JP2578622Y2 - Directional control valve device with pressure compensating valve - Google Patents

Directional control valve device with pressure compensating valve

Info

Publication number
JP2578622Y2
JP2578622Y2 JP1992076058U JP7605892U JP2578622Y2 JP 2578622 Y2 JP2578622 Y2 JP 2578622Y2 JP 1992076058 U JP1992076058 U JP 1992076058U JP 7605892 U JP7605892 U JP 7605892U JP 2578622 Y2 JP2578622 Y2 JP 2578622Y2
Authority
JP
Japan
Prior art keywords
pressure
port
valve
spool
actuator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1992076058U
Other languages
Japanese (ja)
Other versions
JPH0640405U (en
Inventor
和義 石浜
和則 池井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Komatsu Ltd
Original Assignee
Komatsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP1992076058U priority Critical patent/JP2578622Y2/en
Application filed by Komatsu Ltd filed Critical Komatsu Ltd
Priority to KR1019950701574A priority patent/KR950704617A/en
Priority to EP93923052A priority patent/EP0747601B1/en
Priority to DE1993628382 priority patent/DE69328382T2/en
Priority to US08/411,817 priority patent/US5651390A/en
Priority to PCT/JP1993/001534 priority patent/WO1994010454A1/en
Publication of JPH0640405U publication Critical patent/JPH0640405U/en
Priority to US08/600,505 priority patent/US5784885A/en
Priority to US08/742,777 priority patent/US5845678A/en
Application granted granted Critical
Publication of JP2578622Y2 publication Critical patent/JP2578622Y2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【考案の詳細な説明】[Detailed description of the invention]

【0001】[0001]

【産業上の利用分野】本考案は、1つの油圧ポンプの吐
出圧油を複数のアクチュエータに供給する圧油供給装置
に用いる圧力補償弁を備えた方向制御弁装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a directional control valve device provided with a pressure compensating valve for use in a pressure oil supply device for supplying pressure oil discharged from one hydraulic pump to a plurality of actuators.

【0002】[0002]

【従来の技術】特開昭60−11706号公報に示す圧
油供給装置が知られている。すなわち、図1に示すよう
に油圧ポンプ1の吐出導管2に複数の圧力補償弁3,1
3を並列に接続し、各圧力補償弁3,13の出口導管
4,14に方向制御弁5,15をそれぞれ設けこの各方
向制御弁5,15の出力側をアクチュエータ6,16に
それぞれ接続し、前記圧力補償弁3,13をポンプ吐出
圧と方向制御弁出口圧で開き方向に押され、方向制御弁
入口圧と最も高い負荷圧で閉じ方向に押される構造とし
た圧油供給装置である。この圧油供給装置であれば、複
数の方向制御弁3,13を同時操作した時に各アクチュ
エータにポンプ吐出圧油を所定の分配比で供給できる。
2. Description of the Related Art A pressure oil supply device disclosed in Japanese Patent Application Laid-Open No. Sho 60-11706 is known. That is, as shown in FIG. 1, a plurality of pressure compensating valves 3 and 1 are connected to the discharge conduit 2 of the hydraulic pump 1.
3 are connected in parallel, and directional control valves 5 and 15 are provided at outlet pipes 4 and 14 of the pressure compensating valves 3 and 13, respectively, and the output sides of the directional control valves 5 and 15 are connected to actuators 6 and 16, respectively. The pressure oil supply device has a structure in which the pressure compensating valves 3 and 13 are pushed in the opening direction by the pump discharge pressure and the direction control valve outlet pressure, and are pushed in the closing direction by the direction control valve inlet pressure and the highest load pressure. . With this pressure oil supply device, the pump discharge pressure oil can be supplied to each actuator at a predetermined distribution ratio when a plurality of directional control valves 3 and 13 are simultaneously operated.

【0003】かかる圧油供給装置であるとアクチュエー
タの負荷圧を比較して高い方の負荷圧を圧力補償弁に供
給するためにシャトル弁7が必ず必要であり、しかもこ
のシャトル弁7はアクチュエータの数より1つ少ない数
だけ必要であり、それだけコストが高くなる。また、前
述の図1に示す圧油供給装置であると2つのアクチュエ
ータ6,16をともに作動させ、それらの負荷圧のう
ち、アクチュエータ6側の負荷圧が大きいとする。この
ときは、導管8内の圧力が最高負荷圧としてシャトル弁
7によって導管9に導かれる。次に、負荷圧が変動し
て、アクチュエータ16側の負荷圧の方がアクチュエー
タ6側の負荷圧より大きくなったとする。その際、すな
わちシャトル弁7が切換わる際、シャトル弁7内の吹き
ぬけにより導管18内の圧力がぬけ、他方の導管8内の
圧力が押しこめられる。そのため、シャトル弁7の切換
え時、過渡的にアクチュエータ16は自然降下しアクチ
ュエータ6は加速される。
In such a pressurized oil supply device, a shuttle valve 7 is required to supply a higher load pressure to the pressure compensating valve by comparing the load pressure of the actuator. One less than the number is needed, which increases the cost. In the pressure oil supply device shown in FIG. 1 described above, it is assumed that the two actuators 6 and 16 are operated together and that the load pressure on the actuator 6 side is larger than the load pressure. At this time, the pressure in the conduit 8 is guided to the conduit 9 by the shuttle valve 7 as the maximum load pressure. Next, it is assumed that the load pressure fluctuates and the load pressure on the actuator 16 side becomes larger than the load pressure on the actuator 6 side. At that time, that is, when the shuttle valve 7 is switched, the pressure in the conduit 18 is released by the blowout in the shuttle valve 7 and the pressure in the other conduit 8 is suppressed. Therefore, when the shuttle valve 7 is switched, the actuator 16 transiently descends spontaneously and the actuator 6 is accelerated.

【0004】この課題を解決できるようにした圧油供給
装置としては、図2に示すように、油圧ポンプ20の吐
出路21に複数の方向制御弁22を設け、この各方向制
御弁22の入口側にチェック弁部23と減圧弁部24よ
り成る圧力補償弁25をそれぞれ設けたものが知られて
いる。
As shown in FIG. 2, a plurality of directional control valves 22 are provided in a discharge path 21 of a hydraulic pump 20, and an inlet of each directional control valve 22 is provided as a pressure oil supply device which can solve this problem. On the other hand, a pressure compensation valve 25 comprising a check valve portion 23 and a pressure reducing valve portion 24 is provided on the side.

【0005】[0005]

【考案が解決しようとする課題】この方向制御弁22と
圧力補償弁25とを組み合せて圧油供給装置を構成する
場合、実用化段階で方向制御弁22と圧力補償弁25を
1つの弁ブロック内に組み込むことがコンパクト化を図
る上で必要となるが、圧力補償弁24はチェック弁部2
3と減圧弁部24より成って部品点数が多く方向制御弁
22と圧力補償弁25を1つの弁ブロックに組み込むこ
とがポート連通などによって大変困難である。
When the directional control valve 22 and the pressure compensating valve 25 are combined to constitute a pressure oil supply device, the directional control valve 22 and the pressure compensating valve 25 are combined into one valve block at the stage of practical use. The pressure compensating valve 24 is required to be built in
3 and the pressure reducing valve section 24, the number of parts is large, and it is very difficult to incorporate the directional control valve 22 and the pressure compensating valve 25 into one valve block due to port communication and the like.

【0006】そこで、本考案は前述の課題を解決できる
ようにした圧力補償弁を備えた方向制御弁装置を提供す
ることを目的とする。
Accordingly, an object of the present invention is to provide a directional control valve device having a pressure compensating valve which can solve the above-mentioned problems.

【0007】[0007]

【課題を解決するための手段】弁ブロック30にスプー
ル孔31とチェック弁用孔37と減圧弁用孔38を形成
し、前記弁ブロック30にはスプール孔31に開口した
入力ポート44、第1・第2負荷圧検出ポート45,4
6、第1・第2アクチュエータポート34,35、第1
タンクポート47をそれぞれ形成し、このスプール孔3
1に各ポートを連通・遮断する主スプール49を嵌挿し
て方向制御弁55とし、前記弁ブロック30にはチェッ
ク弁用孔37に開口したポンプポート39及びチェック
弁用孔37を入力ポート44に連通する油路56を形成
し、そのチェック弁用孔37にポンプポート39と油路
56を連通・遮断し、かつ遮断位置でストップされるス
プール60を挿入してチェック弁部63とし、前記弁ブ
ロック30には減圧弁用孔38に開口する第1・第2ポ
ート42,43を形成し、この減圧弁用孔38にスプー
ル64を嵌挿して第1圧力室65と第2圧力室66を形
成し、その第1圧力室65を第2負荷圧検出ポート46
に連通し、第2圧力室66を第2ポート43に連通し、
前記スプール64をばね69で一方向に付勢して前記チ
ェック弁部63のスプール60を遮断位置に押しつけ保
持して減圧弁部74とし、この減圧弁部74と前記チェ
ック弁部63で圧力補償弁75とし、前記主スプール4
9を第1圧油供給位置とした時に第2アクチュエータポ
ート35が第2負荷圧検出ポート46に接続するように
した圧力補償弁を備えた方向制御弁装置。
A spool hole 31, a check valve hole 37, and a pressure reducing hole 38 are formed in the valve block 30, and an input port 44 opened in the spool hole 31 is provided in the valve block 30. .Second load pressure detection ports 45 and 4
6, the first and second actuator ports 34, 35, the first
Tank ports 47 are respectively formed, and the spool holes 3 are formed.
A main spool 49 for connecting / disconnecting each port is inserted into 1 to form a directional control valve 55, and the pump port 39 and the check valve hole 37 opened in the check valve hole 37 are connected to the input port 44 in the valve block 30. An oil passage 56 is formed to communicate with the pump port 39 and the oil passage 56 is inserted into the check valve hole 37 and a spool 60 stopped at the shut-off position is inserted into a check valve portion 63 to form a check valve portion 63. The block 30 has first and second ports 42 and 43 that open to the pressure reducing valve hole 38, and a spool 64 is inserted into the pressure reducing valve hole 38 to form a first pressure chamber 65 and a second pressure chamber 66. And the first pressure chamber 65 is connected to the second load pressure detection port 46.
And the second pressure chamber 66 to the second port 43,
The spool 64 is urged in one direction by a spring 69 to press and hold the spool 60 of the check valve portion 63 at the shut-off position to form a pressure reducing valve portion 74. The pressure reducing valve portion 74 and the check valve portion 63 provide pressure compensation. The main spool 4
A directional control valve device including a pressure compensating valve configured to connect the second actuator port to the second load pressure detection port when the first pressure oil supply position is set to 9.

【0008】[0008]

【作 用】弁ブロック30に方向制御弁55の主スプ
ール49と圧力補償弁75の弁60、スプール64を収
納して圧力補償弁を備えた方向制御弁装置となるし、第
2アクチュエータポート35に流入したアクチュエータ
よりの戻り油を第1アクチュエータポート34より再び
アクチュエータに供給できる。
[Operation] A directional control valve device provided with a pressure compensating valve is housed in a valve block 30 in which a main spool 49 of a directional control valve 55, a valve 60 of a pressure compensating valve 75, and a spool 64 are accommodated. Return oil from the actuator that has flowed into the actuator can be supplied to the actuator again from the first actuator port 34.

【0009】[0009]

【実 施 例】図3に示すように、弁ブロック30は略
直方体形状となり、この弁ブロック30の上部寄りにス
プール孔31が左右側面32,33に開口して形成さ
れ、このスプール孔31に開口した第1・第2アクチュ
エータポート34,35が上面36に開口して形成して
あり、弁ブロック30の下部寄りには左側面32に開口
したチェック弁用孔37と右側面33に開口した減圧弁
用孔38が同心状に形成され、前記チェック弁用孔37
に開口したポンプポート39が前後面40,41に開口
して形成され、前記減圧弁孔38に開口した第1、第2
ポート42,43が前後面40,41に開口して形成し
てあり、複数の弁ブロック30の前後面40,41を突
き合せて連結すると各ポンプ・第1・第2ポート39,
42,43が連通するようにしてある。
EXAMPLE As shown in FIG. 3, the valve block 30 has a substantially rectangular parallelepiped shape, and a spool hole 31 is formed near the upper portion of the valve block 30 so as to open on the left and right side surfaces 32 and 33. Opened first and second actuator ports 34 and 35 are formed in the upper surface 36 so as to be opened. Near the lower portion of the valve block 30, a check valve hole 37 opened in the left side 32 and an opening in the right side 33. A pressure reducing valve hole 38 is formed concentrically, and the check valve hole 37 is formed.
A pump port 39 is formed at the front and rear surfaces 40 and 41 and is formed at the front and rear surfaces 40 and 41.
Ports 42 and 43 are formed so as to open to the front and rear surfaces 40 and 41. When the front and rear surfaces 40 and 41 of the plurality of valve blocks 30 are butt-connected to each other, each pump / first / second port 39,
42 and 43 communicate with each other.

【0010】図4に示すように、前記弁ブロック30に
はスプール孔31に開口した入力ポート44、第1・第
2負荷圧検出ポート45,46、前記第1・第2アクチ
ュエータポート34,35、第1タンクポート47が形
成され、そのスプール孔31に嵌挿した主スプール49
には第1・第2小径部50,51と連通用溝52と中間
小径部53が形成してあり、第1・第2負荷圧検出ポー
ト45,46はポート54で連通している。前記スプー
ル49はスプリングで各ポートを遮断する中立位置Aに
保持され、スプール49を右方に摺動すると中間小径部
53と第1切欠53aで第2負荷圧検出ポート46と第
2アクチュエータポート35と連通し、連通用溝52で
入力ポート44が第2負荷圧検出ポート46に連通し、
第1小径部50で第1アクチュエータポート34が第1
負荷圧検出ポート45に連通し、かつ第1アクチュエー
タポート34と第1タンクポート47が遮断する第1油
圧供給位置Bとなり、スプール49を左方に摺動すると
第1小径部50で第1アクチュエータポート34を第1
タンクポート47に連通し、連通用溝52でポンプポー
ト44が第1負荷圧検出ポート45に連通し、第2小径
部51と切欠部51aで第2アクチュエータポート35
が第2負荷圧検出ポート46に連通する第2圧油供給位
置Cとなって方向制御弁55を構成している。
As shown in FIG. 4, the valve block 30 has an input port 44 opened to the spool hole 31, first and second load pressure detection ports 45 and 46, and first and second actuator ports 34 and 35. , A first tank port 47 is formed, and a main spool 49 inserted into the spool hole 31 is formed.
Are formed with first and second small-diameter portions 50 and 51, a communication groove 52 and an intermediate small-diameter portion 53, and the first and second load pressure detection ports 45 and 46 communicate with each other through a port 54. The spool 49 is held at a neutral position A where each port is shut off by a spring. When the spool 49 is slid rightward, the second load pressure detection port 46 and the second actuator port 35 are formed by the intermediate small diameter portion 53 and the first notch 53a. The input port 44 communicates with the second load pressure detection port 46 through the communication groove 52,
In the first small diameter portion 50, the first actuator port 34 is
When the spool 49 is slid to the left, the first small-diameter portion 50 is in contact with the first actuator port 34. The first hydraulic port position B is in communication with the load pressure detection port 45, and the first actuator port 34 and the first tank port 47 are shut off. Port 34 first
The pump port 44 communicates with the first load pressure detection port 45 through the communication groove 52, and the second actuator port 35 communicates with the second small diameter portion 51 and the notch 51 a.
Is the second pressure oil supply position C communicating with the second load pressure detection port 46, and constitutes the direction control valve 55.

【0011】前記チェック弁用孔37は油路56で入力
ポート44に開口し、そのチェック弁用孔37には前記
ポンプポート39と入力ポート44を連通遮断する弁6
0が嵌挿され、その弁60はプラグ61に設けたストッ
パ杆62で図示位置より左方に摺動しないように規制さ
れて遮断位置に保持されてチェック弁部63を構成して
いる。
The check valve hole 37 opens to the input port 44 through the oil passage 56, and the check valve hole 37 is a valve 6 for disconnecting the pump port 39 from the input port 44.
0 is inserted, and the valve 60 is regulated by a stopper rod 62 provided on a plug 61 so as not to slide leftward from the position shown in the figure, and is held at a shut-off position to constitute a check valve portion 63.

【0012】前記減圧弁用孔38は第3ポート57と油
路58で第2負荷圧検出ポート46に連通し、この減圧
弁用孔38にはスプール64が嵌挿されて第1圧力室6
5と第2圧力室66を形成し、第1圧力室65は第3ポ
ート57に連通し、第2圧力室66は第2ポート43に
連通し、前記スプール64の盲穴67に挿入したフリー
ピストン68と盲穴67底部との間にばね69が設けら
れてフリーピストン68はプラグ70に当接し、かつス
プール64に一体的に設けた押杆71が透孔72より突
出して前記弁60をストッパ杆62に当接しており、前
記スプール64には第1ポート42を盲穴67に連通す
る細孔73が形成されて減圧弁部74を構成し、この減
圧弁部74と前記チェック弁部63とで圧力補償弁75
を構成している。
The pressure reducing valve hole 38 communicates with the second load pressure detecting port 46 through a third port 57 and an oil passage 58, and a spool 64 is inserted into the pressure reducing valve hole 38 so that the first pressure chamber 6
5 and a second pressure chamber 66, the first pressure chamber 65 communicates with the third port 57, the second pressure chamber 66 communicates with the second port 43, and is inserted into the blind hole 67 of the spool 64. A spring 69 is provided between the piston 68 and the bottom of the blind hole 67 so that the free piston 68 abuts on the plug 70, and a push rod 71 integrally provided on the spool 64 projects from the through hole 72 to operate the valve 60. The spool 64 has a small hole 73 formed in the spool 64 to communicate the first port 42 with the blind hole 67 to form a pressure reducing valve portion 74. The pressure reducing valve portion 74 and the check valve portion 63 and pressure compensating valve 75
Is composed.

【0013】このようであるから、1つの弁ブロック3
0に方向制御弁となる主スプール49とチェック弁部6
3となる弁60と減圧弁部74となるスプール64を設
けて圧力補償弁を備えた方向切換弁装置とすることがで
きる。また、スプール49を右方に移動して第1圧油供
給位置Bとした時にアクチュエータより第2アクチュエ
ータポート35に流入する圧油が切欠き53aと中間小
径部53を経て第2負荷圧検出ポート46に流れ、入力
ポート44に流入した圧油と合流して第1アクチュエー
タポート34に供給されるから再生機能を有する。
Because of this, one valve block 3
The main spool 49 and the check valve portion 6 which become the directional control valve at 0
By providing the valve 60 serving as 3 and the spool 64 serving as the pressure reducing valve section 74, a directional switching valve device having a pressure compensating valve can be provided. Further, when the spool 49 is moved rightward to the first pressure oil supply position B, the pressure oil flowing from the actuator into the second actuator port 35 passes through the notch 53 a and the intermediate small diameter portion 53 and the second load pressure detection port. Since it flows to the first actuator port 34 after flowing into the input port 44 and joining with the pressure oil flowing into the input port 44, it has a regeneration function.

【0014】次に一対のアクチュエータに圧油を供給す
る動作を図5に示す油圧回路に用いて説明する。なお、
図5に示す油圧回路において左側の方向切換弁55は再
生機能を持たずに、図3に仮想線で示すように弁ブロッ
ク30に第2タンクポート48を形成して第2アクチュ
エータポート35が第2タンクポート48に連通するよ
うにしてある。
Next, the operation of supplying pressure oil to a pair of actuators will be described using the hydraulic circuit shown in FIG. In addition,
In the hydraulic circuit shown in FIG. 5, the left directional switching valve 55 has no regeneration function, and the second tank port 48 is formed in the valve block 30 as shown by the phantom line in FIG. It communicates with the two tank port 48.

【0015】方向制御弁55が中立位置Aのとき。 油圧ポンプ80によってタンク86から吸上げられた油
は、吐出路81を通ってチェック弁部63の開く方向の
圧力室aに案内される。この時、減圧弁部74の圧力室
65,66は、ともにタンク86に通じているので、こ
の圧力室65,66の圧力はともにゼロで、よって減圧
弁部74は、弱いばね69によって押され杆体71がチ
ェック弁部63に当接しているだけである。一方、ポン
プ吐出圧は、ポンプ調整用方向制御弁85のばね87に
よって負荷圧検出路82の圧力との差圧がある一定に保
たれる。いま、この差圧を20kg/cm2 とすると負
荷圧検出路82の圧力はゼロなので、ポンプ吐出圧は2
0kg/cm2 まで上昇し、同時にチェック弁部63の
圧力室aにポンプ吐出圧が流入して方向制御弁55の入
口圧(チェック弁部63の出口圧)がポンプ吐出圧と等
しくなるまでストロークし、等しくなれば、弱いばね6
9によってレシートする。減圧弁部74は、ストローク
エンド時のみ、ポンプ吐出路81と圧力室66を連通さ
せる一方、チェック弁部63は、ストロークエンドに達
する前に、ポンプ吐出路81と出口側を連通させるの
で、方向制御弁55が中立位置Aのときは、ポンプ吐出
路81と圧力室66が連通することはなく、圧力室65
の圧力はゼロのままである。
When the direction control valve 55 is in the neutral position A. The oil sucked from the tank 86 by the hydraulic pump 80 is guided to the pressure chamber a in the opening direction of the check valve 63 through the discharge path 81. At this time, since both the pressure chambers 65 and 66 of the pressure reducing valve part 74 are in communication with the tank 86, the pressures in the pressure chambers 65 and 66 are both zero, so that the pressure reducing valve part 74 is pushed by the weak spring 69. Only the rod 71 is in contact with the check valve portion 63. On the other hand, the pump discharge pressure is maintained at a constant pressure difference from the pressure in the load pressure detection path 82 by the spring 87 of the pump adjustment direction control valve 85. Now, assuming that the differential pressure is 20 kg / cm 2 , the pressure in the load pressure detecting path 82 is zero, and the pump discharge pressure is 2 kg / cm 2.
The stroke rises to 0 kg / cm 2, and at the same time, the pump discharge pressure flows into the pressure chamber a of the check valve portion 63 and the stroke until the inlet pressure of the directional control valve 55 (the outlet pressure of the check valve portion 63) becomes equal to the pump discharge pressure. And if equal, the weak spring 6
Receipt by 9 The pressure reducing valve 74 communicates the pump discharge passage 81 with the pressure chamber 66 only at the stroke end, while the check valve 63 communicates the pump discharge passage 81 with the outlet before reaching the stroke end. When the control valve 55 is at the neutral position A, the pump discharge passage 81 and the pressure chamber 66 do not communicate with each other, and the pressure chamber 65
Pressure remains at zero.

【0016】方向制御弁55のいずれか一方のみ第1
圧油供給位置Bにストロークさせるとき。 いま、左側の方向制御弁55を第1圧油供給位置Bにス
トロークさせ、右側の方向制御弁55は、中立位置Aと
する。方向制御弁55をストロークさせ入力ポート44
と第1アクチュエータポート34を接続させ、同時に、
第2アクチュエータ35と第2タンクポート48を接続
させる。この時第1アクチュエータポート34とアクチ
ュエータ88を接続する導管89内の圧力(負荷圧)が
ポンプ吐出圧(20kg/cm2 )より大きいときはチ
ェック弁部63が圧力室bの圧力でレシートするため、
アクチュエータ88の自然降下を防止することができ
る。アクチュエータ88の導管89の圧力、すなわち負
荷圧が第1油路53、通路58より減圧弁部74の一方
の圧力室65に導かれる。他方の圧力室66の圧力はゼ
ロであるため、減圧弁部74は、チェック弁部63から
解離する方向にストロークエンドまでストロークし、減
圧弁部74の絞りを介して、ポンプ吐出路81と負荷圧
検出路82が連通する。前記導管89内の圧力(負荷
圧)がポンプ吐出圧(=20kg/cm2 )より大きい
ときは、チェック弁部63の圧力室bの圧力で閉じ、そ
の圧力が、減圧弁部74の一方の圧力室65に導かれる
ため、他方の圧力室66とポンプ吐出路81が連通して
も、減圧弁部74はストロークしたままである。一方、
導管41内の圧力(負荷圧)がポンプ吐出圧(=20k
g/cm2 )より小さいときは、その負荷圧が減圧弁部
74の一方の圧力室65に導かれ、減圧弁部74が一方
の圧力室65の圧力でストロークするが、他方の圧力室
66の圧力が一方の圧力室65の圧力(すなわち負荷
圧)まで上昇すると、弱いばね69によって閉じチェッ
ク弁部63に当接する。いずれの場合でも、減圧弁部7
4は、一方の圧力室65内の圧力と他方の圧力室66内
の圧力が等しくなるまで、ポンプ吐出路81と圧力室6
6を連通させ、両圧力室65,66内の圧力が等しくな
れば弱いばね69によって閉じチェック弁部63に当接
する。結果として負荷圧検出路82内の圧力は、負荷圧
と等しくなり、ポンプ吐出圧は、ポンプ調整用孔制御弁
85によって、ある差圧(ここでは20kg/cm2
分だけ、負荷圧検出路82内の圧力より高い圧力に制御
される。このポンプ吐出圧は、チェック弁部63を介し
て、入力ポート44に導かれているので、すなわち、方
向制御弁55の入口圧と出口圧(=負荷圧)の間には、
差圧(=20kg/cm2 )が保たれることになる。よ
って、方向制御弁55のストロークに伴う入口側と出口
側の間の絞りの開口面積の変化によってのみ、アクチュ
エータ88へ供給される流量が制御される。方向制御弁
55をストロークさせる際、アクチュエータ88の導管
89あるいは90と負荷圧導入用の第2油路53が接続
され、一方、第2油路53は、減圧弁部74の一方の圧
力室65と接続されているが、減圧弁部74において負
荷圧は、パイロット圧力(減圧弁部のセット圧力)とし
てのみ使われるので、その圧力がぬけることはなく、す
なわち、方向制御弁55をストロークさせた際、負荷圧
がぬけることによるアクチュエータ88の自然降下はな
い。
Only one of the directional control valves 55 is the first
When making a stroke to the pressure oil supply position B. Now, the left directional control valve 55 is stroked to the first pressure oil supply position B, and the right directional control valve 55 is in the neutral position A. Move the direction control valve 55 to the stroke and
And the first actuator port 34, and at the same time,
The second actuator 35 and the second tank port 48 are connected. At this time, if the pressure (load pressure) in the conduit 89 connecting the first actuator port 34 and the actuator 88 is higher than the pump discharge pressure (20 kg / cm 2 ), the check valve 63 receives the pressure in the pressure chamber b. ,
The natural descent of the actuator 88 can be prevented. The pressure of the conduit 89 of the actuator 88, that is, the load pressure, is guided from the first oil passage 53 and the passage 58 to one pressure chamber 65 of the pressure reducing valve 74. Since the pressure in the other pressure chamber 66 is zero, the pressure reducing valve portion 74 strokes to the stroke end in a direction in which the pressure reducing valve portion 74 dissociates from the check valve portion 63, and through the throttle of the pressure reducing valve portion 74, connects to the pump discharge passage 81 and the load. The pressure detection path 82 communicates. When the pressure (load pressure) in the conduit 89 is higher than the pump discharge pressure (= 20 kg / cm 2 ), the pressure is closed by the pressure in the pressure chamber b of the check valve section 63, and the pressure is reduced to one of the pressure reducing valve sections 74. Since the pressure chamber 65 is guided to the pressure chamber 65, even if the other pressure chamber 66 and the pump discharge path 81 communicate with each other, the pressure reducing valve section 74 remains in a stroke. on the other hand,
The pressure (load pressure) in the conduit 41 is the pump discharge pressure (= 20k)
g / cm 2 ), the load pressure is guided to one pressure chamber 65 of the pressure reducing valve section 74, and the pressure reducing valve section 74 strokes at the pressure of the one pressure chamber 65, but the other pressure chamber 66. When the pressure rises to the pressure in one pressure chamber 65 (that is, the load pressure), it is closed by a weak spring 69 and abuts against the check valve portion 63. In any case, the pressure reducing valve section 7
4 until the pressure in one pressure chamber 65 and the pressure in the other pressure chamber 66 become equal.
When the pressures in the two pressure chambers 65 and 66 become equal, the spring is closed by a weak spring 69 and abuts against the check valve portion 63. As a result, the pressure in the load pressure detecting path 82 becomes equal to the load pressure, and the pump discharge pressure is adjusted by the pump adjusting hole control valve 85 to a certain differential pressure (here, 20 kg / cm 2 ).
The pressure is controlled to be higher than the pressure in the load pressure detection path 82 by the amount. Since this pump discharge pressure is guided to the input port 44 via the check valve section 63, that is, between the inlet pressure and the outlet pressure (= load pressure) of the directional control valve 55,
The differential pressure (= 20 kg / cm 2 ) is maintained. Therefore, the flow rate supplied to the actuator 88 is controlled only by a change in the opening area of the throttle between the inlet side and the outlet side according to the stroke of the direction control valve 55. When the directional control valve 55 is stroked, the conduit 89 or 90 of the actuator 88 is connected to the second oil passage 53 for introducing load pressure, while the second oil passage 53 is connected to one pressure chamber 65 of the pressure reducing valve part 74. However, since the load pressure in the pressure reducing valve portion 74 is used only as a pilot pressure (set pressure of the pressure reducing valve portion), the pressure is not released, that is, the directional control valve 55 is stroked. At this time, there is no spontaneous drop of the actuator 88 due to the release of the load pressure.

【0017】前記負荷圧検出路82はもう一方の方向制
御弁55には配設されている圧力補償弁75の減圧弁部
74の他方の圧力室66にも接続されているが、減圧弁
部74の一方の圧力室65は、方向制御弁55の中立位
置Aによってタンク86と接続しているため、負荷圧導
入用の第1油路53内の圧力はゼロで、よって圧力室6
6内の圧力によって減圧弁部74は、チェック弁部63
を閉じる方向に付勢する。一方、チェック弁部74を開
く方向の圧力室aには、ポンプ吐出路81よりポンプ吐
出圧が導かれるため、全体として、ポンプ吐出圧と負荷
圧検出路82内の圧力の差圧分(=20kg/cm2
によってチェック弁部63及び減圧弁部74をチェック
弁部63の開く方向にストロークさせるが、わずかにス
トロークし入力ポート44の圧力がその差圧(=20k
g/cm2 )になれば、弱いばね69によってレシート
し、結果として、ストロークエンドまで減圧弁部74が
ストロークすることはなく、方向制御弁55側の油圧制
御には、何ら影響することはない。
The load pressure detecting path 82 is also connected to the other pressure chamber 66 of the pressure reducing valve portion 74 of the pressure compensating valve 75 provided in the other direction control valve 55. 74 is connected to the tank 86 by the neutral position A of the direction control valve 55, the pressure in the first oil passage 53 for introducing load pressure is zero, and thus the pressure chamber 6
The pressure in the pressure reducing valve portion 74 causes the check valve portion 63
Is biased in the closing direction. On the other hand, since the pump discharge pressure is guided from the pump discharge passage 81 to the pressure chamber a in the direction in which the check valve part 74 is opened, the differential pressure between the pump discharge pressure and the pressure in the load pressure detection passage 82 (= 20kg / cm 2 )
The check valve portion 63 and the pressure reducing valve portion 74 are stroked in the opening direction of the check valve portion 63, but the stroke is slightly increased, and the pressure of the input port 44 becomes the differential pressure (= 20 k).
g / cm 2 ), the receipt is performed by the weak spring 69, and as a result, the pressure reducing valve portion 74 does not stroke until the stroke end, and does not affect the hydraulic control of the direction control valve 55 at all. .

【0018】方向制御弁55のいずれも第1圧油供給
位置Bにストロークさせるとき。 −各アクチュエータ88に必要とされる流量の合計
が油圧ポンプ20の最大吐出流量以下のとき。 いま、方向制御弁55をともに第1圧油供給位置Bにス
トロークさせ、各入力ポート44と各導管89と各負荷
圧導用の第1油路53をそれぞれ接続させたとする。一
方の減圧弁部74は、圧力室66内の圧力が一方の圧力
室65内の圧力に等しくなるまで、また他方の減圧弁部
74は、圧力室66内の圧力が、一方の圧力室65内の
圧力に等しくなるまで、それぞれストロークエンドまで
ストロークしたままである。いま、二つのアクチュエー
タ88,88の負荷圧のうち、左側のアクチェータ88
の負荷圧がより大きいとする。仮に、左側アクチュエー
タ26の負荷圧を100(kg/cm2 )、右側のアク
チュエータ27の負荷圧を10(kg/cm2 )とす
る。負荷圧検出路82は、絞り91を介してタンク86
と接続されているので、方向制御弁ストローク前は負荷
圧検出路82内の圧力はゼロである。よって、各減圧弁
部74は負荷圧検出用の第1油路53内の圧力によって
もストロークし、ポンプ吐出圧が圧力検出導管34内の
圧力と連通させる。負荷圧検出路82内の圧力が低圧側
である右側のアクチュエータ88の導管90内の圧力
(10kg/cm2 )まで上昇すると、まず、右方の圧
力補償弁75の減圧弁部74が閉じる。左方の圧力補償
弁90の減圧弁部74はストロークしたままであり、負
荷圧検出路82内の圧力はポンプ吐出圧(20kg/c
2 )と等しくなるまで上昇する。このとき高圧側であ
る左側のアクチュエータ88の方向制御弁55の入力ポ
ート44の圧力は100(kg/cm2 )であり、圧力
補償弁75のチェック弁部63は閉じていて、減圧弁部
74とは解離している。一方圧力補償弁75の減圧弁部
74は、二つの圧力室65と66内の圧力の差(20−
10=10kg/cm2 )でチェック弁部63を閉じる
方向に付勢する。一方、チェック弁部63の開く方向の
圧力室a内の圧力(ポンプ吐出圧)20(kg/c
2 )であるため、結果として方向制御弁55の入力ポ
ート44の圧力が10(kg/cm2 )になるまでチェ
ック弁部63が開いた後、弱いばね69によってレシー
トする。ポンプ調整用方向制御弁85によって、ある差
圧(20kg/cm2 )分だけ、負荷圧検出路82内の
圧力(20kg/cm2 )より高い圧力にポンプ吐出圧
が制御される(40kg/cm2 )。このときも高圧側
の圧力補償弁75のチェック弁部63は閉じたままで減
圧弁部74はストロークしたままで負荷圧検出路82内
の圧力は40(kg/cm2 )となり、一方、低圧側の
圧力補償弁75の減圧弁部74は、負荷圧検出路82と
負荷圧導入用の第1油路53内の圧力差(=30kg/
cm2 )でチェック弁部63を閉じる方向に付勢し、結
果として方向制御弁55の入力ポート44の圧力は10
kg/cm2 のままである。このようにして、負荷圧検
出路82内の圧力とポンプ吐出圧が上昇し続け、やがて
ポンプ吐出圧が高圧側のアクチュエータ88の負荷圧
(100kg/cm2)と等しくなると、高圧側の圧力
補償弁75の減圧弁部63の二つの圧力室65と66内
の圧力はともに100kg/cm2 となり、弱いばね6
9によって、閉じてチェック弁部63に当接する。この
とき低圧側の圧力補償弁75の負荷弁部74は負荷圧検
出路82と負荷圧導入用の第1油路53内の圧力差(1
00−10=90kg/cm2 )でチェック弁部63を
閉じる方向に付勢し、結果として低圧側の方向制御弁5
5の入力ポート44の圧力は10kg/cm2 のままで
ある。再び、ポンプ調整用方向制御弁85によって、ポ
ンプ吐出圧が120(kg/cm2 )に制御される。こ
のとき高圧側の圧力補償弁75の減圧弁部63は、弱い
ばね69によってチェック弁部63に当接しているだけ
であり、チェック弁部63の二つの圧力室aとbの圧力
差によって、ここで初めてチェック弁部63が開き、ポ
ンプ吐出圧(120kg/cm2 )が方向制御弁55の
入力ポート44に導かれる。一方、低圧側の圧力補償弁
75の減圧弁部74は負荷圧検出路82と負荷圧導入用
の第1油路53内の圧力差(=90kg/cm2 )分で
チェック弁部63を閉じる方向に付勢し続けるが、チェ
ック弁部63の開く方向の圧力室a内の圧力が120
(kg/cm2 )になったので方向制御弁55の入力ポ
ート44の圧力が30(kg/cm2 )(120−9
0)となる状態で、チェック弁部63及び減圧弁部74
が圧力バランスする。すなわち、チェック弁部63及び
減圧弁部74はわずかにストロークし、チェック弁部6
3において、120kg/cm2 から30kg/cm2
になるように絞っている状態となる。ここで初めて、こ
の油圧制御系はつり合い、高圧側の方向制御弁55の入
力ポート44の圧力が120kg/cm2 、低圧側の方
向制御弁55の入力ポート44の圧力が30kg/cm
2 となり、すなわち、二つの方向制御弁55,55の入
口圧と出口圧(負荷圧)の差は、ともに20kg/cm
2 に保たれることにより、二つの方向制御弁55,55
はともに、ストローク分だけで、アクチュエータ88,
88に供給する流量を制御することができるようにな
る。
When any of the direction control valves 55 is to be stroked to the first pressure oil supply position B. When the total flow required for each actuator 88 is less than or equal to the maximum discharge flow of the hydraulic pump 20; Now, it is assumed that both the direction control valves 55 are stroked to the first pressure oil supply position B, and the respective input ports 44, the respective conduits 89, and the respective first hydraulic passages 53 for conducting the load pressure are connected. One of the pressure reducing valves 74 operates until the pressure in the pressure chamber 66 becomes equal to the pressure in the one pressure chamber 65, and the other pressure reducing valve 74 operates to reduce the pressure in the pressure chamber 66 to one of the pressure chambers 65. , Respectively, until they equal the internal pressure. Now, of the load pressures of the two actuators 88, 88, the left actuator 88
Is larger than the load pressure. It is assumed that the load pressure of the left actuator 26 is 100 (kg / cm 2 ) and the load pressure of the right actuator 27 is 10 (kg / cm 2 ). The load pressure detection path 82 is connected to a tank 86 via a throttle 91.
Before the directional control valve stroke, the pressure in the load pressure detection path 82 is zero. Therefore, each pressure reducing valve portion 74 also strokes by the pressure in the first oil passage 53 for load pressure detection, and the pump discharge pressure communicates with the pressure in the pressure detection conduit 34. When the pressure in the load pressure detecting path 82 rises to the pressure (10 kg / cm 2 ) in the conduit 90 of the right actuator 88 on the low pressure side, first, the pressure reducing valve portion 74 of the right pressure compensating valve 75 closes. The pressure reducing valve portion 74 of the left pressure compensating valve 90 remains in the stroke state, and the pressure in the load pressure detecting path 82 is changed to the pump discharge pressure (20 kg / c).
m 2 ). At this time, the pressure at the input port 44 of the direction control valve 55 of the left actuator 88 on the high pressure side is 100 (kg / cm 2 ), the check valve 63 of the pressure compensating valve 75 is closed, and the pressure reducing valve 74 And has dissociated. On the other hand, the pressure reducing valve portion 74 of the pressure compensating valve 75 is provided with a pressure difference between the two pressure chambers 65 and 66 (20−20).
(10 = 10 kg / cm 2 ) to urge the check valve portion 63 in the closing direction. On the other hand, the pressure in the pressure chamber a in the opening direction of the check valve portion 63 (pump discharge pressure) 20 (kg / c)
m 2 ), the check valve 63 is opened until the pressure at the input port 44 of the direction control valve 55 reaches 10 (kg / cm 2 ), and then the receipt is performed by the weak spring 69. By a pump adjusting direction control valve 85, there differential pressure (20kg / cm 2) amount corresponding, pump discharge pressure from the high pressure pressure (20kg / cm 2) of the load pressure Detchi 82 is controlled (40 kg / cm 2 ). Also at this time, the pressure in the load pressure detecting path 82 becomes 40 (kg / cm 2 ) with the check valve portion 63 of the high-pressure side pressure compensating valve 75 closed and the pressure reducing valve portion 74 being stroked. The pressure reducing valve portion 74 of the pressure compensating valve 75 of the first embodiment has a pressure difference between the load pressure detecting path 82 and the first oil path 53 for introducing the load pressure (= 30 kg /
cm 2 ), the check valve portion 63 is urged in the closing direction, and as a result, the pressure at the input port 44 of the directional control valve 55 becomes 10
kg / cm 2 . In this way, the pressure in the load pressure detection path 82 and the pump discharge pressure continue to rise, and eventually when the pump discharge pressure becomes equal to the load pressure (100 kg / cm 2 ) of the high-pressure side actuator 88, the high-pressure side pressure compensation The pressures in the two pressure chambers 65 and 66 of the pressure reducing valve portion 63 of the valve 75 are both 100 kg / cm 2 ,
9 closes and abuts against the check valve portion 63. At this time, the load valve section 74 of the low-pressure side pressure compensating valve 75 is connected to the pressure difference (1) between the load pressure detecting path 82 and the first oil path 53 for introducing the load pressure.
00-10 = 90 kg / cm 2 ) to urge the check valve portion 63 in the closing direction. As a result, the low-pressure side directional control valve 5
The pressure at the input port 44 of No. 5 remains at 10 kg / cm 2 . Again, the pump discharge pressure is controlled to 120 (kg / cm 2 ) by the pump adjustment direction control valve 85. At this time, the pressure reducing valve portion 63 of the high-pressure side pressure compensating valve 75 is merely in contact with the check valve portion 63 by the weak spring 69, and the pressure difference between the two pressure chambers a and b of the check valve portion 63 is Here, the check valve section 63 is opened for the first time, and the pump discharge pressure (120 kg / cm 2 ) is guided to the input port 44 of the direction control valve 55. On the other hand, the pressure reducing valve portion 74 of the pressure compensating valve 75 on the low pressure side closes the check valve portion 63 by the pressure difference (= 90 kg / cm 2 ) in the load pressure detecting path 82 and the first oil passage 53 for introducing the load pressure. Direction, but the pressure in the pressure chamber a in the opening direction of the check valve portion 63 becomes 120
(Kg / cm 2 ), the pressure at the input port 44 of the directional control valve 55 becomes 30 (kg / cm 2 ) (120-9).
0), the check valve 63 and the pressure reducing valve 74
Pressure balance. That is, the check valve section 63 and the pressure reducing valve section 74 slightly stroke, and the check valve section 6
3. In 120 kg / cm 2 to 30 kg / cm 2
It is in a state where it is squeezed so as to become. For the first time, this hydraulic control system is balanced, the pressure at the input port 44 of the directional control valve 55 on the high pressure side is 120 kg / cm 2 , and the pressure at the input port 44 of the directional control valve 55 on the low pressure side is 30 kg / cm 2.
2 , that is, the difference between the inlet pressure and the outlet pressure (load pressure) of the two directional control valves 55, 55 is 20 kg / cm
2 , the two directional control valves 55, 55
Are actuators 88,
It becomes possible to control the flow rate supplied to 88.

【0019】−各アクチュエータ88,88に必要
とされる流量の合計が油圧ポンプ80の最大吐出流量以
上のとき。 いま、アクチュエータ88,88の負荷圧および必要流
量を左側のアクチュエータ88が100kg/cm2
501/min、右側のアクチュエータ88が10kg
/cm2 、501/minとする。油圧ポンプ80の最
大吐出流量が1001/min以上のときは、前述の通
り、方向制御弁55,55の入口圧と出口圧の差が一定
に保たれる(=20kg/cm2 )ため、ストロークに
よって流量制御ができ、501/minずつ流量分配す
ることはできる。次に、油圧ポンプ80の最大吐出量が
701/minになったとする。二つの方向制御弁5
5,55の入口圧は前述の通り120kg/cm2 、3
0kg/cm2 であるので、高圧側の方向制御弁55へ
の流量が501/minから201/minに減る。低
圧側の方向制御弁55への流量は、501/minのま
まである。二つの方向制御弁55,55のストローク
(開口面積)を変えないとすると、高圧側の方向制御弁
55の入口圧と出口圧の差圧が流量が減った分、20k
g/cm2 から下がる。いま、差圧が14kg/c
2 、すなわち、入口圧が、120kg/cm2 から1
14(100+14)kg/cm2 に下がったとする。
この時圧力補償弁75の減圧弁部74の二つの圧力室6
5,66の圧力は、ともに100kg/cm2 のままで
あるから、減圧弁部74は弱いばね69によってチェッ
ク弁部63に当接しているだけであり、チェック弁部6
3の閉じる方向の圧力室b内の圧力が120kg/cm
2 から114kg/cm2 に減少すれば、チェック弁部
63が開いたまま(ストロークエンド)で、チェック弁
部63の開く方向の圧力室a内の圧力、すなわち、ポン
プ吐出圧が120kg/cm2 から114kg/cm2
に減少する。この時(ポンプ吐出流量不足時)にはポン
プ吐出圧は、ポンプ調整用方向制御弁85の制御によら
なくなる。一方、低圧側の圧力補償弁75の減圧弁部7
4の二つの圧力室65と66は、100kg/cm2
10kg/cm2 のままで、その差圧90kg/cm2
でチェック弁部63の閉じる方向に付勢し続ける。一
方、チェック弁部63の開く方向の圧力室a内の圧力、
すなわちポンプ吐出圧が114kg/cm2 に減少した
ので、チェック弁部63の閉じる方向の圧力室b内の圧
力が30kg/cm2から24kg/cm2 に減少した
状態でチェック弁部63及び減圧弁部74が圧力バラン
スする。よって、低圧側の方向制御弁55の入口圧と出
口圧の差圧は20kg/cm2 から14kg/cm
2 (24−10)に減少する。方向制御弁55のこの差
圧の減少により低圧側のアクチュエータ88への供給流
量は501/minから減少し、その分高圧側のアクチ
ュエータ88への供給流量が201/minらから増え
る。すなわち、方向制御弁55および55の入口圧と出
口圧の差圧が等しく、かつ、二つのアクチュエータ8
8,88への供給量がともに351/minずつに分配
される状態で、この油圧制御系がつり合う。
When the sum of the flow rates required for the actuators 88 is greater than the maximum discharge flow rate of the hydraulic pump 80. Now, the load pressure and required flow rate of the actuators 88, 88 are set to 100 kg / cm 2 ,
501 / min, right actuator 88 is 10kg
/ Cm 2 and 501 / min. When the maximum discharge flow rate of the hydraulic pump 80 is 1001 / min or more, as described above, the difference between the inlet pressure and the outlet pressure of the directional control valves 55, 55 is kept constant (= 20 kg / cm 2 ). Thus, the flow rate can be controlled, and the flow rate can be distributed every 501 / min. Next, it is assumed that the maximum discharge amount of the hydraulic pump 80 becomes 701 / min. Two directional control valves 5
The inlet pressure of 5,55 is 120 kg / cm 2 , 3 as described above.
Since the pressure is 0 kg / cm 2 , the flow rate to the high-pressure side directional control valve 55 is reduced from 501 / min to 201 / min. The flow rate to the low pressure side directional control valve 55 remains at 501 / min. If the strokes (opening areas) of the two directional control valves 55 are not changed, the differential pressure between the inlet pressure and the outlet pressure of the high-pressure side directional control valve 55 is reduced by 20 k by the reduced flow rate.
g / cm 2 . Now, the differential pressure is 14kg / c
m 2 , ie, the inlet pressure is from 120 kg / cm 2 to 1
Assume that the pressure has dropped to 14 (100 + 14) kg / cm 2 .
At this time, the two pressure chambers 6 of the pressure reducing valve portion 74 of the pressure compensating valve 75
Since the pressures 5 and 66 remain at 100 kg / cm 2 , the pressure-reducing valve portion 74 is only in contact with the check valve portion 63 by the weak spring 69, and the check valve portion 6
3. The pressure in the pressure chamber b in the closing direction is 120 kg / cm.
If the pressure is reduced from 2 to 114 kg / cm 2 , the pressure in the pressure chamber a in the opening direction of the check valve 63, that is, the pump discharge pressure is 120 kg / cm 2 , while the check valve 63 is open (stroke end). To 114 kg / cm 2
To decrease. At this time (when the pump discharge flow rate is insufficient), the pump discharge pressure is not controlled by the pump adjusting direction control valve 85. On the other hand, the pressure reducing valve portion 7 of the pressure compensating valve 75 on the low pressure side
4, two pressure chambers 65 and 66 are 100 kg / cm 2 ,
10 kg / cm 2 , the differential pressure is 90 kg / cm 2
To continue to bias the check valve 63 in the closing direction. On the other hand, the pressure in the pressure chamber a in the opening direction of the check valve portion 63,
That is, since the pump discharge pressure has been reduced to 114 kg / cm 2 , the check valve 63 and the pressure reducing valve are maintained in a state where the pressure in the pressure chamber b in the closing direction of the check valve 63 is reduced from 30 kg / cm 2 to 24 kg / cm 2. Section 74 is pressure balanced. Therefore, the differential pressure between the inlet pressure and the outlet pressure of the directional control valve 55 on the low pressure side is 20 kg / cm 2 to 14 kg / cm 2.
2 (24-10). Due to the decrease in the differential pressure of the directional control valve 55, the supply flow rate to the actuator 88 on the low pressure side decreases from 501 / min, and the supply flow rate to the actuator 88 on the high pressure side increases accordingly from 201 / min. That is, the differential pressure between the inlet pressure and the outlet pressure of the directional control valves 55 and 55 is equal, and the two actuators 8
The hydraulic control system is balanced in a state where the supply amounts to 8, 88 are both distributed at 351 / min.

【0020】一つの油圧ポンプ80によって負荷され
るアクチュエータが3つ以上のとき。 アクチュエータが3つ以上のときも、方向制御弁と油圧
ポンプの間に、同じチェック弁部63及び減圧弁部74
を備えた圧力補償弁75を配設し、各減圧弁部の閉じる
方向の圧力差を負荷圧検出路82によってすべて連通す
るだけで、アクチュエータが3つ以上のときも前述の作
動原理による作動が実現される。以上の実施例では油圧
ポンプ80を可変容量型としたが、油圧ポンプ80を固
定容量型としても良く、この場合には油圧ポンプ80の
ポンプ吐出路81にアンロード弁を設ければ良い。
When three or more actuators are loaded by one hydraulic pump 80. Even when there are three or more actuators, the same check valve portion 63 and pressure reducing valve portion 74 are provided between the directional control valve and the hydraulic pump.
The pressure compensating valve 75 provided with the pressure reducing valve is provided, and the pressure difference in the closing direction of each pressure reducing valve portion is merely communicated by the load pressure detecting path 82. Even when the number of actuators is three or more, the operation based on the above-described operation principle can be performed. Is achieved. Although the hydraulic pump 80 is a variable displacement type in the above embodiment, the hydraulic pump 80 may be a fixed displacement type. In this case, an unload valve may be provided in the pump discharge path 81 of the hydraulic pump 80.

【0021】[0021]

【発明の効果】1つの弁ブロック30に主スプール4
9、弁60、スプール64を設けて方向制御弁55とチ
ェック弁部63と減圧弁部74を組み込みできるから、
圧力補償弁を備えた方向制御弁装置とすることができ
る。主スプール49を切換えて入力ポート44を第1ア
クチュエータポート34に連通した時に第2アクチュエ
ータポート35が第1アクチュエータポート34に連通
するから、アクチュエータからの戻り油を再びアクチュ
エータに供給する再生機能を有する方向制御弁装置とな
る。
The main spool 4 is mounted on one valve block 30.
9, since the direction control valve 55, the check valve section 63 and the pressure reducing valve section 74 can be incorporated by providing the valve 60 and the spool 64,
A directional control valve device having a pressure compensating valve can be provided. When the main spool 49 is switched so that the input port 44 communicates with the first actuator port 34, the second actuator port 35 communicates with the first actuator port 34. It becomes a directional control valve device.

【図面の簡単な説明】[Brief description of the drawings]

【図1】従来の圧油供給装置の回路図である。FIG. 1 is a circuit diagram of a conventional pressure oil supply device.

【図2】従来の圧油供給装置の回路図である。FIG. 2 is a circuit diagram of a conventional pressure oil supply device.

【図3】本考案の実施例を示す弁ブロックの斜視図であ
る。
FIG. 3 is a perspective view of a valve block showing an embodiment of the present invention.

【図4】弁ブロックに主スプール、スプールを組み込ん
だ状態の断面図である。
FIG. 4 is a cross-sectional view of a state where the main spool and the spool are incorporated in the valve block.

【図5】複数のアクチュエータに圧油を供給する油圧回
路図である。
FIG. 5 is a hydraulic circuit diagram for supplying pressure oil to a plurality of actuators.

【符号の説明】[Explanation of symbols]

30…弁ブロック、31…スプール孔、34…第1アク
チュエータポート、35…第2アクチュエータポート、
37…チェック弁用孔、38…減圧弁用孔、39…ポン
プポート、42…第1ポート、43…第2ポート、44
…入力ポート、45…第1負荷圧検出ポート、46…第
2負荷圧検出ポート、47…第1タンクポート、48…
第2タンクポート、49…主スプール、53…第1油
路、56…油孔、58…油孔、60…弁、63…チェッ
ク弁部、64…スプール、65…第1圧力室、66…第
2圧力室、69…ばね、74…減圧弁部、75…圧力補
償弁、80…油圧ポンプ、81…ポンプ吐出路、82…
負荷圧検出路。
30 ... valve block, 31 ... spool hole, 34 ... first actuator port, 35 ... second actuator port,
37 ... check valve hole, 38 ... pressure reducing valve hole, 39 ... pump port, 42 ... first port, 43 ... second port, 44
... input port, 45 ... first load pressure detection port, 46 ... second load pressure detection port, 47 ... first tank port, 48 ...
Second tank port, 49 Main spool, 53 First oil passage, 56 Oil hole, 58 Oil hole, 60 Valve, 63 Check valve, 64 Spool, 65 First pressure chamber, 66 Second pressure chamber 69 69 Spring 74 Pressure reducing valve 75 Pressure compensating valve 80 Hydraulic pump 81 Pump discharge path 82
Load pressure detection path.

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.6,DB名) F15B 11/00 - 11/16──────────────────────────────────────────────────続 き Continued on front page (58) Field surveyed (Int. Cl. 6 , DB name) F15B 11/00-11/16

Claims (2)

(57)【実用新案登録請求の範囲】(57) [Scope of request for utility model registration] 【請求項1】 弁ブロック30にスプール孔31とチェ
ック弁用孔37と減圧弁用孔38を形成し、前記弁ブロ
ック30にはスプール孔31に開口した入力ポート4
4、第1・第2負荷圧検出ポート45,46、第1・第
2アクチュエータポート34,35、第1タンクポート
47をそれぞれ形成し、このスプール孔31に各ポート
を連通・遮断する主スプール49を嵌挿して方向制御弁
55とし、 前記弁ブロック30にはチェック弁用孔37に開口した
ポンプポート39及びチェック弁用孔37を入力ポート
44に連通する油路56を形成し、そのチェック弁用孔
37にポンプポート39と油路56を連通・遮断し、か
つ遮断位置でストップされるスプール60を挿入してチ
ェック弁部63とし、 前記弁ブロック30には減圧弁用孔38に開口する第1
・第2ポート42,43を形成し、この減圧弁用孔38
にスプール64を嵌挿して第1圧力室65と第2圧力室
66を形成し、その第1圧力室65を第2負荷圧検出ポ
ート46に連通し、第2圧力室66を第2ポート43に
連通し、前記スプール64をばね69で一方向に付勢し
て前記チェック弁部63のスプール60を遮断位置に押
しつけ保持して減圧弁部74とし、この減圧弁部74と
前記チェック弁部63で圧力補償弁75とし、 前記主スプール49を中立位置から一方に移動して第1
圧油供給位置とした時に入力ポート44が第1アクチュ
エータポート34に連通し、かつ第2アクチュエータポ
ート35がタンクポートに連通し、前記主スプール49
を中立位置から他方に移動して第2圧油供給位置とした
時に入力ポート44が第2アクチュエータポート35に
連通し、かつ第1アクチュエータポート34がタンクポ
ートに連通するようにした圧力補償弁を備えた方向制御
弁装置。
1. A valve block 30 has a spool hole 31, a check valve hole 37, and a pressure reducing valve hole 38, and the valve block 30 has an input port 4 opened to the spool hole 31.
4. A main spool for forming first and second load pressure detecting ports 45 and 46, first and second actuator ports 34 and 35, and a first tank port 47, respectively, and communicating and blocking each port with the spool hole 31. 49 is inserted into the directional control valve 55, and the valve block 30 is formed with a pump port 39 opened to the check valve hole 37 and an oil passage 56 communicating the check valve hole 37 to the input port 44. The pump port 39 and the oil passage 56 are communicated / blocked with the valve hole 37, and a spool 60 stopped at the blocking position is inserted into the check valve portion 63 to open the valve block 30 with the pressure reducing valve hole 38. First
The second ports 42 and 43 are formed, and the pressure reducing valve holes 38 are formed.
A first pressure chamber 65 and a second pressure chamber 66 are formed by inserting a spool 64 into the first pressure chamber 65, the first pressure chamber 65 is communicated with the second load pressure detection port 46, and the second pressure chamber 66 is connected to the second port 43. , The spool 64 is urged in one direction by a spring 69 to press and hold the spool 60 of the check valve portion 63 at the shut-off position to form a pressure reducing valve portion 74. The pressure reducing valve portion 74 and the check valve portion At 63, the pressure compensating valve 75 is used.
When the pressure oil supply position is established, the input port 44 communicates with the first actuator port 34 and the second actuator port 35 communicates with the tank port.
Is moved from the neutral position to the other position to set the second pressure oil supply position, the input port 44 communicates with the second actuator port 35, and the first actuator port 34 communicates with the tank port. Directional control valve device provided.
【請求項2】主スプール49に第1タンクポート47と
第1アクチュエータポート34と第1負荷圧検出ポート
45を連通・遮断する第1小径部50と、第2負荷圧検
出ポート46と第2アクチュエータポート35を連通・
遮断する中間小径部53と切欠部53a及び第2小径部
51と切欠部51aを形成し、前記主スプール49に入
力ポート44を第1・第2負荷圧検出ポート45,46
の一方に選択的に連通する連通用溝52を形成し、前記
第1・第2負荷圧検出ポート45,46を常時連通した
請求項1記載の圧力補償弁を備えた方向制御弁装置。
2. A first small-diameter portion 50 for connecting and disconnecting a first tank port 47, a first actuator port 34, and a first load pressure detection port 45 to and from a main spool 49, a second load pressure detection port 46, and a second Connect actuator port 35
An intermediate small-diameter portion 53 and a notch portion 53a and a second small-diameter portion 51 and a notch portion 51a to be cut off are formed.
A directional control valve device comprising a pressure compensating valve according to claim 1, wherein a communication groove (52) selectively communicating with one of the first and second load pressure detecting ports (45, 46) is formed.
JP1992076058U 1992-10-23 1992-11-04 Directional control valve device with pressure compensating valve Expired - Lifetime JP2578622Y2 (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
JP1992076058U JP2578622Y2 (en) 1992-11-04 1992-11-04 Directional control valve device with pressure compensating valve
EP93923052A EP0747601B1 (en) 1992-10-23 1993-10-22 Pressure oil supply system having a pressure compensating valve
DE1993628382 DE69328382T2 (en) 1992-10-23 1993-10-22 PRESSURE OIL SUPPLY SYSTEM WITH PRESSURE COMPENSATING VALVE
US08/411,817 US5651390A (en) 1992-10-23 1993-10-22 Pressurized fluid supply system
KR1019950701574A KR950704617A (en) 1992-10-23 1993-10-22 Pressurized fluid supply system
PCT/JP1993/001534 WO1994010454A1 (en) 1992-10-23 1993-10-22 Pressure oil supply system having a pressure compensating valve
US08/600,505 US5784885A (en) 1992-10-23 1996-02-13 Pressurized fluid supply system
US08/742,777 US5845678A (en) 1992-10-23 1996-10-31 Pressurized fluid supply system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1992076058U JP2578622Y2 (en) 1992-11-04 1992-11-04 Directional control valve device with pressure compensating valve

Publications (2)

Publication Number Publication Date
JPH0640405U JPH0640405U (en) 1994-05-31
JP2578622Y2 true JP2578622Y2 (en) 1998-08-13

Family

ID=13594179

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1992076058U Expired - Lifetime JP2578622Y2 (en) 1992-10-23 1992-11-04 Directional control valve device with pressure compensating valve

Country Status (1)

Country Link
JP (1) JP2578622Y2 (en)

Also Published As

Publication number Publication date
JPH0640405U (en) 1994-05-31

Similar Documents

Publication Publication Date Title
US5535663A (en) Operating valve assembly with pressure compensation valve
JP2578622Y2 (en) Directional control valve device with pressure compensating valve
WO1996000351A1 (en) Directional control valve device provided with a pressure compensating valve
JP2575156Y2 (en) Pressure oil supply device
JP3119317B2 (en) Pressure oil supply device
JP2668744B2 (en) Pressure oil supply device
JP2571234Y2 (en) Pressure oil supply device
JP2550773Y2 (en) Direction control valve device
JP2551546Y2 (en) Pressure oil supply device
JP3119316B2 (en) Pressure oil supply device
JP2577676Y2 (en) Pressure oil supply device
JP2577675Y2 (en) Pressure oil supply device
JP3454313B2 (en) Pressure oil supply device
JP3119315B2 (en) Pressure oil supply device
JP2002276607A (en) Hydraulic control device
JP3116564B2 (en) Pressure oil supply device
JPH0643301U (en) Directional control valve device
JPH05332311A (en) Pressure oil supply device
JP2550774Y2 (en) Direction control valve device
JPH05332306A (en) Pressure oil supply device
JPH05332314A (en) Pressure oil supply device
JPH05332307A (en) Suction safety structure for pressure oil supply device
JPH05332313A (en) Pressure oil supply device
JPH05332312A (en) Pressure oil supply device
JPH0596504U (en) Pressure oil supply device