弁7はアクチュエータの数より1つ少ない数だけ必要であり、それだけコ ストが高くなる。 また、前述の図1に示す圧油供給装置であると2つのアクチュエータ6,12 をともに作動させ、それらの負荷圧のうち、アクチュエータ6側の負荷圧が大き いとする。このときは、導管8内の圧力が最高負荷圧としてシャトル弁7によっ て導管9に導かれる。次に、負荷圧が変動して、アクチュエータ16側の負荷圧 の方がアクチュエータ6側の負荷圧より大きくなったとする。その際、すなわち シャトル弁7が切換わる際、シャトル弁7内の吹きぬけにより導管18内の圧力 がぬけ、他方の導管8内の圧力が押しこめられる。そのため、シャトル弁7の切 換え時、過渡的にアクチュエータ6は自然降下しアクチュエータ6は加速される 。 そこで、本出願人は先に前述の課題を解決できるようにした圧油供給装置を出 願した。In such a pressure oil supply device, the shuttle valve 7 is indispensable for comparing the load pressure of the actuator and supplying the higher load pressure to the pressure compensating valve, and moreover, the shuttle valve 7 is the actuator. Only one less than is needed, and the cost is higher. Further, in the above-described pressure oil supply device shown in FIG. 1, it is assumed that the two actuators 6 and 12 are both actuated, and the load pressure on the actuator 6 side is large among those load pressures. At this time, the pressure in the conduit 8 is guided to the conduit 9 by the shuttle valve 7 as the maximum load pressure. Next, it is assumed that the load pressure fluctuates and the load pressure on the actuator 16 side becomes larger than the load pressure on the actuator 6 side. At that time, that is, when the shuttle valve 7 is switched, the pressure in the conduit 18 is released by the blowout in the shuttle valve 7, and the pressure in the other conduit 8 is pushed. Therefore, when the shuttle valve 7 is switched, the actuator 6 is transiently lowered naturally and the actuator 6 is accelerated. Therefore, the present applicant previously applied for a pressure oil supply device capable of solving the above-mentioned problems.

【0004】[0004]

【考案が解決しようとする課題】[Problems to be solved by the device]

かかる圧油供給装置は図2に示すように、油圧ポンプ20の吐出路21に複数 の方向制御弁22を設け、この各方向制御弁22の入口側にチェック弁部23と 減圧弁部24より成る圧力補償弁25をそれぞれ設けたものであり、この方向制 御弁22と圧力補償弁25は図3に示すように構成してある。 すなわち、図3に示すように、弁ブロック30は略直方体形状となり、この弁 ブロック30の上部寄りにスプール孔31が左右側面32,33に開口して形成 され、このスプール31に開口した第1・第2アクチュエータポート34,35 が上面36に開口して形成してあり、弁ブロック30の下部寄りには左側面32 に開口したチェック弁用孔37と右側面33に開口した減圧弁用孔38が同心状 に形成され、前記チェック弁用孔37に開口したポンプポート39が前後面に開 口して形成され、前記減圧弁用孔38に開口した第1、第2ポート42,43が 前後面に開口して形成してあり、複数の弁ブロック30の前後面を突き合せて連 結すると各ポンプ第1・第2ポート39,42,43が連通するようにしてある 。 As shown in FIG. 2, such a pressure oil supply device is provided with a plurality of directional control valves 22 in a discharge passage 21 of a hydraulic pump 20, and a check valve portion 23 and a pressure reducing valve portion 24 are provided on the inlet side of each directional control valve 22. The pressure compensating valves 25 are respectively provided, and the directional control valve 22 and the pressure compensating valve 25 are configured as shown in FIG. That is, as shown in FIG. 3, the valve block 30 has a substantially rectangular parallelepiped shape, and a spool hole 31 is formed in the left and right side surfaces 32 and 33 near the upper portion of the valve block 30. The second actuator ports 34, 35 are formed so as to open on the upper surface 36, and the check valve hole 37 opened on the left side surface 32 and the pressure reducing valve hole opened on the right side surface 33 are formed near the lower part of the valve block 30. 38 is formed concentrically, a pump port 39 opened in the check valve hole 37 is formed in the front and rear surfaces, and first and second ports 42, 43 opened in the pressure reducing valve hole 38 are formed. The first and second ports 39, 42, 43 of the pumps communicate with each other when the front and rear surfaces of a plurality of valve blocks 30 are butted and connected to each other.

【0005】 前記弁ブロック30にはスプール孔31に開口した入力ポート44、第1・第 2負荷圧検出ポート45,46、前記第1・第2アクチュエータポート34,3 5、第1、第2タンクポート47,48、第1・第2負荷圧検出ポート45,4 6を連通する連通路53が形成され、そのスプール孔31に嵌挿した主スプール 49には第1・第2小径部50,51と連通用溝52が形成してあり、主スプー ル49には第2負荷圧検出ポート46と第2タンクポート48を連通・遮断する 油路54が形成され、スプール49はスプリングで各ポートを遮断し、油路54 で第2負荷圧検出ポート46と第2タンクポート48を連通する中立位置に保持 され、スプール49を右方に摺動すると第2小径部51で第2アクチュエータポ ート35を第2タンクポート48に連通し、連通用溝52で入力ポート44が第 2負荷圧検出ポート46に連通し、第1小径部50で第1アクチュエータポート 34が第1負荷圧検出ポート45に連通し、かつ第2負荷圧検出ポート46と第 2タンクポート48が遮断する第1圧油供給位置となり、スプール49を左方に 摺動すると第1小径部50で第1アクチュエーポート34を第1タンクポート4 7に連通し、連通用溝52で入力ポート44が第1負荷圧検出ポート45に連通 し、第2小径部51で第2アクチュエータポート35が第2負荷圧検出ポート4 6に連通し、かつ第2負荷圧検出ポート46と第2タンクポート48が遮断する 第2圧油供給位置となって方向制御弁22を構成している。The valve block 30 has an input port 44 opened in a spool hole 31, first and second load pressure detection ports 45 and 46, first and second actuator ports 34 and 35, first and second ports. A communication passage 53 is formed to connect the tank ports 47, 48 and the first and second load pressure detection ports 45, 46, and the main spool 49 fitted in the spool hole 31 has the first and second small diameter portions 50. , 51 and a communication groove 52 are formed, and an oil passage 54 is formed in the main spool 49 to connect and disconnect the second load pressure detection port 46 and the second tank port 48. The spool 49 is a spring. The port is shut off, and the oil passage 54 holds the second load pressure detection port 46 and the second tank port 48 in the neutral position. When the spool 49 slides to the right, the second small diameter portion 51 causes the second actuator port to move. - Port 35 communicates with the second tank port 48, the communication groove 52 allows the input port 44 to communicate with the second load pressure detection port 46, and the first small diameter portion 50 allows the first actuator port 34 to communicate with the first load pressure detection port. When the spool 49 slides to the left, the first small-diameter portion 50 causes the first actuator port to communicate with the second load pressure detection port 46 and the second tank port 48. 34 communicates with the first tank port 47, the input groove 44 communicates with the first load pressure detection port 45 in the communication groove 52, and the second actuator port 35 communicates with the second load pressure detection port in the second small diameter portion 51. The directional control valve 22 is located at a second pressure oil supply position that communicates with the second load pressure detection port 46 and the second tank port 48.

【0006】 前記チェック弁用孔37は油路56で入力ポート44に開口し、そのチェック 弁用孔37には前記ポンプポート39と入力ポート44を連通遮断する弁60が 嵌挿され、その弁60はプラグ61に設けたストッパ杆62で図示位置より左方 に摺動しないように規制されて遮断位置に保持されてチェック弁部23を構成し ている。 前記減圧弁用孔38は第3ポート57と油路58で第2負荷圧検出ポート46 に連通し、この減圧弁用孔38にはスプール64が嵌挿されて第1圧力室65と 第2圧力室66を形成し、第1圧力室65は第3ポート57に連通し、第2圧力 室66は第2ポート43に連通し、前記スプール64の盲穴67に挿入したフリ ーピストン68と盲穴67底部との間にばね69が設けられてフリーピストン6 8はプラグ70に当接し、かつスプール64に一体的に設けた押杆71が透孔7 2より突出して前記弁60をストッパ杆62に当接しており、前記スプール64 には第1ポート42を盲穴67に連通する細孔73が形成されて減圧弁部24を 構成し、この減圧弁部74と前記チェック弁部63とで圧力補償弁25を構成し ている。The check valve hole 37 is opened to the input port 44 by the oil passage 56, and the check valve hole 37 is fitted with a valve 60 that cuts off the communication between the pump port 39 and the input port 44. Numeral 60 is a stopper rod 62 provided on the plug 61, which is regulated so as not to slide to the left from the illustrated position and is held at the cutoff position to form the check valve portion 23. The pressure reducing valve hole 38 communicates with the second load pressure detecting port 46 through the third port 57 and the oil passage 58, and the spool 64 is fitted into the pressure reducing valve hole 38 to connect the first pressure chamber 65 and the second pressure chamber 65. A pressure chamber 66 is formed, the first pressure chamber 65 communicates with the third port 57, the second pressure chamber 66 communicates with the second port 43, and the free piston 68 inserted in the blind hole 67 of the spool 64 and the blind piston 68 are connected to each other. A spring 69 is provided between the free piston 68 and the bottom of the hole 67 so that the free piston 68 abuts on the plug 70, and a push rod 71 integrally provided on the spool 64 projects from the through hole 72 so that the valve 60 is stopped by the stopper rod. 62, and the spool 64 is formed with a fine hole 73 for communicating the first port 42 with the blind hole 67 to form the pressure reducing valve portion 24. The pressure reducing valve portion 74 and the check valve portion 63 are connected to each other. Pressure compensating valve 25.

【0007】 そして、油圧ポンプ20の吐出路21がポンプポート39、第1ポート42に 連通し、第2ポート43に負荷圧検出路82が接続し、第1、第2アクチュエー タポート34,35に第1、第2管路89,90を介してアクチュエータ88が 接続している。 図2において、83は油圧ポンプ80の吐出流量を制御する斜板、84はサー ボシリンダ、85はポンプ調整用方向制御弁である。The discharge passage 21 of the hydraulic pump 20 communicates with the pump port 39 and the first port 42, the load pressure detection passage 82 is connected to the second port 43, and the first and second actuator ports 34 and 35 are connected. The actuator 88 is connected via the first and second conduits 89 and 90. In FIG. 2, 83 is a swash plate that controls the discharge flow rate of the hydraulic pump 80, 84 is a servo cylinder, and 85 is a directional control valve for pump adjustment.

【0008】 次に作動を図2に基づいて説明する。 方向制御弁22が中立位置Aのとき。 油圧ポンプ80によってタンク86から吸上げられた油は、吐出路81を通っ てチェック弁部63の開く方向の圧力室aに案内される。この時、減圧弁部74 の圧力室65,66は、ともにタンク86に通じているので、この圧力室65, 66の圧力はともにゼロで、よって減圧弁部74は、弱いばね69によって押さ れ杆体71がチェック弁部63に当接しているだけである。 一方、ポンプ吐出圧は、ポンプ調整用方向制御弁85のばね87によって負荷 圧検出路82の圧力との差圧がある一定に保たれる。いま、この差圧を20kg /cm2 とすると負荷圧検出路82の圧力はゼロなので、ポンプ吐出圧は20k g/cm2 まで上昇し、同時にチェック弁部63の圧力室aにポンプ吐出圧が流 入して方向制御弁22の入口圧(チェック弁部63の出口圧)がポンプ吐出圧と 等しくなるまでストロークし、等しくなれば、弱いばね69によってレシートす る。 減圧弁部24は、ストロークエンド時のみ、ポンプ吐出路81と圧力室66を 連通させる一方、チェック弁部23は、ストロークエンドに達する前に、ポンプ 吐出路81と出口側を連通させるので、方向制御弁22が中立位置Aのときは、 ポンプ吐出路81と圧力室66が連通することはなく、圧力室65の圧力はゼロ のままである。Next, the operation will be described with reference to FIG. When the directional control valve 22 is in the neutral position A. The oil sucked up from the tank 86 by the hydraulic pump 80 is guided through the discharge passage 81 to the pressure chamber a in the opening direction of the check valve portion 63. At this time, since the pressure chambers 65 and 66 of the pressure reducing valve portion 74 both communicate with the tank 86, the pressures of the pressure chambers 65 and 66 are both zero, so the pressure reducing valve portion 74 is pressed by the weak spring 69. The rod 71 is only in contact with the check valve portion 63. On the other hand, the pump discharge pressure is kept constant by the spring 87 of the pump adjusting directional control valve 85, which is a differential pressure from the pressure of the load pressure detecting path 82. Now, assuming that this differential pressure is 20 kg / cm 2 , the pressure in the load pressure detection path 82 is zero, so the pump discharge pressure rises to 20 kg / cm 2, and at the same time, the pump discharge pressure enters the pressure chamber a of the check valve 63. After flowing in, the stroke is made until the inlet pressure of the directional control valve 22 (the outlet pressure of the check valve portion 63) becomes equal to the pump discharge pressure, and when they become equal, the weak spring 69 makes a receipt. The pressure reducing valve portion 24 communicates the pump discharge passage 81 with the pressure chamber 66 only at the end of the stroke, while the check valve portion 23 communicates the pump discharge passage 81 with the outlet side before reaching the stroke end. When the control valve 22 is in the neutral position A, the pump discharge passage 81 and the pressure chamber 66 do not communicate with each other, and the pressure in the pressure chamber 65 remains zero.

【0009】 方向制御弁22のいずれか一方のみ第1圧油供給位置Bにストロークさせる とき。 いま、左側の方向制御弁22を第1圧油供給位置Bにストロークさせ、右側の 方向制御弁22は、中立位置Aとする。 方向制御弁22をストロークさせ入力ポート44と第1アクチュエータポート 34を接続させ、同時に、第2アクチュエータ35と第2タンクポート48を接 続させる。この時第1アクチュエータポート34とアクチュエータ88を接続す る導管89内の圧力(負荷圧)がポンプ吐出圧(20kg/cm2 )より大きい ときはチェック弁部63が圧力室bの圧力でレシートするため、アクチュエータ 88の自然降下を防止することができる。 アクチュエータ88の導管89の圧力、すなわち負荷圧が第1油路53、通路 58より減圧弁部74の一方の圧力室65に導かれる。他方の圧力室66の圧力 はゼロであるため、減圧弁部74は、チェック弁部63から解離する方向にスト ロークエンドまでストロークし、減圧弁部74の絞りを介して、ポンプ吐出路8 1と負荷圧検出路82が連通する。前記導管89内の圧力(負荷圧)がポンプ吐 出圧(=20kg/cm2 )より大きいときは、チェック弁部63の圧力室bの 圧力で閉じ、その圧力が、減圧弁部24の一方の圧力室65に導かれるため、他 方の圧力室66とポンプ吐出路81が連通しても、減圧弁部24はストロークし たままである。一方、導管41内の圧力(負荷圧)がポンプ吐出圧(=20kg /cm2 )より小さいときは、その負荷圧が減圧弁部24の一方の圧力室65に 導かれ、減圧弁部24が一方の圧力室65の圧力でストロークするが、他方の圧 力室66の圧力が一方の圧力室65の圧力(すなわち負荷圧)まで上昇すると、 弱いばね69によって閉じチェック弁部23に当接する。 いずれの場合でも、減圧弁部24は、一方の圧力室65内の圧力と他方の圧力 室66内の圧力が等しくなるまで、ポンプ吐出路81と圧力室66を連通させ、 両圧力室65,66内の圧力が等しくなれば弱いばね69によって閉じチェック 弁部63に当接する。結果として負荷圧検出路82内の圧力は、負荷圧と等しく なり、ポンプ吐出圧は、ポンプ調整用方向制御弁85によって、ある差圧(ここ では20kg/cm2 )分だけ、負荷圧検出路82内の圧力より高い圧力に制御 される。このポンプ吐出圧は、チェック弁部23を介して、入力ポート44に導 かれているので、すなわち、方向制御弁22の入口圧と出口圧(=負荷圧)の間 には、差圧(=20kg/cm2 )が保たれることになる。よって、方向制御弁 22のストロークに伴なう入口側と出口側の間の絞りの開口面積の変化によって のみ、アクチュエータ88へ供給される流量が制御される。 方向制御弁22をストロークさせる際、アクチュエータ88の導管89あるい は90と負荷圧導入用の第2油路53が接続され、一方、第2油路53は、減圧 弁部24の一方の圧力室65と接続されているが、減圧弁部24において負荷圧 は、パイロット圧力(減圧弁部のセット圧力)としてのみ使われるので、その圧 力がぬけることはなく、すなわち、方向制御弁22をストロークさせた際、負荷 圧がぬけることによるアクチュエータ88の自然降下はない。When only one of the directional control valves 22 is stroked to the first pressure oil supply position B. Now, the left directional control valve 22 is stroked to the first pressure oil supply position B, and the right directional control valve 22 is set to the neutral position A. The directional control valve 22 is stroked to connect the input port 44 and the first actuator port 34, and at the same time, connect the second actuator 35 and the second tank port 48. At this time, if the pressure (load pressure) in the conduit 89 connecting the first actuator port 34 and the actuator 88 is higher than the pump discharge pressure (20 kg / cm 2 ), the check valve portion 63 receives the pressure in the pressure chamber b. Therefore, it is possible to prevent the actuator 88 from naturally descending. The pressure in the conduit 89 of the actuator 88, that is, the load pressure, is introduced from the first oil passage 53 and the passage 58 into the pressure chamber 65 of the pressure reducing valve portion 74. Since the pressure in the other pressure chamber 66 is zero, the pressure reducing valve portion 74 strokes in the direction of disengagement from the check valve portion 63 to the stroke end, and through the throttle of the pressure reducing valve portion 74, the pump discharge passage 8 1 And the load pressure detection path 82 communicate with each other. When the pressure (load pressure) in the conduit 89 is larger than the pump discharge pressure (= 20 kg / cm 2 ), the pressure is closed by the pressure in the pressure chamber b of the check valve portion 63, and the pressure is reduced to one side of the pressure reducing valve portion 24. Since the pressure reducing valve portion 24 is guided to the pressure chamber 65, the pressure reducing valve portion 24 remains in a stroke even when the other pressure chamber 66 and the pump discharge passage 81 communicate with each other. On the other hand, when the pressure (load pressure) in the conduit 41 is lower than the pump discharge pressure (= 20 kg / cm 2 ), the load pressure is guided to one pressure chamber 65 of the pressure reducing valve portion 24, and the pressure reducing valve portion 24 is Although the stroke is made by the pressure of one pressure chamber 65, when the pressure of the other pressure chamber 66 rises to the pressure of one pressure chamber 65 (that is, the load pressure), the weak spring 69 closes and abuts against the check valve portion 23. In any case, the pressure reducing valve section 24 makes the pump discharge passage 81 and the pressure chamber 66 communicate with each other until the pressure in one pressure chamber 65 and the pressure in the other pressure chamber 66 become equal to each other. When the pressures in 66 become equal, the weak spring 69 abuts the closing check valve portion 63. As a result, the pressure in the load pressure detection path 82 becomes equal to the load pressure, and the pump discharge pressure is adjusted by the pump adjustment directional control valve 85 by a certain differential pressure (here, 20 kg / cm 2 ). The pressure is controlled to be higher than the pressure in 82. This pump discharge pressure is guided to the input port 44 via the check valve portion 23, that is, between the inlet pressure and the outlet pressure (= load pressure) of the directional control valve 22. 20 kg / cm 2 ) will be maintained. Therefore, the flow rate supplied to the actuator 88 is controlled only by the change in the opening area of the throttle between the inlet side and the outlet side due to the stroke of the directional control valve 22. When the directional control valve 22 is stroked, the conduit 89 or 90 of the actuator 88 and the second oil passage 53 for introducing the load pressure are connected, while the second oil passage 53 is connected to the pressure of one of the pressure reducing valve portions 24. Although it is connected to the chamber 65, the load pressure in the pressure reducing valve section 24 is used only as pilot pressure (set pressure of the pressure reducing valve section), so the pressure is not lost, that is, the directional control valve 22 is When the stroke is made, there is no spontaneous lowering of the actuator 88 due to the release of the load pressure.

【0010】 前記負荷圧検出路82はもう一方の方向制御弁22に配設されている圧力補償 弁25の減圧弁部24の他方の圧力室66にも接続されているが、減圧弁部24 の一方の圧力室65は、方向制御弁22の中立位置Aによってタンク86と接続 しているため、負荷圧導入用の第1油路53内の圧力はゼロで、よって圧力室6 6内の圧力によって減圧弁部24は、チェック弁部63を閉じる方向に付勢する 。一方、チェック弁部23を開く方向の圧力室aには、ポンプ吐出路81よりポ ンプ吐出圧が導かれるため、全体として、ポンプ吐出圧と負荷圧検出路82内の 圧力の差圧分(=20kg/cm2 )によってチェック弁部23及び減圧弁部2 4をチェック弁部23の開く方向にストロークさせるが、わずかにストロークし 入力ポート44の圧力がその差圧(=20kg/cm2 )になれば、弱いばね6 9によってレシートし、結果として、ストロークエンドまで減圧弁部24がスト ロークすることはなく、方向制御弁22側の油圧制御には、何ら影響することは ない。The load pressure detection path 82 is also connected to the other pressure chamber 66 of the pressure reducing valve portion 24 of the pressure compensating valve 25 disposed in the other directional control valve 22, but the pressure reducing valve portion 24 Since one of the pressure chambers 65 is connected to the tank 86 by the neutral position A of the directional control valve 22, the pressure in the first oil passage 53 for introducing the load pressure is zero, and therefore the pressure chamber 66 is The pressure reducer 24 urges the check valve 63 in the closing direction. On the other hand, since the pump discharge pressure is introduced from the pump discharge passage 81 to the pressure chamber a in the direction in which the check valve portion 23 is opened, as a whole, the difference between the pump discharge pressure and the pressure in the load pressure detection passage 82 ( = 20 kg / cm 2 ), the check valve portion 23 and the pressure reducing valve portion 24 are stroked in the opening direction of the check valve portion 23, but a slight stroke occurs and the pressure of the input port 44 is the differential pressure (= 20 kg / cm 2 ). In this case, the weak spring 69 causes a receipt, and as a result, the pressure reducing valve portion 24 does not stroke to the stroke end, and the hydraulic control on the side of the directional control valve 22 is not affected at all.

【0011】 方向制御弁22のいずれも第1圧油供給位置Bにストロークさせるとき。 −各アクチュエータ88に必要とされる流量の合計が油圧ポンプ20の最 大吐出流量位置のとき。 いま、方向制御弁22をもとに第1圧油供給位置Bにストロークさせ、各入力 ポート44と各導管89と各負荷圧導用の第1油路53をそれぞれ接続させたと する。 一方の減圧弁部24は、圧力室66内の圧力が一方の圧力室65内の圧力に等 しくなるまで、また他方の減圧弁部24は、圧力室66内の圧力が、一方の圧力 室65内の圧力に等しくなるまで、それぞれストロークエンドまでストロークし たままである。いま、二つのアクチュエータ88,88の負荷圧のうち、左側の アクチュエータ88の負荷圧がより大きいとする。仮に、左側アクチュエータ2 6の負荷圧を100(kg/cm2 )、右側のアクチュエータ27の負荷圧を1 0(kg/cm2 )とする。負荷圧検出路82は、絞り91を介してタンク86 と接続されているので、方向制御弁ストローク前は負荷圧検出路82内の圧力は ゼロである。よって、各減圧弁部24は負荷圧検出用の第1油路53内の圧力に よってもストロークし、ポンプ吐出圧が圧力検出導管34内の圧力と連通させる 。 負荷圧検出路82内の圧力が低圧側である右側のアクチュエータ88の導管9 0内の圧力(10kg/cm2 )まで上昇すると、まず、右方の圧力補償弁25 の減圧弁部24が閉じる。左方の圧力補償弁25の減圧弁部24はストロークし たままであり、負荷圧検出路82内の圧力はポンプ吐出圧(20kg/cm2 ) と等しくなるまで上昇する。このとき高圧側である左側のアクチュエータ88の 方向制御弁22の入力ポート44の圧力は100(kg/cm2 )であり、圧力 補償弁25のチェック弁部23は閉じていて、減圧弁部24とは解離している。 一方圧力補償弁25の減圧弁部24は、二つの圧力室65と66内の圧力の差( 20−10=10kg/cm2 )でチェック弁部23を閉じる方向に付勢する。 一方、チェック弁部23の開く方向の圧力室a内の圧力(ポンプ吐出圧)は20 (kg/cm2 )であるため、結果として方向制御弁22の入力ポート44の圧 力が10(kg/cm2 )になるまでチェック弁部63が開いた後、弱いばね6 9によってレシートする。 ポンプ調整用方向制御弁85によって、ある差圧(20kg/cm2 )分だけ 、負荷圧検出路82内の圧力(20kg/cm2 )より高い圧力にポンプ吐出圧 が制御される(40kg/cm2 )。このときも高圧側の圧力補償弁25のチェ ック弁部23は閉じたままで減圧弁部24はストロークしたままで負荷圧検出路 82内の圧力は40(kg/cm2 )となり、一方、低圧側の圧力補償弁25の 減圧弁部24は、負荷圧検出路82と負荷圧導入用の第1油路53内の圧力差( =30kg/cm2 )でチェック弁部23を閉じる方向に付勢し、結果として方 向制御弁22の入力ポート44の圧力は10kg/cm2 のままである。 このようにして、負荷圧検出路82内の圧力とポンプ吐出圧が上昇し続け、や がてポンプ吐出圧が高圧側のアクチュエータ88の負荷圧(100kg/cm2 )と等しくなると、高圧側の圧力補償弁25の減圧弁部23の二つの圧力室65 と66内の圧力はともに100kg/cm2 となり、弱いばね69によって、閉 じてチェック弁部23に当接する。このとき低圧側の圧力補償弁25の減圧弁部 24は負荷圧検出路82と負荷圧導入用の第1油路53内の圧力差(100−1 0=90kg/cm2 )でチェック弁部23を閉じる方向に付勢し、結果として 低圧側の方向制御弁22の入力ポート44の圧力は10kg/cm2 のままであ る。 再び、ポンプ調整用方向制御弁85によって、ポンプ吐出圧が120(kg/ cm2 )に制御される。 このとき高圧側の圧力補償弁25の減圧弁部23は、弱いばね69によってチ ェック弁部23に当接しているだけであり、チェック弁部23の二つの圧力室a とbの圧力差によって、ここで始めてチェック弁部23が開き、ポンプ吐出圧( 120kg/cm2 )が方向制御弁22の入力ポート44に導かれる。一方、低 圧側の圧力補償弁25の減圧弁部24は負荷圧検出路82と負荷圧導入用の第1 油路53内の圧力差(=90kg/cm2 )分でチェック弁部23を閉じる方向 に付勢し続けるが、チェック弁部23の開く方向の圧力室a内の圧力が120( kg/cm2 )になったので方向制御弁22の入口ポート44の圧力が30(k g/cm2 )(120−90)となる状態で、チェック弁部23及び減圧弁部2 4が圧力バランスする。すなわち、チェック弁部23及び減圧弁部24はわずか にストロークし、チェック弁部23において、120kg/cm2 から30kg /cm2 になるように絞っている状態となる。 ここで初めて、この油圧制御系はつり合い、高圧側の方向制御弁22の入力ポ ート44の圧力が120kg/cm2 、低圧側の方向制御弁22の入力ポート4 4の圧力が30kg/cm2 となり、すなわち、二つの方向制御弁22,22の 入口圧と出口圧(負荷圧)の差は、ともに20kg/cm2 に保たれることによ り、二つの方向制御弁22,22はともに、ストローク分だけで、アクチュエー タ88,88に供給する流量を制御することができるようになる。When any of the directional control valves 22 is stroked to the first pressure oil supply position B. -When the total flow rate required for each actuator 88 is at the maximum discharge flow rate position of the hydraulic pump 20. Now, it is assumed that the directional control valve 22 is moved to the first pressure oil supply position B to connect the respective input ports 44, the respective conduits 89, and the respective first oil passages 53 for introducing the load pressure. One of the pressure reducing valve portions 24 has the pressure in the pressure chamber 66 equal to the pressure in the one pressure chamber 65, and the other pressure reducing valve portion 24 has the pressure in the pressure chamber 66 equal to that of the one pressure chamber 65. It continues to stroke to the end of each stroke until it becomes equal to the pressure in 65. Now, assume that the load pressure of the left actuator 88 is larger than the load pressure of the two actuators 88, 88. It is assumed that the load pressure of the left actuator 26 is 100 (kg / cm 2 ) and the load pressure of the right actuator 27 is 10 (kg / cm 2 ). Since the load pressure detection path 82 is connected to the tank 86 via the throttle 91, the pressure in the load pressure detection path 82 is zero before the stroke of the directional control valve. Therefore, each pressure reducing valve section 24 also strokes due to the pressure in the first oil passage 53 for detecting the load pressure, and the pump discharge pressure communicates with the pressure in the pressure detection conduit 34. When the pressure in the load pressure detection path 82 rises to the pressure (10 kg / cm 2 ) in the conduit 90 of the actuator 88 on the right side, which is the low pressure side, first, the pressure reducing valve portion 24 of the pressure compensating valve 25 on the right side closes. . The pressure reducing valve portion 24 of the pressure compensating valve 25 on the left side is still in a stroke, and the pressure in the load pressure detecting path 82 rises until it becomes equal to the pump discharge pressure (20 kg / cm 2 ). At this time, the pressure of the input port 44 of the directional control valve 22 of the left-side actuator 88 on the high pressure side is 100 (kg / cm 2 ), the check valve portion 23 of the pressure compensating valve 25 is closed, and the pressure reducing valve portion 24 Is dissociated from. On the other hand, the pressure reducing valve portion 24 of the pressure compensating valve 25 urges the check valve portion 23 in the closing direction by the difference in pressure between the two pressure chambers 65 and 66 (20-10 = 10 kg / cm 2 ). On the other hand, the pressure in the pressure chamber a in the opening direction of the check valve portion 23 (pump discharge pressure) is 20 (kg / cm 2 ), and as a result, the pressure force of the input port 44 of the directional control valve 22 is 10 (kg / Cm 2 ), the check valve portion 63 is opened, and then a receipt is made by the weak spring 69. The pump adjusting directional control valve 85 controls the pump discharge pressure to a pressure higher than the pressure (20 kg / cm 2 ) in the load pressure detection path 82 by a certain pressure difference (20 kg / cm 2 ) (40 kg / cm 2 ). 2 ). Also at this time, the pressure in the load pressure detection path 82 becomes 40 (kg / cm 2 ) while the check valve portion 23 of the high-pressure side pressure compensating valve 25 remains closed and the pressure reducing valve portion 24 remains stroked. The pressure reducing valve portion 24 of the pressure compensating valve 25 on the low pressure side is closed in the direction in which the check valve portion 23 is closed due to the pressure difference (= 30 kg / cm 2 ) in the load pressure detecting passage 82 and the first oil passage 53 for introducing the load pressure. It is energized so that the pressure at the input port 44 of the directional control valve 22 remains at 10 kg / cm 2 . In this way, the pressure in the load pressure detection path 82 and the pump discharge pressure continue to rise, and when the pump discharge pressure eventually becomes equal to the load pressure (100 kg / cm 2 ) of the high pressure side actuator 88, the high pressure side The pressures in the two pressure chambers 65 and 66 of the pressure reducing valve portion 23 of the pressure compensating valve 25 are both 100 kg / cm 2 and are closed by the weak spring 69 to contact the check valve portion 23. At this time, the pressure reducing valve portion 24 of the pressure compensating valve 25 on the low pressure side has a check valve portion due to a pressure difference (100-10 = 90 kg / cm 2 ) in the load pressure detecting passage 82 and the first oil passage 53 for introducing the load pressure. 23 is urged in the closing direction, and as a result, the pressure of the input port 44 of the directional control valve 22 on the low pressure side remains 10 kg / cm 2 . Again, the pump adjusting directional control valve 85 controls the pump discharge pressure to 120 (kg / cm 2 ). At this time, the pressure reducing valve portion 23 of the pressure compensating valve 25 on the high pressure side is only in contact with the check valve portion 23 by the weak spring 69, and due to the pressure difference between the two pressure chambers a and b of the check valve portion 23. For the first time, the check valve portion 23 is opened, and the pump discharge pressure (120 kg / cm 2 ) is guided to the input port 44 of the directional control valve 22. On the other hand, the pressure reducing valve portion 24 of the pressure compensating valve 25 on the low pressure side closes the check valve portion 23 by the pressure difference (= 90 kg / cm 2 ) in the load pressure detecting passage 82 and the first oil passage 53 for introducing the load pressure. However, since the pressure in the pressure chamber a in the opening direction of the check valve portion 23 became 120 (kg / cm 2 ), the pressure at the inlet port 44 of the directional control valve 22 was 30 (kg / cm 2 ). cm 2 ) (120-90), the check valve portion 23 and the pressure reducing valve portion 24 are pressure balanced. That is, the check valve portion 23 and the pressure reducing valve portion 24 make a slight stroke, and the check valve portion 23 is in a state of being squeezed to be 120 kg / cm 2 to 30 kg / cm 2 . For the first time, this hydraulic control system is balanced so that the pressure of the input port 44 of the high-pressure side directional control valve 22 is 120 kg / cm 2 and the pressure of the input port 44 of the low-pressure side directional control valve 22 is 30 kg / cm 2. 2 , that is, the difference between the inlet pressure and the outlet pressure (load pressure) of the two directional control valves 22 and 22 is maintained at 20 kg / cm 2 , so that the two directional control valves 22 and 22 are In both cases, the flow rate supplied to the actuators 88, 88 can be controlled only by the stroke amount.

【0012】 −各アクチュエータ88,88に必要とされる流量は合計が油圧ポンプ8 0の最大吐出流量以上のとき。 いま、アクチュエータ88,88の負荷圧および必要流量を左側のアクチュエ ータ88が100kg/cm2 、501/min、右側のアクチュエータ88が 10kg/cm2 、501/minとする。油圧ポンプ80の最大吐出流量が1 001/min以上のときは、前述の通り、方向制御弁55,55の入口圧と出 口圧の差が一定に保たれる(=20kg/cm2 )ため、ストロークによって流 量制御ができ、501/minずつ流量分配することはできる。 次に、油圧ポンプ80の最大吐出量が701/minになったとする。二つの 方向制御弁22,22の入口圧は前述の通り120kg/cm2 、30kg/c m2 であるので、高圧側の方向制御弁22への流量が501/minから201 /minに減る。低圧側の方向制御弁22への流量は、501/minのままで ある。二つの方向制御弁22,22のストローク(開口面積)を変えないとする と、高圧側の方向制御弁22の入口圧と出口圧の差圧が流量が減った分、20k g/cm2 から下がる。いま、差圧が14kg/cm2 、すなわち、入口圧が、 120kg/cm2 から114(100+14)kg/cm2 に下がったとする 。この時圧力補償弁25の減圧弁部24の二つの圧力室65,66の圧力は、と もに100kg/cm2 のままであるから、減圧弁部24は弱いばね69によっ てチェック弁部23に当接しているだけであり、チェック弁部23の閉じる方向 の圧力室b内の圧力が120kg/cm2 から114kg/cm2 に減少すれば 、チェック弁部23が開いたまま(ストロークエンド)で、チェック弁部23の 開く方向の圧力室a内の圧力、すなわち、ポンプ吐出圧が120kg/cm2 か ら114kg/cm2 に減少する。この時(ポンプ吐出流量不足時)にはポンプ 吐出圧はポンプ調整用方向制御弁85の制御によらなくなる。 一方、低圧側の圧力補償弁25の減圧弁部24の二つの圧力室65と66は、 100kg/cm2 、10kg/cm2 のままで、その差圧90kg/cm2 で チェック弁部63の閉じる方向に付勢し続ける。一方、チェック弁部23の開く 方向の圧力室a内の圧力、すなわちポンプ吐出圧が114kg/cm2 に減少し たので、チェック弁部23の閉じる方向の圧力室b内の圧力が30kg/cm2 から24kg/cm2 に減少した状態でチェック弁部23及び減圧弁部24が圧 力バランスする。よって、低圧側の方向制御弁22の入口圧と出口圧の差圧は2 0kg/cm2 から14kg/cm2 (24−10)に減少する。方向制御弁2 2のこの差圧の減少により低圧側のアクチュエータ88への供給流量は501/ minから減少し、その分高圧側のアクチュエータ88への供給流量が201/ minから増える。 すなわち、方向制御弁22および22の入口圧と出口圧の差圧が等しく、かつ 、二つのアクチュエータ88,88への供給量がともに351/minずつに分 配される状態で、この油圧制御系がつり合う。-The total flow rate required for each actuator 88, 88 is greater than or equal to the maximum discharge flow rate of the hydraulic pump 80. Now, the load pressure and the required flow rate of the actuator 88, 88 left actuator 88 is 100kg / cm 2, 501 / min , the right actuator 88 and 10kg / cm 2, 501 / min . When the maximum discharge flow rate of the hydraulic pump 80 is 1001 / min or more, the difference between the inlet pressure and the outlet pressure of the directional control valves 55, 55 is kept constant (= 20 kg / cm 2 ) as described above. , The flow rate can be controlled by the stroke, and the flow rate can be distributed by 501 / min. Next, assume that the maximum discharge amount of the hydraulic pump 80 becomes 701 / min. Since the inlet pressure of the two directional control valves 22 and 22 are described above 120kg / cm 2, 30kg / c m 2, flow to the high pressure side of the directional control valve 22 is reduced to 201 / min from 501 / min. The flow rate to the low-pressure side directional control valve 22 remains at 501 / min. Assuming that the strokes (opening areas) of the two directional control valves 22 and 22 are not changed, the differential pressure between the inlet pressure and the outlet pressure of the directional control valve 22 on the high pressure side is reduced by 20 kg / cm 2 due to the decrease in the flow rate. Go down. Now, assume that the differential pressure is 14 kg / cm 2 , that is, the inlet pressure is reduced from 120 kg / cm 2 to 114 (100 + 14) kg / cm 2 . At this time, the pressures of the two pressure chambers 65 and 66 of the pressure reducing valve portion 24 of the pressure compensating valve 25 remain at 100 kg / cm 2 , and therefore the pressure reducing valve portion 24 is checked by the weak spring 69. If the pressure inside the pressure chamber b in the closing direction of the check valve portion 23 decreases from 120 kg / cm 2 to 114 kg / cm 2 , the check valve portion 23 remains open (stroke end). ), the direction of the pressure in the pressure chamber a to open the check valve unit 23, i.e., the pump discharge pressure is reduced to 120 kg / cm 2 or et 114 kg / cm 2. At this time (when the pump discharge flow rate is insufficient), the pump discharge pressure is not controlled by the pump adjustment directional control valve 85. On the other hand, the two pressure chambers 65 and 66 of the pressure reducing valve portion 24 of the pressure compensating valve 25 on the low pressure side remain 100 kg / cm 2 and 10 kg / cm 2 , and the differential pressure of 90 kg / cm 2 causes the check valve portion 63 to be Continue to push in the closing direction. On the other hand, since the pressure in the pressure chamber a in the opening direction of the check valve portion 23, that is, the pump discharge pressure is reduced to 114 kg / cm 2 , the pressure in the pressure chamber b in the closing direction of the check valve portion 23 is 30 kg / cm 2. The check valve portion 23 and the pressure reducing valve portion 24 balance the pressure in the state where the pressure is reduced from 2 to 24 kg / cm 2 . Therefore, the differential pressure between the inlet pressure and the outlet pressure of the directional control valve 22 on the low pressure side is reduced from 20 kg / cm 2 to 14 kg / cm 2 (24-10). Due to the decrease in the differential pressure of the directional control valve 22, the supply flow rate to the low-pressure side actuator 88 decreases from 501 / min, and the supply flow rate to the high-pressure side actuator 88 increases from 201 / min. That is, in the state where the differential pressure between the inlet pressure and the outlet pressure of the directional control valves 22 and 22 is equal, and the supply amounts to the two actuators 88, 88 are both divided into 351 / min, the hydraulic control system is controlled. Balance.

【0013】 一つの油圧ポンプ80によって負荷されるアクチュエータが3つ以上のとき 。 アクチュエータが3つ以上のときも、方向制御弁と油圧ポンプの間に、同じチ ェック弁部23及び減圧弁部24を備えた圧力補償弁25を配設し、各減圧弁部 の閉じる方向の圧力差を負荷圧検出路82によってすべて連通するだけで、アク チュエータが3つ以上のときも前述の作動原理による作動が実現される。When the number of actuators loaded by one hydraulic pump 80 is three or more. Even when there are three or more actuators, a pressure compensating valve 25 having the same check valve section 23 and pressure reducing valve section 24 is disposed between the directional control valve and the hydraulic pump, and the pressure compensating valve 25 in the closing direction of each pressure reducing valve section is arranged. Even if the number of actuators is three or more, the operation according to the above-described operation principle can be realized by simply communicating all the pressure differences through the load pressure detection path 82.

【0014】 以上述べた様な圧油供給装置においては負荷圧の変動に対応してポンプ吐出圧 が直ちに変動するので、アクチュエータ88でパワーショベルの上部車体などの 慣性体を駆動する場合に、慣性体を急加速する時には負荷圧が高圧となりポンプ 吐出圧が高圧となるが、次に慣性体が動き出すとその慣性力により負荷圧が低圧 で動くためポンプ吐出圧が降圧する現象がおき、いわゆるハンチングを生じるか らスムーズな慣性体の制御が行なえない。In the pressure oil supply device as described above, the pump discharge pressure fluctuates immediately in response to fluctuations in the load pressure. Therefore, when the actuator 88 drives an inertial body such as the upper vehicle body of a power shovel, When the body accelerates rapidly, the load pressure becomes high and the pump discharge pressure becomes high.However, when the inertial body moves next, the load pressure moves at a low pressure due to the inertial force, so the pump discharge pressure decreases, which is called hunting. As a result, the inertial body cannot be controlled smoothly.

【0015】 そこで、本考案は前述の課題を解決できるようにした圧油供給装置を提供する ことを目的とする。Therefore, an object of the present invention is to provide a pressure oil supply device capable of solving the above-mentioned problems.

【0016】[0016]

【課題を解決するための手段】[Means for Solving the Problems]

主スプール49に第1・第2アクチュエータポート34,35を第1・第2タ ンクポート47,48に連通する第1・第2絞り100,101を形成して成る 圧油供給装置。 A pressure oil supply device in which main spool 49 is formed with first and second throttles 100 and 101 that connect the first and second actuator ports 34 and 35 to the first and second tank ports 47 and 48.

【0017】[0017]

【作 用】[Work]

第1・第2アクチュエータ34,35の圧油を第1・第2タンクポート47, 48にブリードオフして圧力上昇を緩かにする。 The pressure oil of the first and second actuators 34 and 35 is bleed off to the first and second tank ports 47 and 48 to moderate the pressure increase.

【0018】[0018]

【実 施 例】【Example】

図4に示すように、方向制御弁22の主スプール49における第1・第2小径 部50,51と連続した第1・第2絞り100,101を形成して第1アクチュ エータポート34から第1タンクポート47又は第2アクチュエータポート35 から第2タンクポート48に高圧油の一部が流出(ブリードオフ)するようにす る。 これによって、第1又は第2アクチュエータポート34,35の圧力上昇が緩 かになってハンチングのないスムーズな慣性体の制御ができる。 As shown in FIG. 4, first and second throttles 100 and 101, which are continuous with the first and second small diameter portions 50 and 51 of the main spool 49 of the directional control valve 22, are formed to form the first actuator port 34 and the first throttle port 100. A part of the high pressure oil flows out (bleeds off) from the first tank port 47 or the second actuator port 35 to the second tank port 48. As a result, the pressure rise in the first or second actuator port 34, 35 is moderated, and a smooth inertial body control without hunting can be performed.

【0019】 図5、図6に示すように、第2負荷圧検出ポート46を第2タンクポート48 に連通する油路54の径方向の孔54aの径を大きくして前述と同様にブリード オフの機能を追加するようにしても良い。As shown in FIGS. 5 and 6, the diameter of the hole 54 a in the radial direction of the oil passage 54 that communicates the second load pressure detection port 46 with the second tank port 48 is increased to bleed off as described above. The function of may be added.

【0020】[0020]

【考案の効果】[Effect of device]

第1又は第2アクチュエータポート34,35の圧油の一部をブリードオフし て圧力上昇を緩かにできるから慣性体をハンチングなしにスムーズに動作制御で きる。 Since a part of the pressure oil in the first or second actuator port 34, 35 can be bleed off to moderate the pressure rise, the inertial body can be smoothly operated and controlled without hunting.

【図面の簡単な説明】[Brief description of drawings]

【図1】従来の圧油供給装置の回路図である。FIG. 1 is a circuit diagram of a conventional pressure oil supply device.

【図2】先に出願した圧油供給装置の回路図である。FIG. 2 is a circuit diagram of a pressure oil supply device previously applied.

【図3】その弁ブロックに主スプール、スプールを組み
こんだ断面図である。
FIG. 3 is a cross-sectional view in which a main spool and a spool are assembled in the valve block.

【図4】本考案の実施例を示す弁ブロックに主スプー
ル、スプールを組み込んだ状態の断面図である。
FIG. 4 is a cross-sectional view showing a state in which a main spool and a spool are incorporated in a valve block showing an embodiment of the present invention.

【図5】第2実施例を示す弁ブロックに主スプール、ス
プールを組み込んだ状態の断面図である。
FIG. 5 is a sectional view of a valve block showing a second embodiment in which a main spool and a spool are incorporated.

【図6】図5の−断面図である。FIG. 6 is a − sectional view of FIG. 5;

【符号の説明】[Explanation of symbols]

22…方向制御弁、23…チェック弁、24…減圧弁
部、25…圧力補償弁、30…弁ブロック、31…スプ
ール孔、34…第1アクチュエータポート、35…第2
アクチュエータポート、37…チェック弁用孔、38…
減圧弁用孔、39…ポンプポート、42…第1ポート、
43…第2ポート、44…入力ポート、45…第1負荷
圧検出ポート、46…第2負荷圧検出ポート、47…第
1タンクポート、48…第2タンクポート、49…主ス
プール、54…油路、56…油孔、58…油孔、60…
スプール、64…スプール、65…第1圧力室、66…
第2圧力室、69…ばね、80…油圧ポンプ、81…ポ
ンプ吐出路、82…負荷圧検出路、100…第1絞り、
101…第2絞り。
22 ... Direction control valve, 23 ... Check valve, 24 ... Pressure reducing valve section, 25 ... Pressure compensation valve, 30 ... Valve block, 31 ... Spool hole, 34 ... First actuator port, 35 ... Second
Actuator port, 37 ... Check valve hole, 38 ...
Pressure reducing valve hole, 39 ... Pump port, 42 ... First port,
43 ... 2nd port, 44 ... Input port, 45 ... 1st load pressure detection port, 46 ... 2nd load pressure detection port, 47 ... 1st tank port, 48 ... 2nd tank port, 49 ... Main spool, 54 ... Oil passage, 56 ... Oil hole, 58 ... Oil hole, 60 ...
Spool, 64 ... Spool, 65 ... First pressure chamber, 66 ...
Second pressure chamber, 69 ... Spring, 80 ... Hydraulic pump, 81 ... Pump discharge passage, 82 ... Load pressure detection passage, 100 ... First throttle,
101 ... Second diaphragm.

Claims (2)

【実用新案登録請求の範囲】[Scope of utility model registration request] 【請求項1】 弁ブロック30にスプール孔31とチェ
ック弁用孔37と減圧弁用孔38を形成し、前記弁ブロ
ック30にはスプール孔31に開口した入力ポート4
4、第1・第2負荷圧検出ポート45,46、第1・第
2アクチュエータポート34,35、第1・第2タンク
ポート47,48をそれぞれ形成し、このスプール孔3
1に各ポートを連通・遮断する主スプール49を嵌挿し
て方向制御弁22とし、 前記弁ブロック30にはチェック弁用孔37に開口した
ポンプポート39及びチェック弁用孔37を入力ポート
44に連通する油路56を形成し、そのチェック弁用孔
37にポンプポート39と油路56を連通・遮断し、か
つ遮断位置でストップされるスプール60を挿入してチ
ェック弁部23とし、 前記弁ブロック30には減圧弁用孔38に開口する第1
・第2ポート42,43を形成し、この減圧弁用孔38
にスプール64を嵌挿して第1圧力室65と第2圧力室
66を形成し、その第1圧力室65を第2負荷圧検出ポ
ート46に連通し、第2圧力室66を第2ポート43に
連通し、前記スプール64をばね69で一方向に付勢し
て前記チェック弁部23のスプール60を遮断位置に押
しつけ保持して減圧弁部24とし、この減圧弁部24と
前記チェック弁部23で圧力補償弁75とし、ポンプ第
1ポート39,42に油圧ポンプ20の吐出路21を接
続し、前記第2ポート43に負荷圧検出路82を接続
し、 前記主スプール49に第1アクチュエータポート34と
第1タンクポート47を連通する第1絞り100及び第
2アクチュエータポート35と第2タンクポート48を
連通する第2絞り101を形成して成る圧油供給装置。
1. A spool hole 31, a check valve hole 37 and a pressure reducing valve hole 38 are formed in a valve block 30, and an input port 4 opened in the spool hole 31 is formed in the valve block 30.
4, first and second load pressure detection ports 45 and 46, first and second actuator ports 34 and 35, and first and second tank ports 47 and 48, respectively.
The main spool 49 for connecting / disconnecting each port is fitted into 1 to form the direction control valve 22, and the valve block 30 has the pump port 39 and the check valve hole 37 opened in the check valve hole 37 in the input port 44. An oil passage 56 is formed to communicate with the check valve hole 37, and the pump port 39 and the oil passage 56 are connected to and cut off from the check valve hole 37, and a spool 60 that is stopped at the cut position is inserted to form the check valve portion 23. The block 30 has a first opening that opens to the pressure reducing valve hole 38.
The second port 42, 43 is formed, and the pressure reducing valve hole 38 is formed.
The first pressure chamber 65 and the second pressure chamber 66 are formed by inserting the spool 64 into the first pressure chamber 65, the first pressure chamber 65 is communicated with the second load pressure detection port 46, and the second pressure chamber 66 is connected to the second port 43. And the spool 64 of the check valve portion 23 is pressed and held in the shut-off position to form a pressure reducing valve portion 24. The pressure reducing valve portion 24 and the check valve portion 24 are connected to each other. 23 as a pressure compensation valve 75, the pump first ports 39 and 42 are connected to the discharge passage 21 of the hydraulic pump 20, the second port 43 is connected to a load pressure detection passage 82, and the main spool 49 is connected to the first actuator. A pressure oil supply device formed by forming a first throttle 100 that communicates the port 34 and the first tank port 47 and a second throttle 101 that communicates the second actuator port 35 and the second tank port 48.
【請求項2】 前記主スプール49に第1・第2負荷圧
検出ポート45,46をタンクポートに連通する油路5
4を形成して成る請求項1記載の圧油供給装置。
2. An oil passage 5 connecting the first and second load pressure detection ports 45 and 46 to the tank port on the main spool 49.
4. The pressure oil supply device according to claim 1, which is formed by forming 4.
JP1992046777U 1992-06-12 1992-06-12 Pressure oil supply device Expired - Lifetime JP2577675Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1992046777U JP2577675Y2 (en) 1992-06-12 1992-06-12 Pressure oil supply device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1992046777U JP2577675Y2 (en) 1992-06-12 1992-06-12 Pressure oil supply device

Publications (2)

Publication Number Publication Date
JPH061801U true JPH061801U (en) 1994-01-14
JP2577675Y2 JP2577675Y2 (en) 1998-07-30

Family

ID=12756766

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1992046777U Expired - Lifetime JP2577675Y2 (en) 1992-06-12 1992-06-12 Pressure oil supply device

Country Status (1)

Country Link
JP (1) JP2577675Y2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5145077U (en) * 1974-09-30 1976-04-02

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56167902A (en) * 1980-05-26 1981-12-23 Daikin Ind Ltd Reducing type pressure compensation valve with check valve
JPH02134401A (en) * 1988-11-10 1990-05-23 Diesel Kiki Co Ltd Hydraulic control unit
JPH02247801A (en) * 1989-03-20 1990-10-03 Matsushita Electric Ind Co Ltd Magnetic recording and reproducing device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56167902A (en) * 1980-05-26 1981-12-23 Daikin Ind Ltd Reducing type pressure compensation valve with check valve
JPH02134401A (en) * 1988-11-10 1990-05-23 Diesel Kiki Co Ltd Hydraulic control unit
JPH02247801A (en) * 1989-03-20 1990-10-03 Matsushita Electric Ind Co Ltd Magnetic recording and reproducing device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5145077U (en) * 1974-09-30 1976-04-02

Also Published As

Publication number Publication date
JP2577675Y2 (en) 1998-07-30

Similar Documents

Publication Publication Date Title
KR100292544B1 (en) Pilot solenoid control valve and hydraulic control system using same
WO1994010454A1 (en) Pressure oil supply system having a pressure compensating valve
US20130153043A1 (en) Flow force-compensating valve element with load check
JPH061801U (en) Pressure oil supply device
JP3119317B2 (en) Pressure oil supply device
JP2575156Y2 (en) Pressure oil supply device
JP2668744B2 (en) Pressure oil supply device
JPH0643301U (en) Directional control valve device
JP2577676Y2 (en) Pressure oil supply device
JPH05332311A (en) Pressure oil supply device
JP3119316B2 (en) Pressure oil supply device
JP3454313B2 (en) Pressure oil supply device
JP2551546Y2 (en) Pressure oil supply device
JP2578622Y2 (en) Directional control valve device with pressure compensating valve
JPH05332306A (en) Pressure oil supply device
JPH0596504U (en) Pressure oil supply device
JP2550773Y2 (en) Direction control valve device
JP2571234Y2 (en) Pressure oil supply device
JP3116564B2 (en) Pressure oil supply device
JPH05332305A (en) Pressure oil supply device
JP3119315B2 (en) Pressure oil supply device
JPH05332312A (en) Pressure oil supply device
JPH0828506A (en) Pressure compensating valve
JPH05332313A (en) Pressure oil supply device
JPH076501U (en) Pressure compensation valve