JPH0596504U - Pressure oil supply device - Google Patents

Pressure oil supply device

Info

Publication number
JPH0596504U
JPH0596504U JP4516892U JP4516892U JPH0596504U JP H0596504 U JPH0596504 U JP H0596504U JP 4516892 U JP4516892 U JP 4516892U JP 4516892 U JP4516892 U JP 4516892U JP H0596504 U JPH0596504 U JP H0596504U
Authority
JP
Japan
Prior art keywords
pressure
valve
actuator
port
directional control
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4516892U
Other languages
Japanese (ja)
Inventor
和義 石浜
和則 池井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Komatsu Ltd
Original Assignee
Komatsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Komatsu Ltd filed Critical Komatsu Ltd
Priority to JP4516892U priority Critical patent/JPH0596504U/en
Publication of JPH0596504U publication Critical patent/JPH0596504U/en
Pending legal-status Critical Current

Links

Abstract

(57)【要約】 (修正有) 【目的】 面積が異なる第1室と第2室を有するシリン
ダより成るアクチェエータを同一速度で伸長・縮少でき
るようにする。 【構成】 チェック弁63と減圧弁部74で圧力補償弁
75とし、この圧力補償弁75の出力側に方向制御弁5
5を設ける。弁ブロック30にスプール孔31に開口し
た入力ポート44、第1・第2負荷圧検出ポート45,
46、第1・第2アクチェエータポート34,35、第
1・第2タンクポート47,48をそれぞれ形成し、こ
のスプール孔31に各ポートを連通・遮断する主スプー
ル49を嵌挿して方向制御弁55とし、この主スプール
49に中間小径部52と第1・第2切欠部101,10
2を形成して、主スプール49を左右に摺動した時に入
力ポート44の圧油を第1又は第2切欠部101,10
2より第1又は第2アクチェエータポート34,35に
供給する。
(57) [Summary] (Modified) [Purpose] To make it possible to extend and contract an actuator composed of a cylinder having a first chamber and a second chamber having different areas at the same speed. [Structure] A pressure compensating valve 75 is composed of a check valve 63 and a pressure reducing valve portion 74, and the directional control valve 5 is provided on the output side of the pressure compensating valve 75.
5 is provided. The input port 44 opened in the spool hole 31 in the valve block 30, the first and second load pressure detection ports 45,
46, the first and second actuator ports 34 and 35, and the first and second tank ports 47 and 48, respectively, and the main spool 49 that connects and disconnects the respective ports is inserted into the spool hole 31 for direction. A control valve 55 is provided, and the main spool 49 has a small intermediate diameter portion 52 and first and second cutout portions 101, 10.
2 is formed and the pressure oil of the input port 44 is transferred to the first or second cutouts 101, 10 when the main spool 49 is slid to the left and right.
2 to the first or second actuator port 34, 35.

Description

【考案の詳細な説明】[Detailed description of the device]

【0001】[0001]

【産業上の利用分野】[Industrial applications]

本考案は、1つの油圧ポンプの吐出圧油を複数のアクチェエータに供給する圧 油供給装置に関する。 The present invention relates to a hydraulic oil supply device that supplies the hydraulic oil discharged from one hydraulic pump to a plurality of actuators.

【0002】[0002]

【従来の技術】[Prior Art]

特開昭60−11706号公報に示す圧油供給装置が知られている。 すなわち、図1に示すように油圧ポンプ1の吐出導管2に複数の圧力補償弁3 ,13を並列に接続し、各圧力補償弁3,13の出口導管4,14に方向制御弁 5,15をそれぞれ設けこの各方向制御弁5,15の出力側をアクチュエータ6 ,16にそれぞれ接続し、前記圧力補償弁3,13をポンプ吐出圧と方向制御弁 出口圧で開き方向に押され、方向制御弁入口圧と最も高い負荷圧で閉じ方向に押 される構造とした圧油供給装置である。 この圧油供給装置であれば、複数の方向制御弁3,13を同時操作した時に各 アクチュエータにポンプ吐出圧油を所定の分配比で供給できる。 A pressure oil supply device disclosed in Japanese Patent Laid-Open No. 60-11706 is known. That is, as shown in FIG. 1, a plurality of pressure compensating valves 3, 13 are connected in parallel to the discharge conduit 2 of the hydraulic pump 1, and the directional control valves 5, 15 are connected to the outlet conduits 4, 14 of the pressure compensating valves 3, 13. The output sides of the directional control valves 5 and 15 are connected to actuators 6 and 16, respectively, and the pressure compensating valves 3 and 13 are pushed in the opening direction by the pump discharge pressure and the directional control valve outlet pressure to control the direction. It is a pressure oil supply device that is structured to be pushed in the closing direction by the valve inlet pressure and the highest load pressure. With this pressure oil supply device, the pump discharge pressure oil can be supplied to each actuator at a predetermined distribution ratio when a plurality of directional control valves 3 and 13 are simultaneously operated.

【0003】 かかる圧油供給装置であるとアクチュエータの負荷圧を比較して高い方の負荷 圧を圧力補償弁に供給するためにシャトル弁7が必ず必要であり、しかもこのシ ャトル弁7はアクチュエータの数より1つ少ない数だけ必要であり、それだけコ ストが高くなる。 また、前述の図1に示す圧油供給装置であると2つのアクチュエータ6,12 をともに作動させ、それらの負荷圧のうち、アクチュエータ6側の負荷圧が大き いとする。このときは、導管8内の圧力が最高負荷圧としてシャトル弁7によっ て導管9に導かれる。次に、負荷圧が変動して、アクチュエータ16側の負荷圧 の方がアクチュエータ6側の負荷圧より大きくなったとする。その際、すなわち シャトル弁7が切換わる際、シャトル弁7内の吹きぬけにより導管18内の圧力 がぬけ、他方の導管8内の圧力が押しこめられる。そのため、シャトル弁7の切 換え時、過渡的にアクチュエータ6は自然降下しアクチュエータ6は加速される 。 そこで、本出願人は先に前述の課題を解決できるようにした圧油供給装置を出 願した。In such a pressure oil supply device, the shuttle valve 7 is indispensable in order to compare the load pressure of the actuator and supply the higher load pressure to the pressure compensating valve, and this shuttle valve 7 is also required for the actuator. Only one less than is needed, and the cost is higher. Further, in the above-described pressure oil supply device shown in FIG. 1, it is assumed that the two actuators 6 and 12 are actuated together, and the load pressure on the actuator 6 side is large among those load pressures. At this time, the pressure in the conduit 8 is guided to the conduit 9 by the shuttle valve 7 as the maximum load pressure. Next, it is assumed that the load pressure fluctuates and the load pressure on the actuator 16 side becomes larger than the load pressure on the actuator 6 side. At that time, that is, when the shuttle valve 7 is switched, the pressure in the conduit 18 is lost due to the blowout in the shuttle valve 7, and the pressure in the other conduit 8 is pushed in. Therefore, when the shuttle valve 7 is switched, the actuator 6 transiently descends naturally and the actuator 6 is accelerated. Therefore, the present applicant previously applied for a pressure oil supply device capable of solving the above-mentioned problems.

【0004】[0004]

【考案が解決しようとする課題】[Problems to be solved by the device]

かかる圧油供給装置は図2に示すように、油圧ポンプ20の吐出路21に複数 の方向制御弁22を設け、この各方向制御弁22の入口側にチェック弁部23と 減圧弁部24より成る圧力補償弁25をそれぞれ設けたものであり、この方向制 御弁22と圧力補償弁25は図3に示すように構成してある。 すなわち、弁本体19のスプール孔10にスプール11を嵌挿して方向制御弁 22とし、そのスプール11に連通用溝17を形成してスプール11を左右に摺 動することで補償弁部25の出口ポート12を第1又は第2ポート26,27よ り第1又は第2アクチェエータポート28,29に連通してアクチェエータ6の 第1室6a又は第2室6bに供給するようにしてある。 このために、第1・第2アクチェエータポート28,29への供給流量、つま りアクチェエータ6の第1室6a、第2室6bへの供給流量は1つの連通用溝1 7の開口によって決定され、スプール11を左右に同一ストローク操作した時の アクチェエータ6の第1室6a、第2室6bへの供給流量が等しくなり、シリン ダより成るアクチェエータ6の第1室6aと第2室6bの面積に差があるためア クチェエータ6を伸長、縮少する時の速度が異なってアクチェエータ6を精度良 く動作制御できない。 As shown in FIG. 2, such a pressure oil supply device is provided with a plurality of directional control valves 22 in a discharge passage 21 of a hydraulic pump 20, and a check valve section 23 and a pressure reducing valve section 24 are provided on the inlet side of each directional control valve 22. The pressure compensating valve 25 is provided respectively, and the directional control valve 22 and the pressure compensating valve 25 are constructed as shown in FIG. That is, the spool 11 is fitted into the spool hole 10 of the valve main body 19 to form the directional control valve 22, the communication groove 17 is formed in the spool 11, and the spool 11 is slid to the left and right. The port 12 is connected to the first or second actuator port 28, 29 by the first or second port 26, 27 and is supplied to the first chamber 6a or the second chamber 6b of the actuator 6. For this reason, the supply flow rate to the first and second actuator ports 28 and 29, that is, the supply flow rate to the first chamber 6a and the second chamber 6b of the actuator 6 is determined by the opening of one communication groove 17. The flow rates of the supply to the first chamber 6a and the second chamber 6b of the actuator 6 when the spool 11 is operated to the same stroke to the left and right are determined to be equal, and the first chamber 6a and the second chamber 6b of the actuator 6 composed of a cylinder are set. Due to the difference in the areas of the actuators 6, the speed at which the actuator 6 is expanded and contracted is different, and the actuator 6 cannot be controlled with high accuracy.

【0005】 そこで、本考案は前述の課題を提供できるようにした圧油供給装置を提供する ことを目的とする。Therefore, an object of the present invention is to provide a pressure oil supply device that can solve the above-mentioned problems.

【0006】[0006]

【課題を解決するための手段】[Means for Solving the Problems]

チェック弁部63と減圧弁部74より成る圧力補償弁75と、この圧力補償弁 75の出力側に設けた方向制御弁55とを備えた圧油供給装置において、弁ブロ ック30にスプール孔31に開口した入力ポート44、第1・第2負荷圧検出ポ ート45,46、第1・第2アクチェエータポート34,35、第1・第2タン クポート47,48をそれぞれ形成し、このスプール孔31に各ポートを連通・ 遮断する主スプール49を嵌挿して方向制御弁55とし、この主スプール49に 入力ポート44に臨む中間小径部52及びこの中間小径部52に開口し入力ポー ト44を前記第1・第2負荷圧検出ポート45,46に連通制御する第1・第2 切欠部101,102を形成した圧油供給装置。 In the pressure oil supply device including the pressure compensation valve 75 including the check valve portion 63 and the pressure reducing valve portion 74, and the directional control valve 55 provided on the output side of the pressure compensation valve 75, the valve block 30 has a spool hole. An input port 44 opened at 31, a first and second load pressure detection ports 45 and 46, first and second actuator ports 34 and 35, and first and second tank ports 47 and 48 are formed, respectively. A main spool 49 that connects and disconnects each port is inserted into the spool hole 31 to form a directional control valve 55, and an intermediate small diameter portion 52 facing the input port 44 is opened in the main spool 49 and the intermediate small diameter portion 52 is opened for input. A pressure oil supply device having first and second notches 101 and 102 for controlling communication of the port 44 with the first and second load pressure detection ports 45 and 46.

【0007】[0007]

【作 用】[Work]

主スプール49を左又は右に摺動すると入力ポート44が第1切欠部101又 は第2切欠部102を経て第1又は第2アクチェエータポート34,35に連通 するので、主スプール49を左又は右と同一ストローク操作した時に第1又は第 2アクチェエータポート34,35に供給する流量を第1・第2切欠部101, 102の幅あるいは深さを異ならせることでそれぞれ異なる流量とすることがで きるから、シリンダ等のアクチェエータの面積が異なる第1室と第2室への供給 流量を異ならせてアクチェエータを伸長、縮少する時の速度を等しくできる。 When the main spool 49 is slid to the left or right, the input port 44 communicates with the first or second actuator port 34, 35 via the first notch portion 101 or the second notch portion 102. When the same stroke operation as left or right is performed, the flow rate supplied to the first or second actuator port 34, 35 is made different by varying the width or depth of the first and second cutouts 101, 102. Therefore, it is possible to equalize the speeds for extending and contracting the actuator by making the supply flow rates to the first chamber and the second chamber having different areas of the actuator such as a cylinder different.

【0008】[0008]

【実 施 例】【Example】

図4に示すように、弁ブロック30は略直方体形状となり、この弁ブロック3 0の上部寄りにスプール孔31が左右側面32,33に開口して形成され、この スプール孔31に開口した第1・第2アクチュエータポート34,35が上面3 6に開口して形成してあり、弁ブロック30の下部寄りには左側面32に開口し たチェック弁用孔37と右側面33に開口した減圧弁用孔38が同心状に形成さ れ、前記チェック弁用孔37に開口したポンプポート39が前後面40,41に 開口して形成され、前記減圧弁孔38に開口した第1、第2ポート42,43が 前後面40,41に開口して形成してあり、複数の弁ブロック30の前後面40 ,41を突き合せて連結すると各ポンプ・第1・第2ポート39,42,43が 連通するようにしてある。 図5に示すように、前記弁ブロック30にはスプール孔31に開口した入力ポ ート44、第1・第2負荷圧検出ポート45,46、前記第1・第2アクチュエ ータポート34,35、第1、第2タンクポート47,48が形成され、そのス プール孔31に嵌挿した主スプール49には第1・第2小径部50,51と中間 小径部52が形成してあり、弁本体30には第1・第2負荷圧検出ポート45, 46を連通する油孔100が形成され、主スプール49には第2負荷圧検出ポー ト46と第2タンクポート48を連通・遮断する油路54が形成され、主スプー ル49はスプリング53で各ポートを遮断し、油路54で第2負荷圧検出ポート 46と第2タンクポート48を連通する中立位置Aに保持され、図6に示すよう に主スプール49を右方に摺動すると第2小径部51で第2アクチュエータポー ト35を第2タンクポート48に連通し、中間小径部52と第1切欠部101で 入力ポート44が第2負荷圧検出ポート46に連通し、第1小径部50で第1ア クチュエータポート34が第1負荷圧検出ポート45に連通し、かつ第2負荷圧 検出ポート46と第2タンクポート48が遮断する第1圧油供給位置Bとなり、 図7に示すように主スプール49を左方に摺動すると第1小径部50で第1アク チュエータポート34を第1タンクポート47に連通し、中間小径部52と第2 切欠部102で入力ポート44が第1負荷圧検出ポート45に連通し、第2小径 部51で第2アクチュエータポート35が第2負荷圧検出ポート46に連通し、 かつ第2負荷圧検出ポート46と第2タンクポート48が遮断する第2圧油供給 位置Cとなって方向制御弁55を構成している。 このようであるから、第1切欠部101と第2切欠部102の幅あるいは深さ を異ならせることで主スプール49を左右に同一ストローク摺動した時に第1ア クチェエータポート34と第2アクチェエータポート35に供給する流量を異な らせることができる。 前記チェック弁用孔37は油路56で入力ポート44に開口し、そのチェック 弁用孔37には前記ポンプポート39と入力ポート44を連通遮断する弁60が 嵌挿され、その弁60はプラグ61に設けたストッパ杆62で図示位置より左方 に摺動しないように規制されて遮断位置に保持されてチェック弁部63を構成し ている。 前記減圧弁用孔38は第3ポート57と油路58で第2負荷圧検出ポート46 に連通し、この減圧弁用孔38にはスプール64が嵌挿されて第1圧力室65と 第2圧力室66を形成し、第1圧力室65は第3ポート57に連通し、第2圧力 室66は第2ポート43に連通し、前記スプール64の盲穴67に挿入したフリ ーピストン68と盲穴67底部との間にばね69が設けられてフリーピストン6 8はプラグ70に当接し、かつスプール64に一体的に設けた押杆71が透孔7 2より突出して前記弁60をストッパ杆62に当接しており、前記スプール64 には第1ポート42を盲穴67に連通する細孔73が形成されて減圧弁部74を 構成し、この減圧弁部74と前記チェック弁部63とで圧力補償弁75を構成し ている。 このようであるから、複数の弁ブロック30を前後面40,41相互を重ね合 せて連結すれば、各弁ブロック30のポンプ・第1・第2ポート39,42,4 3が連通するから、図8に示すように油圧ポンプ80の吐出路81をポンプポー ト39、第1ポート42に連通し、第2ポート43に負荷圧検出路82を接続す れば図9に示すように図2と同様の油圧回路を構成できる。 なお、弁ブロック30を1つとしてスプール孔31、チェック弁用孔37、減 圧弁用孔38を複数形成し、ポンプ・第1・第2ポート39,42,43を各チ ェック弁用孔37、減圧弁用孔38に亘って形成しても良い。 図9において、83は油圧ポンプ80の吐出流量を制御する斜板、84はサー ボシリンダ、85はポンプ調整用方向制御弁である。 As shown in FIG. 4, the valve block 30 has a substantially rectangular parallelepiped shape, and a spool hole 31 is formed in the left and right side surfaces 32 and 33 near the upper portion of the valve block 30. The second actuator ports 34 and 35 are formed so as to open on the upper surface 36, and the check valve hole 37 opened on the left side surface 32 and the pressure reducing valve opened on the right side surface 33 are formed near the lower part of the valve block 30. First and second ports formed in the pressure reducing valve hole 38, and the pump port 39 opening in the check valve hole 37 is formed in the front and rear surfaces 40, 41. 42, 43 are formed by opening the front and rear surfaces 40, 41, and when the front and rear surfaces 40, 41 of the plurality of valve blocks 30 are butted and connected to each other, the respective pumps, first and second ports 39, 42, 43 are connected. To communicate And Aru. As shown in FIG. 5, in the valve block 30, an input port 44 opened in a spool hole 31, first and second load pressure detection ports 45 and 46, first and second actuator ports 34 and 35, The first and second tank ports 47, 48 are formed, and the main spool 49 fitted in the spool hole 31 is formed with the first and second small diameter portions 50, 51 and the intermediate small diameter portion 52. The main body 30 is formed with an oil hole 100 that communicates the first and second load pressure detection ports 45 and 46, and the main spool 49 communicates and blocks the second load pressure detection port 46 and the second tank port 48. The oil passage 54 is formed, the main spool 49 is blocked by the spring 53 from each port, and is held at the neutral position A which connects the second load pressure detection port 46 and the second tank port 48 by the oil passage 54. Main spool 4 as shown in Sliding to the right causes the second actuator port 35 to communicate with the second tank port 48 at the second small diameter portion 51, and the input port 44 becomes the second load pressure detection port at the intermediate small diameter portion 52 and the first cutout portion 101. The first pressure oil that communicates with the first small diameter portion 50, the first actuator port 34 communicates with the first load pressure detection port 45, and the second load pressure detection port 46 and the second tank port 48 shut off. When the supply position B is reached and the main spool 49 is slid to the left as shown in FIG. 7, the first actuator port 34 is communicated with the first tank port 47 by the first small diameter portion 50, and the intermediate small diameter portion 52 and the second small diameter portion 52 are connected. The input port 44 communicates with the first load pressure detection port 45 at the notch 102, the second actuator port 35 communicates with the second load pressure detection port 46 at the second small diameter portion 51, and the second load pressure detection port 4 Constitute a directional control valve 55 becomes the second pressurized oil supply position C where the second tank port 48 is blocked. Because of this, by making the width or depth of the first cutout portion 101 and the second cutout portion 102 different, when the main spool 49 slides left and right by the same stroke, the first actuator port 34 and the second cutout portion 34 can be moved. The flow rate supplied to the actuator port 35 can be varied. The check valve hole 37 is opened to the input port 44 by the oil passage 56, and the check valve hole 37 is fitted with a valve 60 that cuts off the communication between the pump port 39 and the input port 44, and the valve 60 is a plug. A check rod 63 is formed by a stopper rod 62 provided at 61, which is regulated so as not to slide to the left from the illustrated position and is held at the shutoff position. The pressure reducing valve hole 38 communicates with the second load pressure detection port 46 through the third port 57 and the oil passage 58, and the spool 64 is fitted into the pressure reducing valve hole 38 to connect the first pressure chamber 65 and the second pressure chamber 65. A pressure chamber 66 is formed, the first pressure chamber 65 communicates with the third port 57, the second pressure chamber 66 communicates with the second port 43, and the free piston 68 inserted in the blind hole 67 of the spool 64 and a blind piston 68. A spring 69 is provided between the free piston 68 and the bottom of the hole 67 so that the free piston 68 abuts on the plug 70, and a push rod 71 integrally provided on the spool 64 projects from the through hole 72 so that the valve 60 is stopped by the stopper rod. 62, and the spool 64 is formed with a fine hole 73 for communicating the first port 42 with the blind hole 67 to form a pressure reducing valve portion 74. The pressure reducing valve portion 74 and the check valve portion 63 are connected to each other. Pressure compensating valve 75. Because of this, if a plurality of valve blocks 30 are connected by overlapping the front and rear surfaces 40, 41, the pump / first / second ports 39, 42, 43 of each valve block 30 communicate with each other. When the discharge passage 81 of the hydraulic pump 80 is connected to the pump port 39 and the first port 42 as shown in FIG. 8 and the load pressure detection passage 82 is connected to the second port 43, as shown in FIG. A hydraulic circuit similar to can be configured. A single valve block 30 is used to form a plurality of spool holes 31, check valve holes 37, pressure reducing valve holes 38, and pump / first / second ports 39, 42, and 43 are provided for each check valve hole 37. Alternatively, it may be formed over the pressure reducing valve hole 38. In FIG. 9, 83 is a swash plate that controls the discharge flow rate of the hydraulic pump 80, 84 is a servo cylinder, and 85 is a directional control valve for pump adjustment.

【0009】 次に作動を図9に基づいて説明する。 方向制御弁55が中立位置Aのとき。 油圧ポンプ80によってタンク86から吸上げられた油は、吐出路81を通っ てチェック弁部63の開く方向の圧力室aに案内される。この時、減圧弁部74 の圧力室65,66は、ともにタンク86に通じているので、この圧力室65, 66の圧力はともにゼロで、よって減圧弁部74は、弱いばね69によって押さ れ杆体71がチェック弁部63に当接しているだけである。 一方、ポンプ吐出圧は、ポンプ調整用方向制御弁85のばね87によって負荷 圧検出路82の圧力との差圧がある一定に保たれる。いま、この差圧を20kg /cm2 とすると負荷圧検出路82の圧力はゼロなので、ポンプ吐出圧は20k g/cm2 まで上昇し、同時にチェック弁部63の圧力室aにポンプ吐出圧が流 入して方向制御弁55の入口圧(チェック弁部63の出口圧)がポンプ吐出圧と 等しくなるまでストロークし、等しくなれば、弱いばね69によってレシートす る。 減圧弁部74は、ストロークエンド時のみ、ポンプ吐出路81と圧力室66を 連通させる一方、チェック弁部63は、ストロークエンドに達する前に、ポンプ 吐出路81と出口側を連通させるので、方向制御弁55が中立位置Aのときは、 ポンプ吐出路81と圧力室66が連通することはなく、圧力室65の圧力はゼロ のままである。Next, the operation will be described with reference to FIG. When the directional control valve 55 is in the neutral position A. The oil sucked from the tank 86 by the hydraulic pump 80 is guided through the discharge passage 81 to the pressure chamber a in the opening direction of the check valve portion 63. At this time, since the pressure chambers 65 and 66 of the pressure reducing valve portion 74 both communicate with the tank 86, the pressures of the pressure chambers 65 and 66 are both zero, and therefore the pressure reducing valve portion 74 is pressed by the weak spring 69. The rod 71 is only in contact with the check valve portion 63. On the other hand, the pump discharge pressure is kept constant by the spring 87 of the pump adjusting directional control valve 85, which is a differential pressure from the pressure of the load pressure detecting path 82. Now, assuming that this differential pressure is 20 kg / cm 2 , the pressure in the load pressure detection path 82 is zero, so the pump discharge pressure rises to 20 kg / cm 2, and at the same time, the pump discharge pressure enters the pressure chamber a of the check valve 63. After flowing in, the stroke is made until the inlet pressure of the directional control valve 55 (the outlet pressure of the check valve portion 63) becomes equal to the pump discharge pressure, and when it becomes equal, a receipt is made by the weak spring 69. The pressure reducing valve unit 74 connects the pump discharge passage 81 and the pressure chamber 66 only at the end of the stroke, while the check valve unit 63 connects the pump discharge passage 81 and the outlet side before reaching the stroke end. When the control valve 55 is in the neutral position A, the pump discharge passage 81 and the pressure chamber 66 do not communicate with each other, and the pressure in the pressure chamber 65 remains zero.

【0010】 方向制御弁55のいずれか一方のみ第1圧油供給位置Bにストロークさせる とき。 いま、左側の方向制御弁55を第1圧油供給位置Bにストロークさせ、右側の 方向制御弁55は、中立位置Aとする。 方向制御弁55をストロークさせ入力ポート44と第1アクチュエータポート 34を接続させ、同時に、第2アクチュエータ35と第2タンクポート48を接 続させる。この時第1アクチュエータポート34とアクチュエータ88を接続す る導管89内の圧力(負荷圧)がポンプ吐出圧(20kg/cm2 )より大きい ときはチェック弁部63が圧力室bの圧力でレシートするため、アクチュエータ 88の自然降下を防止することができる。 アクチュエータ88の導管89の圧力、すなわち負荷圧が油孔100、通路5 8より減圧弁部74の一方の圧力室65に導かれる。他方の圧力室66の圧力は ゼロであるため、減圧弁部74は、チェック弁部63から解離する方向にストロ ークエンドまでストロークし、減圧弁部74の絞りを介して、ポンプ吐出路81 と負荷圧検出路82が連通する。前記導管89内の圧力(負荷圧)がポンプ吐出 圧(=20kg/cm2 )より大きいときは、チェック弁部63の圧力室bの圧 力で閉じ、その圧力が、減圧弁部74の一方の圧力室65に導かれるため、他方 の圧力室66とポンプ吐出路81が連通しても、減圧弁部74はストロークした ままである。一方、導管41内の圧力(負荷圧)がポンプ吐出圧(=20Kg/ cm2 )より小さいときは、その負荷圧が減圧弁部74の一方の圧力室65に導 かれ、減圧弁部74が一方の圧力室65の圧力でストロークするが、他方の圧力 室66の圧力が一方の圧力室65の圧力(すなわち負荷圧)まで上昇すると、弱 いばね69によって閉じチェック弁部63に当接する。 いずれの場合でも、減圧弁部74は、一方の圧力室65内の圧力と他方の圧力 室66内の圧力が等しくなるまで、ポンプ吐出路81と圧力室66を連通させ、 両圧力室65,66内の圧力が等しくなれば弱いばね69によって閉じチェック 弁部63に当接する。結果として負荷圧検出路82内の圧力は、負荷圧と等しく なり、ポンプ吐出圧は、ポンプ調整用方向制御弁85によって、ある差圧(ここ では20kg/cm2 )分だけ、負荷圧検出路82内の圧力より高い圧力に制御 される。このポンプ吐出圧は、チェック弁部63を介して、入力ポート44に導 かれているので、すなわち、方向制御弁55の入口圧と出口圧(=負荷圧)の間 には、差圧(=20kg/cm2 )が保たれることになる。よって、方向制御弁 55のストロークに伴なう入口側と出口側の間の絞りの開口面積の変化によって のみ、アクチュエータ88へ供給される流量が制御される。 方向制御弁55をストロークさせる際、アクチュエータ88の導管89あるい は90と負荷圧導入用の油孔100が接続され、一方、第2油路53は、減圧弁 部74の一方の圧力室65と接続されているが、減圧弁部74において負荷圧は 、パイロット圧力(減圧弁部のセット圧力)としてのみ使われるので、その圧力 がぬけることはなく、すなわち、方向制御弁55をストロークさせた際、負荷圧 がぬけることによるアクチュエータ88の自然降下はない。When only one of the directional control valves 55 is stroked to the first pressure oil supply position B. Now, the left direction control valve 55 is stroked to the first pressure oil supply position B, and the right direction control valve 55 is set to the neutral position A. The directional control valve 55 is stroked to connect the input port 44 and the first actuator port 34, and at the same time, connect the second actuator 35 and the second tank port 48. At this time, when the pressure (load pressure) in the conduit 89 connecting the first actuator port 34 and the actuator 88 is larger than the pump discharge pressure (20 kg / cm 2 ), the check valve portion 63 receives the pressure in the pressure chamber b. Therefore, it is possible to prevent the actuator 88 from naturally descending. The pressure of the conduit 89 of the actuator 88, that is, the load pressure, is guided to the one pressure chamber 65 of the pressure reducing valve portion 74 from the oil hole 100 and the passage 58. Since the pressure in the other pressure chamber 66 is zero, the pressure reducing valve portion 74 strokes in the direction of disengagement from the check valve portion 63 to the stroke end, and through the throttle of the pressure reducing valve portion 74, the pump discharge passage 81 and the load are discharged. The pressure detection path 82 communicates. When the pressure (load pressure) in the conduit 89 is higher than the pump discharge pressure (= 20 kg / cm 2 ), the pressure is closed in the pressure chamber b of the check valve portion 63, and the pressure is reduced to one of the pressure reducing valve portion 74. Since the pressure chamber 65 is guided to the pressure chamber 65, the pressure reducing valve portion 74 continues to stroke even when the other pressure chamber 66 communicates with the pump discharge passage 81. On the other hand, when the pressure (load pressure) in the conduit 41 is smaller than the pump discharge pressure (= 20 Kg / cm 2 ), the load pressure is guided to one pressure chamber 65 of the pressure reducing valve unit 74, and the pressure reducing valve unit 74 is The stroke is made by the pressure of one pressure chamber 65, but when the pressure of the other pressure chamber 66 rises to the pressure of one pressure chamber 65 (that is, the load pressure), the weak spring 69 closes and abuts against the check valve portion 63. In any case, the pressure reducing valve unit 74 keeps the pump discharge passage 81 and the pressure chamber 66 in communication until the pressure in the one pressure chamber 65 and the pressure in the other pressure chamber 66 become equal to each other. If the pressures in 66 become equal, the weak spring 69 makes contact with the closing check valve 63. As a result, the pressure in the load pressure detection path 82 becomes equal to the load pressure, and the pump discharge pressure is adjusted by the pump adjustment directional control valve 85 by a certain differential pressure (here, 20 kg / cm 2 ). The pressure is controlled to be higher than the pressure in 82. This pump discharge pressure is guided to the input port 44 via the check valve portion 63, that is, between the inlet pressure and the outlet pressure (= load pressure) of the directional control valve 55, the differential pressure (= 20 kg / cm 2 ) will be maintained. Therefore, the flow rate supplied to the actuator 88 is controlled only by the change in the opening area of the throttle between the inlet side and the outlet side due to the stroke of the directional control valve 55. When the directional control valve 55 is stroked, the conduit 89 or 90 of the actuator 88 and the oil hole 100 for introducing the load pressure are connected, while the second oil passage 53 is connected to the pressure chamber 65 of the pressure reducing valve portion 74. However, since the load pressure in the pressure reducing valve section 74 is used only as pilot pressure (set pressure of the pressure reducing valve section), the pressure is not lost, that is, the directional control valve 55 is stroked. At this time, the actuator 88 does not naturally drop due to the load pressure being removed.

【0011】 前記負荷圧検出路82はもう一方の方向制御弁55に配設されている圧力補償 弁75の減圧弁部74の他方の圧力室66にも接続されているが、減圧弁部74 の一方の圧力室65は、方向制御弁55の中立位置Aによってタンク86と接続 しているため、負荷圧導入用の第1油路53内の圧力はゼロで、よって圧力室6 6内の圧力によって減圧弁部74は、チェック弁部63を閉じる方向に付勢する 。 一方、チェック弁部74を開く方向の圧力室aには、ポンプ吐出路81よりポン プ吐出圧が導かれるため、全体として、ポンプ吐出圧と負荷圧検出路82内の圧 力の差圧分(=20kg/cm2 )によってチェック弁部63及び減圧弁部74 をチェック弁部63の開く方向にストロークさせるが、わずかにストロークし入 力ポート44の圧力がその差圧(=20kg/cm2 )になれば、弱いばね69 によってレシートし、結果として、ストロークエンドまで減圧弁部74がストロ ークすることはなく、方向制御弁55側の油圧制御には、何ら影響することはな い。The load pressure detection path 82 is also connected to the other pressure chamber 66 of the pressure reducing valve portion 74 of the pressure compensating valve 75 arranged in the other directional control valve 55. Since one pressure chamber 65 is connected to the tank 86 by the neutral position A of the direction control valve 55, the pressure in the first oil passage 53 for introducing the load pressure is zero, so that the pressure chamber 66 in the pressure chamber 66 is The pressure reducing valve 74 urges the check valve 63 in the closing direction. On the other hand, since the pump discharge pressure is guided from the pump discharge path 81 to the pressure chamber a in the direction of opening the check valve portion 74, the pressure difference between the pump discharge pressure and the pressure inside the load pressure detection path 82 is totally divided. (= 20 kg / cm 2 ), the check valve portion 63 and the pressure reducing valve portion 74 are stroked in the opening direction of the check valve portion 63, but the stroke of the check valve portion 63 and the pressure at the input port 44 is slightly different (= 20 kg / cm 2). ), The weak spring 69 makes a receipt, and as a result, the pressure reducing valve unit 74 does not strike until the stroke end, and the hydraulic control on the directional control valve 55 side is not affected at all.

【0012】 方向制御弁55のいずれも第1圧油供給位置Bにストロークさせるとき。 −各アクチュエータ88に必要とされる流量の合計が油圧ポンプ20の最 大吐出流量以下のとき。 いま、方向制御弁55をともに第1圧油供給位置Bにストロークさせ、各入力 ポート44と各導管89と各負荷圧導用の油孔100をそれぞれ接続させたとす る。 一方の減圧弁部74は、圧力室66内の圧力が一方の圧力室65内の圧力に等 しくなるまで、また他方の減圧弁部74は、圧力室66内の圧力が、一方の圧力 室65内の圧力に等しくなるまで、それぞれストロークエンドまでストロークし たままである。いま、二つのアクチュエータ88,88の負荷圧のうち、左側の アクチュエータ88の負荷圧がより大きいとする。仮に、左側アクチュエータ2 6の負荷圧を100(kg/cm2 )、右側のアクチュエータ27の負荷圧を1 0(kg/cm2 )とする。負荷圧検出路82は、絞り91を介してタンク86 と接続されているので、方向制御弁ストローク前は負荷圧検出路82内の圧力は ゼロである。よって、各減圧弁部74は負荷圧検出用の油孔100内の圧力によ ってもストロークし、ポンプ吐出圧が圧力検出導管34内の圧力と連通させる。 負荷圧検出路82内の圧力が低圧側である右側のアクチュエータ88の導管9 0内の圧力(10kg/cm2 )まで上昇すると、まず、右方の圧力補償弁75 の減圧弁部74が閉じる。左方の圧力補償弁90の減圧弁部74はストロークし たままであり、負荷圧検出路82内の圧力はポンプ吐出圧(20kg/cm2 ) と等しくなるまで上昇する。このとき高圧側である左側のアクチュエータ88の 方向制御弁55の入力ポート44の圧力は100(kg/cm2 )であり、圧力 補償弁75のチェック弁部63は閉じていて、減圧弁部74とは解離している。 一方圧力補償弁75の減圧弁部74は、二つの圧力室65と66内の圧力の差( 20−10=10kg/cm2 )でチェック弁部63を閉じる方向に付勢する。 一方、チェック弁部63の開く方向の圧力室a内の圧力(ポンプ吐出圧)は20 (kg/cm2 )であるため、結果として方向制御弁55の入力ポート44の圧 力が10(kg/cm2 )になるまでチェック弁部63が開いた後、弱いばね6 9によってレシートする。 ポンプ調整用方向制御弁85によって、ある差圧(20kg/cm2 )分だけ 、負荷圧検出路82内の圧力(20kg/cm2 )より高い圧力にポンプ吐出圧 が制御される(40kg/cm2 )。このときも高圧側の圧力補償弁75のチェ ック弁部63は閉じたままで減圧弁部74はストロークしたままで負荷圧検出路 82内の圧力は40(kg/cm2 )となり、一方、低圧側の圧力補償弁75の 減圧弁部74は、負荷圧検出路82と負荷圧導入用の第1油路53内の圧力差( =30kg/cm2 )でチェック弁部63を閉じる方向に付勢し、結果として方 向制御弁55の入力ポート44の圧力は10kg/cm2 のままである。 このようにして、負荷圧検出路82内の圧力とポンプ吐出圧が上昇し続け、や がてポンプ吐出圧が高圧側のアクチュエータ88の負荷圧(100kg/cm2 )と等しくなると、高圧側の圧力補償弁75の減圧弁部63の二つの圧力室65 と66内の圧力はともに100kg/cm2 となり、弱いばね69によって、閉 じてチェック弁部63に当接する。このとき低圧側の圧力補償弁75の減圧弁部 74は負荷圧検出路82と負荷圧導入用の第1油路53内の圧力差(100−1 0=90kg/cm2 )でチェック弁部63を閉じる方向に付勢し、結果として 低圧側の方向制御弁55の入力ポート44の圧力は10kg/cm2 のままであ る。 再び、ポンプ調整用方向制御弁85によって、ポンプ吐出圧が120(kg/ cm2 )に制御される。 このとき高圧側の圧力補償弁75の減圧弁部63は、弱いばね69によってチ ェック弁部63に当接しているだけであり、チェック弁部63の二つの圧力室a とbの圧力差によって、ここで始めてチェック弁部63が開き、ポンプ吐出圧( 120kg/cm2 )が方向制御弁55の入力ポート44に導かれる。一方、低 圧側の圧力補償弁75の減圧弁部74は負荷圧検出路82と負荷圧導入用の第1 油路53内の圧力差(=90kg/cm2 )分でチェック弁部63を閉じる方向 に付勢し続けるが、チェック弁部63の開く方向の圧力室a内の圧力が120( kg/cm2 )になったので方向制御弁55の入口ポート44の圧力が30(k g/cm2 )(120−90)となる状態で、チェック弁部63及び減圧弁部7 4が圧力バランスする。すなわち、チェック弁部63及び減圧弁部74はわずか にストロークし、チェック弁部63において、120kg/cm2 から30kg /cm2 になるように絞っている状態となる。 ここで初めて、この油圧制御系はつり合い、高圧側の方向制御弁55の入力ポ ート44の圧力が120kg/cm2 、低圧側の方向制御弁55の入力ポート4 4の圧力が30kg/cm2 となり、すなわち、二つの方向制御弁55,55の 入口圧と出口圧(負荷圧)の差は、ともに20kg/cm2 に保たれることによ り、二つの方向制御弁55,55はともに、ストローク分だけで、アクチュエー タ88,88に供給する流量を制御することができるようになる。When any of the directional control valves 55 is stroked to the first pressure oil supply position B. -When the total flow rate required for each actuator 88 is less than or equal to the maximum discharge flow rate of the hydraulic pump 20. Now, it is assumed that the directional control valve 55 is both stroked to the first pressure oil supply position B to connect the input ports 44, the conduits 89, and the load pressure guiding oil holes 100, respectively. One of the pressure reducing valve sections 74 has the pressure in the pressure chamber 66 equal to the pressure in the one pressure chamber 65, and the other pressure reducing valve section 74 has the pressure in the pressure chamber 66 equal to that of the one pressure chamber. It continues to stroke to the end of each stroke until it becomes equal to the pressure in 65. Now, assume that the load pressure of the left actuator 88 is larger than the load pressure of the two actuators 88, 88. It is assumed that the load pressure of the left actuator 26 is 100 (kg / cm 2 ) and the load pressure of the right actuator 27 is 10 (kg / cm 2 ). Since the load pressure detection passage 82 is connected to the tank 86 via the throttle 91, the pressure in the load pressure detection passage 82 is zero before the stroke of the directional control valve. Therefore, each pressure reducing valve portion 74 makes a stroke even by the pressure in the oil hole 100 for detecting the load pressure, and the pump discharge pressure communicates with the pressure in the pressure detecting conduit 34. When the pressure in the load pressure detection path 82 rises to the pressure (10 kg / cm 2 ) in the conduit 90 of the actuator 88 on the right side on the low pressure side, first, the pressure reducing valve portion 74 of the pressure compensating valve 75 on the right side closes. .. The pressure reducing valve portion 74 of the pressure compensating valve 90 on the left side remains stroked, and the pressure in the load pressure detecting path 82 rises until it becomes equal to the pump discharge pressure (20 kg / cm 2 ). At this time, the pressure of the input port 44 of the directional control valve 55 of the left side actuator 88 which is the high pressure side is 100 (kg / cm 2 ), the check valve portion 63 of the pressure compensation valve 75 is closed, and the pressure reducing valve portion 74 is closed. Is dissociated from. On the other hand, the pressure reducing valve portion 74 of the pressure compensating valve 75 urges the check valve portion 63 in the closing direction by the difference in pressure between the two pressure chambers 65 and 66 (20-10 = 10 kg / cm 2 ). On the other hand, the pressure (pump discharge pressure) in the pressure chamber a in the opening direction of the check valve portion 63 is 20 (kg / cm 2 ), and as a result, the pressure of the input port 44 of the directional control valve 55 is 10 (kg / Cm 2 ), the check valve portion 63 is opened, and then a receipt is made by the weak spring 69. By a pump adjusting direction control valve 85, there differential pressure (20kg / cm 2) amount corresponding, pump discharge pressure from the high pressure pressure (20kg / cm 2) of the load pressure Detchi 82 is controlled (40 kg / cm 2 ). Also at this time, the pressure in the load pressure detection path 82 becomes 40 (kg / cm 2 ) with the check valve portion 63 of the high-pressure side pressure compensating valve 75 kept closed and the pressure reducing valve portion 74 still having a stroke. The pressure reducing valve portion 74 of the pressure compensating valve 75 on the low pressure side is configured to close the check valve portion 63 due to the pressure difference (= 30 kg / cm 2 ) in the load pressure detecting passage 82 and the first oil passage 53 for introducing the load pressure. It is energized so that the pressure at the input port 44 of the directional control valve 55 remains at 10 kg / cm @ 2. In this way, the pressure in the load pressure detection path 82 and the pump discharge pressure continue to rise, and when the pump discharge pressure eventually becomes equal to the load pressure (100 kg / cm 2 ) of the high pressure side actuator 88, the high pressure side The pressures in the two pressure chambers 65 and 66 of the pressure reducing valve portion 63 of the pressure compensating valve 75 are both 100 kg / cm 2 , and are closed by the weak spring 69 to contact the check valve portion 63. At this time, the pressure reducing valve portion 74 of the pressure compensating valve 75 on the low pressure side has a check valve portion due to a pressure difference (100-10 = 90 kg / cm 2 ) in the load pressure detecting passage 82 and the first oil passage 53 for introducing the load pressure. 63 is urged in the closing direction, and as a result, the pressure at the input port 44 of the directional control valve 55 on the low pressure side remains 10 kg / cm 2 . Again, the pump adjusting directional control valve 85 controls the pump discharge pressure to 120 (kg / cm 2 ). At this time, the pressure reducing valve portion 63 of the pressure compensating valve 75 on the high pressure side is only in contact with the check valve portion 63 by the weak spring 69, and due to the pressure difference between the two pressure chambers a and b of the check valve portion 63. For the first time, the check valve portion 63 is opened, and the pump discharge pressure (120 kg / cm 2 ) is introduced to the input port 44 of the directional control valve 55. On the other hand, the pressure reducing valve portion 74 of the pressure compensating valve 75 on the low pressure side closes the check valve portion 63 by the pressure difference (= 90 kg / cm 2 ) in the load pressure detecting passage 82 and the first oil passage 53 for introducing the load pressure. However, since the pressure in the pressure chamber a in the opening direction of the check valve portion 63 becomes 120 (kg / cm 2 ), the pressure at the inlet port 44 of the directional control valve 55 becomes 30 (kg / cm 2 ). cm 2 ) (120-90), the check valve portion 63 and the pressure reducing valve portion 74 are pressure balanced. That is, the check valve portion 63 and the pressure reducing valve portion 74 make a slight stroke, and the check valve portion 63 is in a state of being squeezed from 120 kg / cm 2 to 30 kg / cm 2 . For the first time, this hydraulic control system is balanced and the pressure of the input port 44 of the high-pressure side directional control valve 55 is 120 kg / cm 2 , and the pressure of the input port 44 of the low-pressure side directional control valve 55 is 30 kg / cm 2. 2 , that is, the difference between the inlet pressure and the outlet pressure (load pressure) of the two directional control valves 55, 55 is maintained at 20 kg / cm 2 , so that the two directional control valves 55, 55 are In both cases, the flow rate supplied to the actuators 88, 88 can be controlled only by the stroke amount.

【0013】 −各アクチュエータ88,88に必要とされる流量の合計が油圧ポンプ8 0の最大吐出流量以上のとき。 いま、アクチュエータ88,88の負荷圧および必要流量を左側のアクチュエ ータ88が100kg/cm2 、501/min、右側のアクチュエータ88が 10kg/cm2 、501/minとする。油圧ポンプ80の最大吐出流量が1 001/min以上のときは、前述の通り、方向制御弁55,55の入口圧と出 口圧の差が一定に保たれる(=20kg/cm2 )ため、ストロークによって流 量制御ができ、501/minずつ流量分配することはできる。 次に、油圧ポンプ80の最大吐出量が701/minになったとする。二つの 方向制御弁55,55の入口圧は前述の通り120kg/cm2 、30kg/c m2 であるので、高圧側の方向制御弁55への流量が501/minから201 /minに減る。低圧側の方向制御弁55への流量は、501/minのままで ある。二つの方向制御弁55,55のストローク(開口面積)を変えないとする と、高圧側の方向制御弁55の入口圧と出口圧の差圧が流量が減った分、20k g/cm2 から下がる。いま、差圧が14kg/cm2 、すなわち、入口圧が、 120kg/cm2 から114(100+14)kg/cm2 に下がったとする 。この時圧力補償弁75の減圧弁部74の二つの圧力室65,66の圧力は、と もに100kg/cm2 のままであるから、減圧弁部74は弱いばね69によっ てチェック弁部63に当接しているだけであり、チェック弁部63の閉じる方向 の圧力室b内の圧力が120kg/cm2 から114kg/cm2 に減少すれば 、チェック弁部63が開いたまま(ストロークエンド)で、チェック弁部63の 開く方向の圧力室a内の圧力、すなわち、ポンプ吐出圧が120kg/cm2 か ら114kg/cm2 に減少する。この時(ポンプ吐出流量不足時)にはポンプ 吐出圧は、ポンプ調整用方向制御弁85の制御によらなくなる。 一方、低圧側の圧力補償弁75の減圧弁部74の二つの圧力室65と66は、 100kg/cm2 、10kg/cm2 のままで、その差圧90kg/cm2 で チェック弁部63の閉じる方向に付勢し続ける。一方、チェック弁部63の開く 方向の圧力室a内の圧力、すなわちポンプ吐出圧が114kg/cm2 に減少し たので、チェック弁部63の閉じる方向の圧力室b内の圧力が30kg/cm2 から24kg/cm2 に減少した状態でチェック弁部63及び減圧弁部74が圧 力バランスする。よって、低圧側の方向制御弁55の入口圧と出口圧の差圧は2 0kg/cm2 から14kg/cm2 (24−10)に減少する。方向制御弁5 5のこの差圧の減少により低圧側のアクチュエータ88への供給流量は501/ minから減少し、その分高圧側のアクチュエータ88への供給流量が201/ minから増える。 すなわち、方向制御弁55および55の入口圧と出口圧の差圧が等しく、かつ 、二つのアクチュエータ88,88への供給量がともに351/minずつに分 配される状態で、この油圧制御系がつり合う。When the total flow rate required for each actuator 88, 88 is greater than or equal to the maximum discharge flow rate of the hydraulic pump 80. Now, the load pressure and the required flow rate of the actuators 88, 88 are 100 kg / cm 2 , 501 / min for the left actuator 88 and 10 kg / cm 2 , 501 / min for the right actuator 88. When the maximum discharge flow rate of the hydraulic pump 80 is 1001 / min or more, the difference between the inlet pressure and the outlet pressure of the directional control valves 55, 55 is kept constant (= 20 kg / cm 2 ) as described above. The flow rate can be controlled by the stroke, and the flow rate can be distributed by 501 / min. Next, assume that the maximum discharge amount of the hydraulic pump 80 becomes 701 / min. Since the inlet pressure of the two directional control valves 55, 55 are described above 120kg / cm 2, 30kg / c m 2, flow to the direction control valve 55 of the high-pressure side is reduced to 201 / min from 501 / min. The flow rate to the directional control valve 55 on the low pressure side remains 501 / min. Assuming that the stroke (opening area) of the two directional control valves 55, 55 is not changed, the pressure difference between the inlet pressure and the outlet pressure of the directional control valve 55 on the high pressure side is reduced by 20 kg / cm 2 due to the decrease in the flow rate. Go down. Now, it is assumed that the differential pressure is 14 kg / cm 2 , that is, the inlet pressure is reduced from 120 kg / cm 2 to 114 (100 + 14) kg / cm 2 . At this time, the pressures in the two pressure chambers 65 and 66 of the pressure reducing valve portion 74 of the pressure compensating valve 75 remain at 100 kg / cm 2 , and therefore the pressure reducing valve portion 74 is checked by the weak spring 69. If the pressure in the pressure chamber b in the closing direction of the check valve portion 63 decreases from 120 kg / cm 2 to 114 kg / cm 2 , the check valve portion 63 remains open (stroke end). ), the pressure in the direction of the pressure chamber a to open the check valve unit 63, i.e., the pump discharge pressure is reduced to 120 kg / cm 2 or et 114 kg / cm 2. At this time (when the pump discharge flow rate is insufficient), the pump discharge pressure is not controlled by the pump adjustment directional control valve 85. On the other hand, the two pressure chambers 65 and 66 of the pressure reducing valve portion 74 of the pressure compensating valve 75 on the low pressure side remain 100 kg / cm 2 and 10 kg / cm 2 , and the differential pressure of 90 kg / cm 2 causes the check valve portion 63 of Continue to push in the closing direction. On the other hand, since the pressure in the pressure chamber a in the opening direction of the check valve portion 63, that is, the pump discharge pressure is reduced to 114 kg / cm 2 , the pressure in the pressure chamber b in the closing direction of the check valve portion 63 is 30 kg / cm 2. With the pressure reduced from 2 to 24 kg / cm 2 , the check valve portion 63 and the pressure reducing valve portion 74 balance the pressure. Therefore, the differential pressure between the inlet pressure and the outlet pressure of the directional control valve 55 on the low pressure side is reduced from 20 kg / cm 2 to 14 kg / cm 2 (24-10). Due to the decrease in the differential pressure of the directional control valve 55, the supply flow rate to the low-pressure side actuator 88 decreases from 501 / min, and the supply flow rate to the high-pressure side actuator 88 increases from 201 / min. That is, in the state where the differential pressure between the inlet pressure and the outlet pressure of the directional control valves 55 and 55 is equal, and the supply amounts to the two actuators 88 and 88 are both divided into 351 / min, the hydraulic control system is controlled. Balance.

【0014】 一つの油圧ポンプ80によって負荷されるアクチュエータが3つ以上のとき 。 アクチュエータが3つ以上のときも、方向制御弁と油圧ポンプの間に、同じチ ェック弁部63及び減圧弁部74を備えた圧力補償弁75を配設し、各減圧弁部 の閉じる方向の圧力差を負荷圧検出路82によってすべて連通するだけで、アク チュエータが3つ以上のときも前述の作動原理による作動が実現される。 以上の実施例では油圧ポンプ80を可変容量型としたが、油圧ポンプ80を固 定容量型としても良く、この場合には油圧ポンプ80のポンプ吐出路81にアン ロード弁を設ければ良い。 なお、弁ブロック30の油孔100の代りに主スプール49内に第1負荷圧検 出ポート45と第2負荷圧検出ポート46を連通する油路を形成して負荷圧を減 圧弁部74の第1受圧室65に供給するようにしても良い。When the number of actuators loaded by one hydraulic pump 80 is three or more. Even when there are three or more actuators, a pressure compensating valve 75 having the same check valve portion 63 and pressure reducing valve portion 74 is disposed between the directional control valve and the hydraulic pump, and the pressure compensating valve 75 is arranged in the closing direction of each pressure reducing valve portion. Even if the number of actuators is three or more, the operation according to the above-described operation principle can be realized by simply communicating all the pressure differences through the load pressure detection path 82. Although the hydraulic pump 80 is a variable displacement type in the above embodiments, the hydraulic pump 80 may be a fixed displacement type, and in this case, an unload valve may be provided in the pump discharge passage 81 of the hydraulic pump 80. In place of the oil hole 100 of the valve block 30, an oil passage that connects the first load pressure detection port 45 and the second load pressure detection port 46 is formed in the main spool 49 to reduce the load pressure. It may be supplied to the first pressure receiving chamber 65.

【0015】[0015]

【考案の効果】[Effect of the device]

主スプール49を左又は右に摺動すると入力ポート44が第1切欠部101又 は第2切欠部102を経て第1又は第2アクチェエータポート34,35に連通 するので、主スプール49を左又は右に同一ストローク操作にしたときに第1又 は第2アクチェエータポート34,35に供給する流量を第1・第2切欠部10 1,102の幅あるいは深さを異ならせることでそれぞれ異なる流量とすること ができるから、シリンダ等のアクチェエータの面積が異なる第1室と第2室への 供給流量を異ならせてアクチェエータを伸長、縮少する時の速度を等しくできる 。 When the main spool 49 is slid to the left or right, the input port 44 communicates with the first or second actuator port 34, 35 via the first notch portion 101 or the second notch portion 102. When the same stroke operation is performed to the left or right, the widths or depths of the first and second cutouts 101 and 102 are made different so as to supply the flow rates to the first or second actuator ports 34 and 35. Since the flow rates can be different from each other, it is possible to equalize the speeds at which the actuator is extended and contracted by making the flow rates supplied to the first chamber and the second chamber having different areas of the actuator such as a cylinder different.

【図面の簡単な説明】[Brief description of drawings]

【図1】従来の圧油供給装置の回路図である。FIG. 1 is a circuit diagram of a conventional pressure oil supply device.

【図2】先に出願した圧油供給装置の回路図である。FIG. 2 is a circuit diagram of a pressure oil supply device previously applied.

【図3】先に出願した圧油供給装置の具体例を示す断面
図である。
FIG. 3 is a cross-sectional view showing a specific example of the pressure oil supply device previously applied.

【図4】本考案の実施例を示す弁ブロックの斜視図であ
る。
FIG. 4 is a perspective view of a valve block according to an embodiment of the present invention.

【図5】弁ブロックに主スプール、スプールを組み込ん
だ状態の断面図である。
FIG. 5 is a cross-sectional view showing a state where a main spool and a spool are incorporated in a valve block.

【図6】方向制御弁の動作説明図である。FIG. 6 is an operation explanatory view of the directional control valve.

【図7】方向制御弁の動作説明図である。FIG. 7 is an operation explanatory view of the directional control valve.

【図8】複数の弁ブロックの接続状態を示す斜視図であ
る。
FIG. 8 is a perspective view showing a connected state of a plurality of valve blocks.

【図9】図5に示すものの回路図である。FIG. 9 is a circuit diagram of what is shown in FIG.

【符号の説明】[Explanation of symbols]

30 弁ブロック、31 スプール孔、34 第1アク
チュエータポート、35 第2アクチュエータポート、
37 チェック弁用孔、38 減圧弁用孔、39 ポン
プポート、42 第1ポート、43 第2ポート、44
入力ポート、45 第1負荷圧検出ポート、46 第
2負荷圧検出ポート、47 第1タンクポート、48
第2タンクポート、49 主スプール、52 中間小径
部、55方向制御弁、56 油孔、58 油孔、60
スプール、63 チェック弁部、64 スプール、65
第1圧力室、66 第2圧力室、69 ばね、74減
圧弁部、75 圧力補償弁、80 油圧ポンプ、81
ポンプ吐出路、82負荷圧検出路、101 第1切欠
部、102 第2切欠部。
30 valve block, 31 spool hole, 34 first actuator port, 35 second actuator port,
37 check valve hole, 38 pressure reducing valve hole, 39 pump port, 42 first port, 43 second port, 44
Input port, 45 First load pressure detection port, 46 Second load pressure detection port, 47 First tank port, 48
Second tank port, 49 main spool, 52 middle small diameter portion, 55 directional control valve, 56 oil hole, 58 oil hole, 60
Spool, 63 Check valve part, 64 Spool, 65
1st pressure chamber, 66 2nd pressure chamber, 69 spring, 74 pressure reducing valve part, 75 pressure compensation valve, 80 hydraulic pump, 81
Pump discharge passage, 82 load pressure detection passage, 101 first notch, 102 second notch.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 【請求項1】 チェック弁部63と減圧弁部74より成
る圧力補償弁75と、この圧力補償弁75の出力側に設
けた方向制御弁55とを備えた圧油供給装置において、 弁ブロック30にスプール孔31に開口した入力ポート
44、第1・第2負荷圧検出ポート45,46、第1・
第2アクチェータポート34,35、第1・第2タンク
ポート47,48をそれぞれ形成し、このスプール孔3
1に各ポートを連通・遮断する主スプール49を嵌挿し
て方向制御弁55とし、この主スプール49に入力ポー
ト44に臨む中間小径部52及びこの中間小径部52に
開口し入力ポート44を前記第1・第2負荷圧検出ポー
ト45,46に連通制御する第1・第2切欠部101,
102を形成したことを特徴とする圧油供給装置。
1. A pressure oil supply device comprising a pressure compensation valve 75 comprising a check valve portion 63 and a pressure reducing valve portion 74, and a directional control valve 55 provided on the output side of the pressure compensation valve 75. Input port 44 opened to the spool hole 31, first and second load pressure detection ports 45, 46, first
The second actuator ports 34 and 35 and the first and second tank ports 47 and 48 are formed respectively, and the spool hole 3
A main spool 49 that connects and disconnects each port is fitted into 1 to form a directional control valve 55, and an intermediate small diameter portion 52 facing the input port 44 and the intermediate small diameter portion 52 are opened in the main spool 49 to open the input port 44. First and second cutouts 101 for controlling communication with the first and second load pressure detection ports 45 and 46,
102 is a pressure oil supply device.
JP4516892U 1992-06-08 1992-06-08 Pressure oil supply device Pending JPH0596504U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4516892U JPH0596504U (en) 1992-06-08 1992-06-08 Pressure oil supply device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4516892U JPH0596504U (en) 1992-06-08 1992-06-08 Pressure oil supply device

Publications (1)

Publication Number Publication Date
JPH0596504U true JPH0596504U (en) 1993-12-27

Family

ID=12711739

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4516892U Pending JPH0596504U (en) 1992-06-08 1992-06-08 Pressure oil supply device

Country Status (1)

Country Link
JP (1) JPH0596504U (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5934006A (en) * 1982-08-17 1984-02-24 Daikin Ind Ltd Fluid control device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5934006A (en) * 1982-08-17 1984-02-24 Daikin Ind Ltd Fluid control device

Similar Documents

Publication Publication Date Title
US5533334A (en) Pressurized fluid supply system
EP0747601B1 (en) Pressure oil supply system having a pressure compensating valve
JP2668744B2 (en) Pressure oil supply device
JP2575156Y2 (en) Pressure oil supply device
JPH0596504U (en) Pressure oil supply device
JP3119317B2 (en) Pressure oil supply device
JPH0643301U (en) Directional control valve device
JPH04244605A (en) Pressure compensation valve
JP3454313B2 (en) Pressure oil supply device
JP2551546Y2 (en) Pressure oil supply device
JP2577676Y2 (en) Pressure oil supply device
JP2577675Y2 (en) Pressure oil supply device
JPH0530503U (en) Pressure oil supply device
JP3119316B2 (en) Pressure oil supply device
JP3116564B2 (en) Pressure oil supply device
JPH05332311A (en) Pressure oil supply device
JPH05332306A (en) Pressure oil supply device
JPH0532803U (en) Directional control valve device
JP2578622Y2 (en) Directional control valve device with pressure compensating valve
JPH05332305A (en) Pressure oil supply device
JPH0828506A (en) Pressure compensating valve
JPH05332312A (en) Pressure oil supply device
JP3119315B2 (en) Pressure oil supply device
JPH05332314A (en) Pressure oil supply device
JPH05332307A (en) Suction safety structure for pressure oil supply device