JPH06178684A - Method for culturing virus-infected cell - Google Patents

Method for culturing virus-infected cell

Info

Publication number
JPH06178684A
JPH06178684A JP3330460A JP33046091A JPH06178684A JP H06178684 A JPH06178684 A JP H06178684A JP 3330460 A JP3330460 A JP 3330460A JP 33046091 A JP33046091 A JP 33046091A JP H06178684 A JPH06178684 A JP H06178684A
Authority
JP
Japan
Prior art keywords
virus
culture
cells
oxygen
medium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3330460A
Other languages
Japanese (ja)
Inventor
Masaru Koike
勝 小池
Akihiro Tomota
明宏 友田
Makoto Yoshida
信 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hokko Chemical Industry Co Ltd
Original Assignee
Hokko Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hokko Chemical Industry Co Ltd filed Critical Hokko Chemical Industry Co Ltd
Priority to JP3330460A priority Critical patent/JPH06178684A/en
Publication of JPH06178684A publication Critical patent/JPH06178684A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To provide a method for efficiently increasing the yield of a virus by devising the oxygen feed into a culture medium for the liquid culture of a virus-infected cell. CONSTITUTION:The liquid culture of a virus-infected cell is carried out. In the process, pure oxygen gas is solely fed from an oxygen feed pipe into a space above the liquid surface of a culture solution in a culture vessel. Thereby, an atmosphere consisting wholly of the pure oxygen gas or consisting essentially of the oxygen gas is formed to cover the liquid surface of the culture solution therewith. At this time, the feed of the pure oxygen gas from the oxygen feed pipe into the atmosphere is controlled to thereby maintain the content of the dissolved oxygen in the culture medium at a value of <=20% based on the saturation content of the dissolved oxygen in the culture medium during the initial culture period from the time of inoculating the virus into the cell to the time of starting logarithmic growth phase of the virus with the proviso that the content of the dissolved oxygen is maintained at a constant value or a nearly constant value satisfying the oxygen demand of the cell. Furthermore, the value is kept at >=50% based on the saturation content of the dissolved oxygen in the culture medium with the proviso that the content of the dissolved oxygen is maintained at a constant value or a nearly constant value of lower than 100% during the subsequent logarithmic growth phase or thereafter.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、ウイルス感染細胞の培
養によるウイルスの生産を行うため、動物、植物又は微
生物の細胞、また特別には昆虫細胞の如き生物の細胞を
宿主細胞として用いるウイルス感染細胞の液体培養方法
に関するものであり、詳しくは、前記の生物細胞にウイ
ルスを接種して感染させ、ウイルスの感染により代謝活
性が高まった宿主細胞にエネルギー源や栄養源を速やか
に供給することを可能にし、これにより、培養中のウイ
ルス感染細胞の代謝系を好適に長い時間維持することが
でき、ウイルス生産量を増大できるウイルス感染細胞の
改良された培養方法に関する。本発明の方法では、培養
中のウイルス感染細胞の呼吸に必要とされる酸素の速や
かな供給を計るために培養液への酸素ガスの供給を制御
して培養液の液相、すなわち培地中の溶存酸素濃度を経
時的に調整する手段が利用される。
BACKGROUND OF THE INVENTION The present invention relates to virus infection using animal, plant or microbial cells, and in particular organism cells such as insect cells as host cells for producing viruses by culturing virus infected cells. The present invention relates to a liquid culture method for cells, and more specifically, to inoculate the above-mentioned biological cells with a virus to infect them, and rapidly supply an energy source and a nutrient source to host cells whose metabolic activity is increased by the virus infection. The present invention relates to an improved method for culturing virus-infected cells, which enables the metabolic system of the virus-infected cells in culture to be maintained for a suitably long time, thereby increasing virus production. In the method of the present invention, in order to measure the rapid supply of oxygen required for respiration of virus-infected cells in culture, the supply of oxygen gas to the culture solution is controlled to control the liquid phase of the culture solution, that is, in the medium. A means for adjusting the dissolved oxygen concentration over time is used.

【0002】[0002]

【従来の技術】動物細胞及び植物細胞(以下、単に動植
物細胞と略すこともある)や、動植物の器官又は組織細
胞の培養ならびに微生物の細胞、特に昆虫細胞の培養に
おいて、またウイルスに感染された動植物細胞の培養に
おいても、液体培地中への必要な酸素の供給は酸素を含
む気体を液体培地中に通気して気泡の形で混合して行わ
れる方法が多い。しかしながら、この通気培養方法で
は、気泡として加えた酸素含有ガスと細胞との接触によ
り細胞が酸素中毒や機械的剪断応力により発育の阻害を
受けることが知られている。培養槽内でたとえば酸素を
含む気体の液体培地中への通気量を増やし、気泡の攪拌
作用により培地中へ酸素を拡散させて酸素濃度を培地中
で均一化する方法では、培地内に生じた気泡により細胞
の生育及び増殖が著しく阻害されることが多い。
2. Description of the Related Art In the culture of animal cells and plant cells (hereinafter sometimes simply referred to as animal and plant cells), organ or tissue cells of animals and plants, and cells of microorganisms, especially insect cells, they have been infected with a virus. Also in the culture of animal and plant cells, the necessary supply of oxygen to the liquid medium is often carried out by aerating a gas containing oxygen into the liquid medium and mixing them in the form of bubbles. However, in this aeration culture method, it is known that contact between the cells and the oxygen-containing gas added as bubbles causes the cells to be inhibited from developing due to oxygen poisoning or mechanical shear stress. In the method of increasing the aeration amount of a gas containing oxygen into the liquid medium in the culture tank and diffusing oxygen into the medium by the stirring action of the bubbles to make the oxygen concentration uniform in the medium, Air bubbles often significantly inhibit cell growth and proliferation.

【0003】別の方法として培養槽内で酸素を含む気体
を液体培地中へ通気せずに培地の表面に吹き付ける方法
も提案されているが、この方法では、培地中での実効的
な酸素の供給量を増やすために吹き出しノズルの形状を
改良する(特開昭62−195276号公報)などして
培地表面への気体吹き付け量を多くしたり、追加的に行
う機械的攪拌により培地表面を波立たせて液体表面積を
広くし、酸素を含む気体からの酸素の培地本体への溶け
込み量を増加させる工夫が必要とされる。この液体培地
表面への酸素含有気体の吹き付け方法でも、攪拌を強く
行ない酸素の供給効率を高めると、培養中の細胞に対し
て攪拌による剪断力が働き細胞の生育と増殖が著しく妨
げられる。従って、前記の従来技術による酸素供給法を
とる限り、ウイルスの生産の目的でウイルス感染細胞の
培養を行う場合には、ウイルス生産の効率は悪い。
As another method, a method has been proposed in which a gas containing oxygen is blown into the liquid medium in the culture tank without being ventilated into the liquid medium, but in this method, effective oxygen in the medium is In order to increase the supply amount, the shape of the blowing nozzle is improved (Japanese Patent Laid-Open No. 62-195276) to increase the amount of gas blown onto the medium surface, or the medium surface is waved by additional mechanical stirring. It is necessary to make the liquid surface area wider by standing it and increase the amount of oxygen dissolved from the gas containing oxygen into the medium body. Even with this method of blowing an oxygen-containing gas onto the surface of the liquid medium, if stirring is performed vigorously to increase the oxygen supply efficiency, the shearing force due to stirring acts on the cells in culture, and the growth and proliferation of the cells are significantly hindered. Therefore, as long as the above-mentioned oxygen supply method according to the prior art is adopted, the efficiency of virus production is low when culturing virus-infected cells for the purpose of virus production.

【0004】このように従来法では不都合な点を有する
ため、かかる欠点のないウイルス感染細胞の培養法の開
発が望まれている。
Since the conventional method has disadvantages as described above, it is desired to develop a method for culturing virus-infected cells which does not have such drawbacks.

【0005】[0005]

【発明が解決しようとする課題】本発明は、ウイルス感
染した細胞の生育を良く維持できるように酸素の供給を
制御し、かつウイルス感染細胞の生存期間を長くしてウ
イルスの収穫量も高い利点をもつウイルスに感染された
動植物細胞の液体培養方法を提供することを目的とす
る。
The present invention is advantageous in that the supply of oxygen is controlled so that the growth of virus-infected cells can be well maintained, the survival time of virus-infected cells is prolonged, and the yield of virus is high. An object of the present invention is to provide a method for liquid culture of animal and plant cells infected with a virus having a bacterium.

【0006】[0006]

【課題を解決するための手段】本発明者らは、上記した
目的を達成するために鋭意研究を行った。先づ、培養槽
内での動植物の液体培養方法における培地への酸素供給
法として知られる酸素含有気体の培地中通気方法と、培
地表面吹き付け方法と、培地表面を高濃度酸素を含む雰
囲気で覆う方法との相対的な長所、短所を調べるため
に、一定組成の液体培地を用いてウイルス感染がない状
態での細胞の培養時での培地中の溶存酸素量を種々の値
で但し培養中は一定に維持した条件下で細胞の培養を行
い、そして培養時間の経過につれての培養中の生細胞の
個数の経時的な変動を計測する実験を、前記の培地中通
気方法、並びに培地表面吹き付け方法及び培地表面を酸
素含有気体で被覆する方法について行った。
[Means for Solving the Problems] The inventors of the present invention have conducted extensive studies in order to achieve the above object. First, a method of aerating oxygen-containing gas in a medium known as a method of supplying oxygen to a medium in a liquid culture method for animals and plants in a culture tank, a method of spraying the medium surface, and a method of covering the medium surface with an atmosphere containing high concentration oxygen. In order to investigate the relative strengths and weaknesses of the method, various amounts of dissolved oxygen in the culture medium at the time of culturing cells in the absence of virus infection using a liquid medium with a constant composition, Experiments were carried out by culturing cells under conditions kept constant, and measuring the time-dependent change in the number of viable cells in the culture with the lapse of the culture time. And a method of coating the medium surface with an oxygen-containing gas.

【0007】また、細胞培養時での培地中の溶存酸素量
を培養初期の期間中には比較的低い又は高い値に維持し
且つ培養初期の以後には比較的高い又は低い値に増加又
は減少するように変動させた条件下で細胞の培養を行
い、そして培養時間の経過につれての培養中の生細胞の
個数の経時的変動を計測する実験も行った。しかも、こ
れらの実験では、純酸素ガスや空気や、酸素−窒素混合
ガスを供給した。
Further, the amount of dissolved oxygen in the medium at the time of cell culture is maintained at a relatively low or high value during the initial period of the culture, and increased or decreased to a relatively high or low value after the initial stage of the culture. The cells were cultured under such varied conditions, and an experiment was also conducted to measure the temporal change in the number of living cells in the culture with the passage of the culture time. Moreover, in these experiments, pure oxygen gas, air, and oxygen-nitrogen mixed gas were supplied.

【0008】こうして得られた多数の実験結果を総括的
に検討すると、純酸素ガスを用いて、培地表面を被覆す
る雰囲気を形成させる方式の方が酸素と他のガスとの混
合ガスを供給する方式よりも全体的にみて優れた結果を
与え得ることが知見された。
When a large number of experimental results obtained in this way are comprehensively examined, a method of forming an atmosphere for covering the surface of the medium using pure oxygen gas supplies a mixed gas of oxygen and other gas. It has been found that it can give better results overall than the method.

【0009】そこで、純酸素ガスを供給することによ
り、培地表面を被覆する酸素含有雰囲気を形成させる方
法の場合について、純酸素ガスの供給ノズルから出る酸
素ガス流の供給速度(容積/時間)、方向、供給ノズル
のガス噴出口と培地表面との間の距離、等の種々の条件
因子を変えながら、培養中の培地中の溶存酸素濃度の経
時的変化、並びに培養細胞数の経時的変化を計測する実
験を行った。
Therefore, in the case of a method of forming an oxygen-containing atmosphere for covering the surface of the medium by supplying pure oxygen gas, the supply rate (volume / hour) of the oxygen gas flow discharged from the pure oxygen gas supply nozzle, Direction, the distance between the gas outlet of the supply nozzle and the surface of the culture medium, etc., while varying the various conditions such as the time-dependent change in the dissolved oxygen concentration in the culture medium and the time-dependent change in the number of cultured cells. An experiment to measure was conducted.

【0010】得られた多数の実験結果を比較して検討す
ると、総括的には、ノズルから供給された純酸素ガス流
が衝突することによって液体培地の表面が波立ちを起こ
すことのないような仕方で純酸素ガスを供給する方式が
他の場合に比べて優れた結果を与えることが知見され
た。
When the results of a large number of experiments are compared and examined, it is generally confirmed that the surface of the liquid culture medium does not undulate due to the collision of the pure oxygen gas flow supplied from the nozzle. It was found that the method of supplying pure oxygen gas gives excellent results compared with other cases.

【0011】更にまた重要なことには、これらの多数の
実験を通して、新しい液体培地へ接種された細胞が接種
時点から細胞対数増殖期の開始時期に至る培養初期中に
必要とする細胞の単位個数当りの酸素消費量(細胞の酸
素需要量、O2 、μ1/時間)は、細胞対数増殖期に入
った後の対数増殖期中の細胞が必要とする細胞の単位個
数当りの酸素消費量(細胞の酸素需要量、O2 、μ1/
時間)に比べて約半分にすぎないことが知見された。こ
の知見を通じて、細胞の対数増殖期中では、この期間で
の培養中の細胞の酸素需要を満たすが但し酸素中毒を起
こさない程度の溶存酸素濃度を培地中に維持することが
必要であるけれども、培養初期中には、より低い値で溶
存酸素濃度を培地中に維持すれば済み、このことがむし
ろ細胞の植え痛みを防ぐことに役立つことが認められ
た。
Even more importantly, through these numerous experiments, the unit number of cells required by the cells inoculated into the new liquid medium during the early stage of the culture from the time of inoculation to the start of the cell logarithmic growth phase. Oxygen consumption per cell (oxygen demand of cells, O 2 , μ1 / hour) is the oxygen consumption per unit number of cells required by cells in the logarithmic growth phase after entering the logarithmic growth phase (cells Oxygen demand, O 2 , μ1 /
It was found that it was only about half of the time). Through this finding, during the logarithmic growth phase of cells, it is necessary to maintain the dissolved oxygen concentration in the medium to satisfy the oxygen demand of the cells in the culture in this period, but to the extent that oxygen poisoning does not occur. During the early stages, it was found that lower levels of dissolved oxygen concentration need to be maintained in the medium, which rather helps prevent cell planting pain.

【0012】これらの知見に基づいて、大約すると、細
胞がウイルスに感染されてない場合には、動植物細胞、
特に昆虫細胞の液体培養を行うに当り、液体培地を収容
する培養槽内の培地の表面を覆う雰囲気を、酸素ガスを
単独に供給し、換言すれば、純酸素ガスを供給すること
により形成し、しかも供給された酸素ガスの流れの衝突
又は攪乱作用により液体培地の表面が波立ちを起こすこ
とのない条件下で純酸素ガスを供給するようにし、更に
純酸素ガスの供給を加減及び(又は)断続することによ
り、培地内の溶存酸素量を細胞の接種時から細胞の対数
増殖期に入るまでの間では或る低い値に維持するが、細
胞の対数増殖期およびそれ以降には或る高い値に維持す
ることにより、細胞の対数増殖期の開始を早め、対数増
殖期を長く保つことができ、よって培養細胞の収穫量を
高め得ることを見出した。
On the basis of these findings, roughly speaking, if the cells are not infected with the virus, animal and plant cells,
In particular, when performing liquid culture of insect cells, an atmosphere for covering the surface of the medium in the culture tank containing the liquid medium is formed by supplying oxygen gas alone, in other words, supplying pure oxygen gas. In addition, the pure oxygen gas is supplied under the condition that the surface of the liquid medium does not wavy due to the collision or the disturbing action of the supplied oxygen gas flow, and the supply of the pure oxygen gas is adjusted and / or adjusted. By intermittently, the dissolved oxygen content in the medium is maintained at a certain low value from the time of inoculation of the cells to the logarithmic growth phase of the cells, but a certain high value is maintained in the logarithmic growth phase of the cells and thereafter. It was found that by maintaining the value, the logarithmic growth phase of cells can be started earlier and the logarithmic growth phase can be kept longer, and thus the yield of cultured cells can be increased.

【0013】従って、本発明者らは、先に、培養される
細胞を接種してある液体培地を収容している培養槽内で
培養液の液面上の空間中に純酸素ガスを単独に酸素ガス
供給管から吹き込んで供給することにより、純酸素ガス
より専らなる雰囲気又は主体の酸素ガスと培養液から自
然に蒸散する少量の水蒸気、少量の炭酸ガス及び少量の
他種ガスとよりなる雰囲気を形成して該雰囲気で培養液
の液面を被覆し、しかもこの際に純酸素ガスの供給流に
よる攪乱作用で培養液の液面が波立つことがないように
防止しながら前記の雰囲気を培養液の液面上に維持し、
さらに純酸素ガスの供給量を加減すること及び(又は)
純酸素ガスの供給を間歇的に行うことにより酸素ガス供
給管から上記の雰囲気への純酸素ガスの供給を制御し、
そしてこの純酸素ガスの供給の制御により、培地中の溶
存酸素量を、細胞の接種時から細胞の対数増殖期の開始
時期までの培養初期には培地の飽和溶存酸素量の20%
以下の値、但し細胞の酸素需要量を満たす値に一定又は
殆んど一定に維持し、またそれ以後の細胞対数増殖期中
及びそれ以降には培地の溶存酸素量を飽和溶存酸素量の
50%以上、但し100%より低い値に一定又は殆んど
一定に維持することを特徴とする生物細胞の深部液体培
養方法を提案した(特願平3−279627号参照)。
Therefore, the present inventors have previously used pure oxygen gas alone in the space above the liquid surface of the culture solution in the culture tank containing the liquid medium inoculated with the cells to be cultured. By blowing and supplying from an oxygen gas supply pipe, an atmosphere consisting exclusively of pure oxygen gas or an atmosphere consisting mainly of oxygen gas and a small amount of water vapor that spontaneously evaporates from the culture solution, a small amount of carbon dioxide gas and a small amount of other species gas. Is formed to cover the liquid surface of the culture solution with the atmosphere, and at the same time, the atmosphere of the culture solution is prevented while preventing the liquid surface of the culture solution from undulating due to the disturbing action of the supply flow of pure oxygen gas. Keep it above the surface of the culture,
Further, adjusting the supply amount of pure oxygen gas and / or
By controlling the supply of pure oxygen gas from the oxygen gas supply pipe to the above atmosphere by intermittently supplying pure oxygen gas,
By controlling the supply of this pure oxygen gas, the amount of dissolved oxygen in the medium is adjusted to 20% of the saturated amount of dissolved oxygen in the medium at the initial stage of culture from the time of inoculation of cells to the start of the logarithmic growth phase of cells.
The following value, which is maintained at a value almost or almost constant to meet the oxygen demand of the cells, and the dissolved oxygen content of the medium is 50% of the saturated dissolved oxygen content during and after the cell logarithmic growth phase. Above, however, there has been proposed a deep liquid culturing method for biological cells, which is characterized by maintaining a value lower than 100% constant or almost constant (see Japanese Patent Application No. 3-279627).

【0014】次いで、本発明者らは、先に提案した生物
細胞の液体培養方法に係る発明に際して得られた諸知見
を考慮に入れながら、ウイルスの生産の目的のために、
ウイルス感染した細胞を液体培地中で培養する場合のウ
イルス感染細胞の培養中の細胞の酸素消費量(酸素需要
量)の経時変化について研究した。その研究において
は、例えば、宿主細胞としてヨトウガ由来の培養細胞ラ
インを用い且つこれに感染、増増すべきウイルスとして
核多角体病ウイルスを用い、核多角体病ウイルスに感染
されたヨトウガ由来細胞を培養中の感染細胞の酸素消費
量の経時変化と、ウイルス非感染の細胞の酸素消費量の
経時変化とを比較してみた。
Next, for the purpose of virus production, the present inventors have taken into consideration various findings obtained in the invention relating to the liquid cell culture method previously proposed.
When the virus-infected cells were cultured in a liquid medium, the time course of the oxygen consumption (oxygen demand) of the cells infected with the virus was studied. In that research, for example, using a cultured cell line derived from Spodoptera frugiperda as a host cell, and using a nuclear polyhedrosis virus as a virus to be infected and increased, cultivated Spodoptera frugiperda-derived cells infected with the nuclear polyhedrosis virus The time-dependent changes in oxygen consumption of infected cells and the time-dependent changes in oxygen consumption of non-virus-infected cells were compared.

【0015】すなわち、核多角体病ウイルスに感染した
ヨトウガ由来培養細胞の培養過程で、培養中のウイルス
感染細胞の酸素の消費量はレシピロメーターを用い測定
した結果、宿主細胞へのウイルス接種時およびウイルス
感染初期である培養1日目のウイルス感染直後の細胞に
比べ、ウイルスの対数増殖期に当る培養3日目のウイル
ス感染細胞は、それの酸素消費量が2.5倍量であるこ
とが知見され、さらにウイルス非感染の細胞の細胞対数
増殖期の酸素消費量よりも約50%増加することが知見
された。
That is, in the process of culturing cultured cells derived from Spodoptera frugiperda infected with nuclear polyhedrosis virus, the oxygen consumption of virus-infected cells in the culture was measured using a recipe rometer, and as a result, when the virus was inoculated into the host cells, In addition, the oxygen consumption of virus-infected cells on the 3rd day of culture, which is in the logarithmic growth phase of the virus, is 2.5 times that of the cells immediately after virus infection on the 1st day of culture, which is the initial stage of virus infection. Furthermore, it was found that the oxygen consumption of non-virus-infected cells was increased by about 50% over the cell logarithmic growth period.

【0016】これらの知見から、ウイルス感染細胞の培
養時の細胞への酸素供給条件としては、ウイルスの接種
時からウイルスの対数増殖期までを少なく、ウイルスの
対数増殖期以後に多量に酸素を細胞へ与えること及びウ
イルス非感染細胞の培養における細胞対数増殖期の酸素
需要量に比べてより多量に酸素を供給することが必要で
あると認められた。これらの必要条件に合う酸素供給法
を検討した結果、先に提案した発明と同様に、培養槽内
の気体部分に酸素ガスを単独で供給する方法により、培
養中のウイルス感染細胞への酸素ガスの害作用をきわめ
て低減でき、発泡を生ずることなく培養液を攪拌し、培
地の必要酸素濃度まで酸素を速やかに供給することがで
きることを見いだした。
From these findings, the condition for supplying oxygen to cells during the culture of virus-infected cells is that the period from inoculation of the virus to the logarithmic growth phase of the virus is small, and a large amount of oxygen is supplied to the cells after the logarithmic growth phase of the virus. It was found that it is necessary to supply oxygen to the cells in a higher amount than the oxygen demand in the cell logarithmic growth phase in the culture of non-virus-infected cells. As a result of examining the oxygen supply method that meets these requirements, oxygen gas to the virus-infected cells in the culture was obtained by the method of supplying oxygen gas alone to the gas portion in the culture tank, as in the previously proposed invention. It was found that the harmful effects of the above can be extremely reduced, the culture solution can be stirred without causing foaming, and oxygen can be rapidly supplied to the required oxygen concentration of the medium.

【0017】従って、要するに、本発明によると、ウイ
ルスの接種後にウイルスに感染された宿主細胞を含有し
ている液体培地を収容している培養槽内でウイルス感染
細胞の培養液の液面上の空間中に純酸素ガスを単独に酸
素ガス供給管から吹き込んで供給することにより、純酸
素ガスより専らなる雰囲気又は主体の酸素ガスと該培養
液から自然に蒸散する少量の水蒸気、少量の炭酸ガス及
び少量の他種ガスとよりなる雰囲気を形成して該雰囲気
で培養液の液面を被覆し、しかもこの際に純酸素ガスの
供給流による攪乱作用で培養液の液面が波立つことがな
いように防止しながら前記の雰囲気を培養液の液面上に
維持し、さらに純酸素ガスの供給量を加減すること及び
(又は)純酸素ガスの供給を間歇的に行うことにより酸
素ガス供給管から上記の雰囲気への純酸素ガスの供給を
制御し、そしてこの純酸素ガスの供給の制御により、前
記の培養液の液相、すなわち培地中の溶存酸素量を、宿
主細胞へのウイルスの接種時からウイルスの対数増殖期
の開始時期までのウイルス培養の初期には培地の飽和溶
存酸素量の20%以下の値、但し宿主細胞の酸素需要量
を満たす値に一定又は殆んど一定に維持し、またそれ以
後のウイルスの対数増殖期中及びそれ以降には培地の溶
存酸素量を飽和溶存酸素量の50%以上、但し100%
より低い値に一定又は殆んど一定に維持することを特徴
とするウイルス感染細胞の液体培養方法が今回、提供さ
れる。
Thus, in short, according to the present invention, on the liquid surface of the culture solution of virus-infected cells in a culture tank containing a liquid medium containing host cells infected with virus after virus inoculation. By supplying pure oxygen gas by blowing it alone into the space from the oxygen gas supply pipe, the oxygen gas mainly composed of pure oxygen gas or the main oxygen gas and a small amount of water vapor and a small amount of carbon dioxide gas spontaneously evaporated from the culture solution And an atmosphere consisting of a small amount of another kind of gas is formed to cover the liquid surface of the culture solution with the atmosphere, and at this time, the liquid surface of the culture solution may be undulated by the disturbing action of the supply flow of pure oxygen gas. Oxygen gas supply by maintaining the above-mentioned atmosphere on the liquid surface of the culture solution while preventing it from occurring and further adjusting the supply amount of pure oxygen gas and / or intermittently supplying pure oxygen gas. From the tube The supply of pure oxygen gas to the atmosphere described above is controlled, and by controlling the supply of this pure oxygen gas, the liquid phase of the culture medium, that is, the amount of dissolved oxygen in the medium, is determined when the virus is inoculated into the host cells. To 20% or less of the saturated dissolved oxygen content of the medium at the initial stage of virus culture from the start of the viral logarithmic growth phase to a value that satisfies the oxygen demand of the host cell, or is maintained almost constant. During the logarithmic growth phase of the virus thereafter and thereafter, the dissolved oxygen content of the medium is 50% or more of the saturated dissolved oxygen content, but 100%.
There is now provided a liquid culture method for virus-infected cells, characterized in that it is kept constant or almost constant at a lower value.

【0018】以下に本発明の方法の実施法について詳細
に説明する。
The method for carrying out the method of the present invention will be described in detail below.

【0019】本発明の方法で用いる培養槽としては、円
筒状、球状など攪拌に適するものであれば従来慣用の竪
型、横型のいずれの型でもよい。また本法では、液体培
地を培養過程中に攪拌機で攪拌してもよく、その攪拌の
方法は、細胞の培養に適する攪拌手段であれば、培養槽
中心に回転軸をもつプロペラ方式、ポンプによる培地循
環方式のいずれの方式でもよい。
The culture tank used in the method of the present invention may be any conventionally used vertical type or horizontal type as long as it is suitable for stirring such as a cylindrical shape or a spherical shape. Further, in this method, the liquid medium may be stirred by a stirrer during the culturing process, and the stirring method may be a propeller method having a rotating shaft in the center of the culture tank or a pump if the stirring means is suitable for culturing cells. Any method of circulating the medium may be used.

【0020】本発明の方法で培養されるウイルス感染細
胞は、動物細胞、植物細胞、植物器官、微生物の細胞の
何れでもよい。また、細胞としては浮遊性、付着依存性
のいずれでもよい。例えば昆虫細胞を本発明の方法で培
養する場合には、培地に接種すべき昆虫細胞は、任意の
昆虫についてその体の任意の部分を切り取り、プロテア
ーゼで処理することによって細胞を1つずつ分離して得
られるものであり得る。しかし、細胞の入手の容易さと
その性質が固定化されていて公知であり取扱いも簡易で
あり、また継代培養を続けうる公知の細胞系統(セルラ
イン)の方が利用しやすい。
The virus-infected cells cultured by the method of the present invention may be animal cells, plant cells, plant organs or microbial cells. Moreover, the cells may be either floating or adhesion-dependent. For example, when insect cells are cultivated by the method of the present invention, the insect cells to be inoculated into the medium should be cut off from any part of the body of any insect and treated with protease to isolate the cells one by one. Can be obtained. However, since the availability of cells and the property thereof are fixed and publicly known, the handling is simple, and a known cell line (cell line) capable of continuing subculture is easier to use.

【0021】このために、従来知られている昆虫細胞の
セルライン、例えばヨトウガ脂肪体由来細胞のセルライ
ンであるSES−MaBr−1株、SES−MaBr−
2株、SES−MaBr−3株、SES−MaBr−4
株、同血球由来細胞のセルラインであるNIAS−Ma
Br−32株、NIAS−MaBr−92株、NIAS
−MaBr−93株などを用いることが培養結果の再現
性の点からも有利である。
For this purpose, conventionally known cell lines of insect cells, for example, cell lines of Spodoptera frugiperda-derived cells, SES-MaBr-1 strain, SES-MaBr-.
2 strains, SES-MaBr-3 strain, SES-MaBr-4
Strain, a cell line of cells derived from the same blood cell, NIAS-Ma
Br-32 strain, NIAS-MaBr-92 strain, NIAS
Using the MaBr-93 strain or the like is also advantageous in terms of reproducibility of the culture results.

【0022】また、ヨトウガ由来細胞(4H)株は、S
ES−MaBr−4株をNo.8培地で、またヨトウガ
由来細胞(93H)株は、NIAS−MaBr−93株
をNo.8培地(特開昭63−148983号公報)で
それぞれに順化継代培養して得られる昆虫細胞セルライ
ンとして知られるが、これらも本法で培養できる。
The Spodoptera frugiperda-derived cell (4H) strain is S
The ES-MaBr-4 strain was designated as No. No. 8 medium, and the Spodoptera frugiperda-derived cell (93H) strain was NIAS-MaBr-93 strain. It is known as an insect cell line obtained by acclimation and subculture in each of 8 mediums (Japanese Patent Laid-Open No. 63-148983), and these can also be cultured by this method.

【0023】本発明で使用しうるウイルスとしては、細
胞培養により増殖できるウイルスであることができ、特
に昆虫細胞に感染する任意のウイルス、例えば核多角体
病ウイルス、顆粒病ウイルス、細胞質多角体病ウイルス
などの作物の食害昆虫に感染して生物学的に駆除できる
昆虫ウイルスが挙げられる。
The virus that can be used in the present invention can be a virus that can be propagated in cell culture, and in particular, any virus that infects insect cells, such as nuclear polyhedrosis virus, granule disease virus, cytoplasmic polyhedrosis. Insect viruses that can be biologically eradicated by infecting crop-feeding insects such as viruses are mentioned.

【0024】本法で使用しうる液体培地としては、牛胎
児血清含有MM培地〔Contrib . Boyel Jhompson Inst
. 第22巻第435頁〜第460頁(1964)〕及
びNo.8培地などが挙げられるが、前記した生物細胞
が成育できる液体培地であるならば、用いる細胞にあわ
せていずれの液体培地でも使用できる。
The liquid medium that can be used in this method is MM medium containing fetal bovine serum [Contrib. Boyel Jhompson Inst
Vol. 22, pp. 435-460 (1964)] and No. 8 media and the like can be mentioned, but any liquid medium can be used depending on the cells to be used as long as it is a liquid medium in which the above-mentioned biological cells can grow.

【0025】本発明の方法を行うに当っては、培地を培
養槽に注入後に培養液より上方の空間に充分量のチッ素
ガスを吹き込み、空気を追い出しておく。次いで、培養
槽の上部に設けた酸素ガス供給管を通して純酸素ガスを
供給し窒素ガスと置換させる。純酸素ガスは市販の培養
用品位のものを用い、無菌フィルターにより除菌したも
のを用いる。
In carrying out the method of the present invention, after injecting the medium into the culture tank, a sufficient amount of nitrogen gas is blown into the space above the culture solution to expel air. Then, pure oxygen gas is supplied through an oxygen gas supply pipe provided at the top of the culture tank to replace nitrogen gas. As the pure oxygen gas, use a commercially available culture-grade one, and use one that has been sterilized with a sterile filter.

【0026】酸素ガスの供給管のノズル出口は、培養槽
内の気層部分に直接吹き込め、培養液表面を波立たせな
い位置であれば、特に位置、吹き出し口の形状、吹き出
し口の数は制限されるものではない。細胞へのウイルス
の接種は、培地が後記される値の溶存酸素量に達した時
点で行ってもよいし、あるいは予めウイルス接種した細
胞を、培地が後記される値の溶存酸素量に達した時点で
植えてもよい。
The nozzle outlet of the oxygen gas supply pipe is blown directly into the air layer portion in the culture tank, and the position, the shape of the outlet, and the number of outlets are limited as long as the surface of the culture solution is not ruffled. It is not something that will be done. The cells may be inoculated with the virus at the time when the medium reaches the value of the dissolved oxygen amount described below, or the cells inoculated with the virus may reach the value of the dissolved oxygen amount described below in the medium. You may plant at the time.

【0027】酸素ガスの供給量は、培養槽の気層部分の
体積と、培養槽に収容された培地の体積、培養中のウイ
ルス感染細胞の酸素消費量により異なるが、5リットル
容量の培養槽では酸素ガス流量計の動かない程度から1
リットル/hぐらいの範囲となるようにする。培地の溶
存酸素量は培地中の宿主細胞へのウイルスの接種時から
ウイルスの対数増殖期の開始時期までのウイルス培養の
初期中には飽和溶存酸素量の20%以下、望ましくは1
0〜15%の値に維持する。ウイルスの増殖率が明らか
に向上してウイルス量が急速に高まるウイルスの対数増
殖期の開始時期およびそれ以降では、溶存酸素量を飽和
溶存酸素量の50%以上、望ましくは60〜80%の範
囲で維持する。
The supply amount of oxygen gas varies depending on the volume of the gas phase portion of the culture tank, the volume of the medium contained in the culture tank, and the oxygen consumption of virus-infected cells during the culture, but the culture tank has a capacity of 5 liters. Then, from the extent that the oxygen gas flow meter does not move, 1
Keep it in the range of about liter / h. The dissolved oxygen content of the medium is 20% or less of the saturated dissolved oxygen content during the initial period of virus culture from the time of inoculation of the virus into the host cells in the medium to the start of the logarithmic growth phase of the virus, preferably 1 or less.
Maintain a value of 0-15%. At the start of the logarithmic growth phase of the virus, where the growth rate of the virus is obviously improved and the virus amount is rapidly increased, and thereafter, the dissolved oxygen amount is in the range of 50% or more of the saturated dissolved oxygen amount, preferably in the range of 60 to 80%. Maintain at.

【0028】培養槽には、培養液の上方の空間から気体
を抜出す排気管が設けられるが、この排気管には、培養
液の蒸散による培地液量の減少を防ぐためのコンデンサ
ーを設置して水蒸気を凝縮して培養槽内へ戻すことが好
ましい。また培養槽による細胞の培養に必要な一般的な
設備、たとえば温度センサー、pHセンサー、pH調整
装置等は適宜設置する。
The culture tank is provided with an exhaust pipe for discharging gas from the space above the culture liquid. A condenser is installed in this exhaust pipe to prevent the decrease of the amount of the culture medium liquid due to the evaporation of the culture liquid. It is preferable that the water vapor is condensed and returned to the culture tank. In addition, general equipment necessary for culturing cells in a culture tank, such as a temperature sensor, a pH sensor, and a pH adjusting device, is appropriately installed.

【0029】以下に本発明を試験例及び実施例によって
さらに説明する。
The present invention will be further described below with reference to test examples and examples.

【0030】試験例1 培養槽内の気層部分に酸素ガスを単独で吹き込みながら
但し培養液中には通気せずに後記の表1に示した組成を
もつNo.8培地中でウイルス無接種の状態でヨトウガ
由来培養細胞(4H株)を10日間(240時間)培養
した。なお、培養液中の溶存酸素量は培養2日目まで
(培養時間48時間目まで)は飽和溶存酸素量の15%
の値に一定に維持し、培養3日目(培養時間72時間
目)より60%の値に維持した。この培養過程における
培養細胞の酸素の消費量(酸素需要量、μ1/時)をレ
シピロメーターを用い測定した(培養液を細胞と一緒に
一部、試料として抜取り、経時的に計量した)。その結
果を表2に示す。培養初期中にある細胞接種1日目(培
養時間24時間目)の細胞は、対数増殖期中にすでに入
った培養3日目(培養時間72時間目)の細胞の酸素消
費量の約1/2量を要するだけで済むことが認められ
た。
Test Example 1 No. 3 having the composition shown in Table 1 below was blown with oxygen gas alone into the gas phase portion in the culture tank, but without aeration in the culture solution. Cultured cells of Spodoptera frugiperda (4H strain) were cultured in 8 medium without virus inoculation for 10 days (240 hours). The dissolved oxygen content in the culture solution was 15% of the saturated dissolved oxygen content until the second day of culture (up to 48 hours of culture time).
Was maintained at a constant value of 60% from the 3rd day of culture (72 hours of culture time). The oxygen consumption (oxygen demand, μ1 / hour) of the cultured cells in this culturing process was measured using a recipe meter (a part of the culture solution together with the cells was sampled and measured over time). The results are shown in Table 2. The cells on the 1st day of cell inoculation (culture time 24 hours) in the early stage of culture are about 1/2 of the oxygen consumption of the cells on the 3rd day of culture (culture time 72 hours) already in the logarithmic growth phase. It was found that it only needed a large amount.

【0031】[0031]

【表1】 No.8培地の組成 塩化ナトリウム 7.0g/1 塩化カリウム 0.2g/1 塩化マグネシウム六水和物 0.1g/1 塩化カルシウム二水和物 0.2g/1 D−グルコース 4.0g/1 ラクトアルブミン水解物 (Nutritional Biocheimicals Corp社製) 6.5g/1 イーストレート(粉末酵母)(Difco社製) 5.0g/1 pH 6.5±0.2[Table 1] No. 8 Composition of medium Sodium chloride 7.0 g / 1 Potassium chloride 0.2 g / 1 Magnesium chloride hexahydrate 0.1 g / 1 Calcium chloride dihydrate 0.2 g / 1 D-glucose 4.0 g / 1 lactalbumin Hydrolyzate (Nutritional Biocheimicals Corp) 6.5 g / 1 Yeast rate (powdered yeast) (Difco) 5.0 g / 1 pH 6.5 ± 0.2

【表2】 試験例2 試験例1で得られた培養日数、10日目のヨトウガ由来
培養細胞(4H株)の培養液(細胞濃度:62.0×1
5 細胞/ml)を取出し、細胞を培養液から分離して
新しいNo.8培地中に懸濁した(細胞の接種)。その
後、直ちにヨトウガ由来培養細胞(4H株)を含むN
o.8培地へヨトウガ核多角体病ウイルスの浮遊液を加
え、培養細胞へ該ウイルスを接種した。
[Table 2] Test Example 2 Culture solution (cell concentration: 62.0 × 1) obtained from Test Example 1 on the 10th day of culture, which was the culture cell of Spodoptera litura (4H strain)
0 5 cells / ml), the cells were separated from the culture medium and a new No. 8 suspended in medium (cell inoculation). Immediately after that, N containing cultured cells derived from Spodoptera frugiperda (4H strain)
o. A suspension of Spodoptera frugiperda nuclear polyhedrosis virus was added to 8 medium, and the virus was inoculated into cultured cells.

【0032】試験例1の場合と同様に、培養液中の溶存
酸素量は飽和溶存酸素量の15%の値に一定に維持しな
がら、ウイルス感染細胞を培養し続けた。
As in Test Example 1, the virus-infected cells were continuously cultured while maintaining the dissolved oxygen content in the culture solution at a value of 15% of the saturated dissolved oxygen content.

【0033】試験例1と同様の方法で、ウイルス感染し
た培養細胞の酸素の消費量(酸素需要量、μl/時)を
レシピロメーターで測定した。その結果を表3に示す。
In the same manner as in Test Example 1, the oxygen consumption (oxygen demand, μl / hour) of virus-infected cultured cells was measured with a recipe meter. The results are shown in Table 3.

【0034】[0034]

【表3】 表3の結果について、ウイルス接種細胞の培養0日目
(ウイルス接種の直后)では、細胞の酸素消費量(μl
/hr/1×105 細胞当り)は0.6であり、ウイル
ス培養1日目には0.4と低下したが、これは新しい培
地への細胞の植え痛みとウイルス接種との影響によると
認められる。ウイルス接種細胞の培養3日目(ウイルス
対数増殖期に相当)では、細胞酸素消費量が1.5に増
加し、培養0日目の0.6に比べて約2.5倍に増加し
たことが認められる。
[Table 3] Regarding the results in Table 3, on day 0 of culture of virus-inoculated cells (immediately after virus inoculation), oxygen consumption of cells (μl
/ Hr / 1 × 10 5 cells) was 0.6 and decreased to 0.4 on the first day of virus culture, which is due to the pain of planting cells in a new medium and the effect of virus inoculation. Is recognized. On the 3rd day of culture of virus-inoculated cells (corresponding to the logarithmic growth phase of virus), the oxygen consumption of cells increased to 1.5, about 2.5 times as much as 0.6 on the 0th day of culture. Is recognized.

【0035】更に、表3の培養3日目の酸素消費量の
1.5の値を、試験例1の表2に示されたウイルス非感
染細胞の培養日数3日目(細胞の対数増殖期)における
酸素消費量の値、0.9に比べると、約50%以上、増
加したことが認められる。
Furthermore, the value of 1.5 of the oxygen consumption on the 3rd day of culture in Table 3 was used as the 3rd day of culture of virus-uninfected cells shown in Table 2 of Test Example 1 (logarithmic growth phase of cells). It is recognized that the oxygen consumption value in () is increased by about 50% or more as compared with 0.9.

【0036】実施例1 表1に示された組成の培地(No.8培地)を調製し、
これを滅菌後、ガラス製小型の培養ジャー(5リットル
容量、ニューブランズイック社製)に3.5リットルあ
て分注した。ジャーの上方空間の気相に窒素ガスを充分
吹き込んで空気を追出した後、酸素ガスを吹き込み窒素
ガスと置換させた。酸素ガスの供給量を加減して、溶存
酸素計で測定しながら培地の溶存酸素量を飽和溶存酸素
量の15%の値に調整して設定した。その後、この培地
にあらかじめスピンナーボトルで培養したヨトウガ由来
細胞(4H株)を2×105 個/mlの接種量で接種し
た。培養を27℃、攪拌速度60rpmで開始して6日
間行なった。
Example 1 A medium (No. 8 medium) having the composition shown in Table 1 was prepared,
After sterilization, 3.5 liters were dispensed to a small glass culture jar (capacity of 5 liters, New Brunswick). Nitrogen gas was sufficiently blown into the gas phase in the space above the jar to expel air, and then oxygen gas was blown in to replace nitrogen gas. The amount of oxygen gas supplied was adjusted, and the dissolved oxygen content of the medium was adjusted and set to a value of 15% of the saturated dissolved oxygen content while being measured by a dissolved oxygen meter. Then, this medium was inoculated with Spodoptera frugiperda-derived cells (4H strain) cultured in advance in a spinner bottle at an inoculation rate of 2 × 10 5 cells / ml. Culturing was carried out for 6 days starting at 27 ° C. and stirring speed 60 rpm.

【0037】細胞培養開始後6日目の細胞濃度は5×1
5 個/mlであった。そしてこの細胞培養液にヨトウ
ガ核多角体病ウイルスの多角体(109 個)を0.1モ
ル濃度の炭酸ナトリウム水溶液に溶解して得られたウイ
ルス浮遊液100mlを加えて接種した。ウイルス接種
後、攪拌速度60rpmで温度27℃で12日間培養を
行なった。ウイルス接種細胞の培養開始後3日間にわた
り培地の溶存酸素量を溶存酸素計で測定しながら飽和溶
存酸素量の15%になるように酸素ガスをジャーの気層
部分に通気速度を調節して吹き込み、ウイルス接種から
4日目より後は60%になるように供給した。ウイルス
感染細胞の培養12日後にはウイルス多角体を生産して
いる細胞の率は20%となり、ウイルス多角体の生産量
は、1.2×1010個/lであった。その結果を後記の
表4に示す。
6 days after the start of cell culture, the cell concentration was 5 × 1.
0 was 5 / ml. Then, to this cell culture medium, 100 ml of a virus suspension obtained by dissolving polyhedra (10 9 ) of Spodoptera frugiperda nuclear polyhedrosis virus in a 0.1 molar sodium carbonate aqueous solution was added and inoculated. After virus inoculation, the cells were cultured at a stirring speed of 60 rpm and a temperature of 27 ° C. for 12 days. While measuring the amount of dissolved oxygen in the medium for 3 days after starting the culture of virus-inoculated cells, blow oxygen gas into the air layer of the jar so that the oxygen concentration is 15% of the saturated amount of dissolved oxygen. , 4 days after the virus inoculation, the supply was made to be 60%. After 12 days of culture of virus-infected cells, the rate of cells producing virus polyhedra was 20%, and the amount of virus polyhedra produced was 1.2 × 10 10 cells / l. The results are shown in Table 4 below.

【0038】対照例1 培地の溶存酸素量をウイルスの接種時の当初から飽和溶
存酸素量の15%の値に一定に維持したままウイルス感
染細胞を12日間培養した以外は実施例1に準じて培養
を行なった。その結果を表4に示した。
Control Example 1 In accordance with Example 1 except that the virus-infected cells were cultured for 12 days while keeping the dissolved oxygen content of the medium constant at the value of 15% of the saturated dissolved oxygen content from the beginning of virus inoculation. Culture was performed. The results are shown in Table 4.

【0039】ウイルス感染細胞の培養12日後には多角
体を生産している細胞の率は2%であり、多角体の生産
量は6.5×108 個/lにしかならなかった。
After 12 days of culturing the virus-infected cells, the rate of cells producing polyhedra was 2%, and the amount of polyhedra produced was 6.5 × 10 8 cells / l.

【0040】対照例2 培地の溶存酸素量をウイルスの接種時の当初から飽和溶
存酸素量の60%の値に一定に維持したままウイルス感
染細胞を12日間培養した以外は実施例1に準じて培養
を行なった。その結果を表4に示す。
Control Example 2 According to Example 1, except that the virus-infected cells were cultured for 12 days while keeping the dissolved oxygen amount of the medium constant at the value of 60% of the saturated dissolved oxygen amount from the beginning of virus inoculation. Culture was performed. The results are shown in Table 4.

【0041】ウイルス感染細胞の培養3日後に細胞濃度
は1×105 個/ml以下に低下し、ウイルス感染細胞
の培養12日後には多角体を生産している細胞の率は1
%以下であり、多角体の回収は困難であった。
After 3 days of culture of virus-infected cells, the cell concentration dropped to 1 × 10 5 cells / ml or less, and after 12 days of culture of virus-infected cells, the rate of cells producing polyhedra was 1.
% Or less, and it was difficult to collect polyhedra.

【0042】対照例3 空気に酸素ガス、窒素ガス、炭酸ガスを混合した気体を
純酸素ガスの代りに用い、培地中に1リットル/分の通
気速度で吹き込んだ以外は実施例1に準じて培養を行な
った。但し、ウイルス接種後3日間は混合ガスの通気に
より培地の溶存酸素量を飽和溶存酸素量の15%に維持
して培養し、その後は60%に高めて培養した。しか
し、混合ガスの通気では培地の溶存酸素量を飽和溶存酸
素量の60%に維持することができず、培養するに従い
溶存酸素量は徐々に低下し、培養中期に測定限界値より
以下になった。その結果を表4に示した。
Control Example 3 In accordance with Example 1 except that a gas obtained by mixing oxygen gas, nitrogen gas and carbon dioxide gas in air was used instead of pure oxygen gas and was blown into the medium at an aeration rate of 1 liter / min. Culture was performed. However, for 3 days after virus inoculation, the amount of dissolved oxygen in the medium was maintained at 15% of the saturated amount of dissolved oxygen by aeration of a mixed gas, and then the culture was increased to 60%. However, the amount of dissolved oxygen in the medium could not be maintained at 60% of the saturated amount of dissolved oxygen by aeration of the mixed gas, and the amount of dissolved oxygen gradually decreased with culturing, and became lower than the measurement limit value in the middle of the culture. It was The results are shown in Table 4.

【0043】ウイルス多角体を生産している細胞の率は
3%であり、多角体の生産量は8.4×108 個/lに
しかならなかった。
The rate of cells producing virus polyhedra was 3%, and the amount of polyhedra produced was only 8.4 × 10 8 cells / l.

【0044】[0044]

【表4】 実施例2 表1に示された組成に準じて調製した培地(No.8培
地)を調製し、滅菌後ガラス製小型ジャー(5l容量平
底 いわしや製)に3.6lを分注しチッ素ガスを5l
吹き込んだ。これに実施例1に準じて得たウイルス接種
4日後のヨトウガ核多角体病ウイルス感染細胞培養液を
遠心分離(300rpm)して細胞を除いた培地の上澄
液400mlを加えて接種した。
[Table 4] Example 2 A medium (No. 8 medium) prepared according to the composition shown in Table 1 was prepared, and after sterilization, 3.6 l was dispensed into a small glass jar (manufactured by Iwaya Co., Ltd. with a flat capacity of 5 l) to remove nitrogen. 5 liters of gas
Blown in. Four days after the virus inoculation obtained according to Example 1, the cell culture of the Spodoptera frugiperda nuclear polyhedrosis virus-infected cell was centrifuged (300 rpm) and 400 ml of the supernatant of the medium in which the cells had been removed was added to inoculate.

【0045】培地の溶存酸素量を飽和溶存酸素量の10
%に調整後、この培地にあらかじめスピンナーボトルで
培養したヨトウガ由来細胞(4H株)を初発濃度5×1
5個/mlになるように加えて接種した。マリンタイ
プのインペラーを用い、攪拌速度120rpmで温度2
7℃で14日間培養を行なった。培養開始後3日間培地
の溶存酸素量を溶存酸素計で測定しながら飽和溶存酸素
量の10%になるように酸素ガスをジャーの気体部分に
通気速度1l/hで吹き込み、その後は80%になるよ
うに供給した。培養14日後には多角体を生産している
細胞の率は18%であり、多角体の生産量は1×1010
個/lであった。
The dissolved oxygen content of the medium was adjusted to the saturated dissolved oxygen content of 10
%, And then the cells of Spodoptera frugiperda (4H strain) cultured in a spinner bottle in this medium in advance had an initial concentration of 5 × 1.
0 were inoculated five in addition to be / ml. Using a marine type impeller, stirring speed 120 rpm and temperature 2
The culture was performed at 7 ° C for 14 days. 3 days after the start of culturing, while measuring the dissolved oxygen content of the medium with a dissolved oxygen meter, blow oxygen gas into the gas portion of the jar at an aeration rate of 1 l / h so as to be 10% of the saturated dissolved oxygen content, and thereafter to 80%. Was supplied. After 14 days of culturing, the rate of cells producing polyhedra was 18%, and the production amount of polyhedra was 1 × 10 10.
The number was 1 / l.

【0046】対照例として、実施例2と同様に、但し培
養開始後培地の溶存酸素量を飽和溶存酸素量の10%一
定になるように酸素を供給したが、培養12日後には多
角体を生産している細胞の率は1%以下であり、多角体
の回収は困難であった。
As a control example, oxygen was supplied in the same manner as in Example 2 except that the dissolved oxygen content of the medium after the start of the culture was kept constant at 10% of the saturated dissolved oxygen content. The rate of cells produced was 1% or less, and it was difficult to collect polyhedra.

【0047】また、別の対照例として、実施例2と同様
に、但し培養開始後培地の溶存酸素量を飽和溶存酸素量
の80%一定になるように酸素を供給したが、培養3日
後に細胞濃度は1×105 個/ml以下に低下した。培
養12日後には多角体を生産している細胞の率は1%以
下であり、多角体の回収は困難であった。
As another control example, oxygen was supplied in the same manner as in Example 2 except that the amount of dissolved oxygen in the medium after the start of culture was kept constant at 80% of the saturated amount of dissolved oxygen. The cell concentration dropped to 1 × 10 5 cells / ml or less. After 12 days of culturing, the rate of cells producing polyhedra was 1% or less, and it was difficult to collect the polyhedra.

【0048】さらに別の対照例として、酸素ガスの代わ
りに空気を用いたほかは上記実施例2に準じて行い、空
気を1.2l/分の速度で吹き込んで、培地中の溶存酸
素量を培養初期は飽和溶存酸素量の10%、培養中期以
後飽和溶存酸素量の80%になるように培養したが、培
養中期には培地の溶存酸素量を飽和溶存酸素量の80%
に保つことが出来ず、多角体を生産している細胞の率は
1%以下であった。多角体の生産量は1×108 個/l
以下であった。
As yet another comparative example, the procedure of Example 2 was repeated except that air was used instead of oxygen gas, and air was blown at a rate of 1.2 l / min to measure the amount of dissolved oxygen in the medium. At the beginning of the culturing, the culture was cultivated so as to be 10% of the saturated dissolved oxygen amount and 80% of the saturated dissolved oxygen amount after the middle culturing period, but in the middle culturing period, the dissolved oxygen amount of the medium was 80% of the saturated dissolved oxygen amount.
The percentage of cells producing polyhedra could not be maintained at 1% or less. Polyhedron production is 1 × 10 8 pieces / l
It was below.

【0049】[0049]

【発明の効果】本発明は、上述したように、ウイルス接
種時および、ウイルス感染初期においては培地中の溶存
酸素量を低くし、ウイルスが対数増殖期にあるときは多
量の酸素を供給することにより多量のウイルスを感染増
殖させることができる。また、酸素、窒素、炭酸ガスの
混合気体でなく純酸素ガスを用いることにより多量の酸
素を必要とする時期に速やかに必要量を供給することが
できる。さらに培養槽内の気体部分に酸素ガスを吹き込
みながら培養を行なう方法により、酸素ガスの細胞への
害作用がきわめて少なく、発泡を生ずることなく培養液
を攪拌し、酸素を速やかに供給することができる。この
ように本発明によれば、培養細胞でのウイルスの感染増
殖を効率的に行わせ、大量のウイルス生産が行える。
INDUSTRIAL APPLICABILITY As described above, the present invention reduces the amount of dissolved oxygen in the medium at the time of virus inoculation and at the beginning of virus infection, and supplies a large amount of oxygen when the virus is in the logarithmic growth phase. Can propagate and propagate a large amount of virus. Further, by using pure oxygen gas instead of a mixed gas of oxygen, nitrogen and carbon dioxide gas, the required amount can be promptly supplied when a large amount of oxygen is required. Furthermore, by the method of culturing while blowing oxygen gas into the gas portion in the culture tank, the harmful effect of oxygen gas on the cells is extremely small, and the culture solution can be stirred without causing foaming and oxygen can be rapidly supplied. it can. As described above, according to the present invention, virus infection and growth in cultured cells can be efficiently performed, and a large amount of virus can be produced.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 C12R 1:91) ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 5 Identification code Office reference number FI technical display location C12R 1:91)

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 ウイルスの接種後にウイルスに感染され
た宿主細胞を含有している液体培地を収容している培養
槽内でウイルス感染細胞の培養液の液面上の空間中に純
酸素ガスを単独に酸素ガス供給管から吹き込んで供給す
ることにより、純酸素ガスより専らなる雰囲気又は主体
の酸素ガスと該培養液から自然に蒸散する少量の水蒸
気、少量の炭酸ガス及び少量の他種ガスとよりなる雰囲
気を形成して該雰囲気で培養液の液面を被覆し、しかも
この際に純酸素ガスの供給流による攪乱作用で培養液の
液面が波立つことがないように防止しながら前記の雰囲
気を培養液の液面上に維持し、さらに純酸素ガスの供給
量を加減すること及び(又は)純酸素ガスの供給を間歇
的に行うことにより酸素ガス供給管から上記の雰囲気へ
の純酸素ガスの供給を制御し、そしてこの純酸素ガスの
供給の制御により、前記の培養液の液相、すなわち培地
中の溶存酸素量を、宿主細胞へのウイルスの接種時から
ウイルスの対数増殖期の開始時期までのウイルス培養の
初期には培地の飽和溶存酸素量の20%以下の値、但し
宿主細胞の酸素需要量を満たす値に一定又は殆んど一定
に維持し、またそれ以後のウイルスの対数増殖期中及び
それ以降には培地の溶存酸素量を飽和溶存酸素量の50
%以上、但し100%より低い値に一定又は殆んど一定
に維持することを特徴とするウイルス感染細胞の液体培
養方法。
1. Pure oxygen gas in a space above the liquid surface of a culture solution of virus-infected cells in a culture tank containing a liquid medium containing host cells infected with the virus after virus inoculation. By supplying by blowing alone from the oxygen gas supply pipe, the oxygen gas of the atmosphere or the main component of pure oxygen gas and a small amount of water vapor spontaneously evaporating from the culture solution, a small amount of carbon dioxide gas and a small amount of other species gas The atmosphere is formed to cover the liquid surface of the culture solution with the atmosphere, and at the same time, the liquid surface of the culture solution is prevented from wavy due to the disturbing action of the supply flow of pure oxygen gas. The above atmosphere is maintained from the oxygen gas supply pipe to the above atmosphere by maintaining the above atmosphere on the liquid surface of the culture solution and further adjusting the supply amount of pure oxygen gas and / or intermittently supplying pure oxygen gas. Supply of pure oxygen gas By controlling and controlling the supply of this pure oxygen gas, the dissolved oxygen amount in the liquid phase of the above-mentioned culture medium, that is, the medium, is changed from the time of inoculation of the virus to the host cells to the start of the logarithmic growth phase of the virus. In the initial stage of virus culture, the value is not more than 20% of the saturated dissolved oxygen content of the medium, but is maintained at a value almost or almost constant to meet the oxygen demand of the host cells, and during the subsequent logarithmic growth phase of the virus and After that, the dissolved oxygen content of the medium was adjusted to 50% of the saturated dissolved oxygen content.
A liquid culture method for virus-infected cells, which is maintained at a constant value or a substantially constant value at a level of not less than 100%, but lower than 100%.
JP3330460A 1991-12-13 1991-12-13 Method for culturing virus-infected cell Pending JPH06178684A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3330460A JPH06178684A (en) 1991-12-13 1991-12-13 Method for culturing virus-infected cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3330460A JPH06178684A (en) 1991-12-13 1991-12-13 Method for culturing virus-infected cell

Publications (1)

Publication Number Publication Date
JPH06178684A true JPH06178684A (en) 1994-06-28

Family

ID=18232874

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3330460A Pending JPH06178684A (en) 1991-12-13 1991-12-13 Method for culturing virus-infected cell

Country Status (1)

Country Link
JP (1) JPH06178684A (en)

Similar Documents

Publication Publication Date Title
US4144129A (en) Cholesteroloxidase and method for its production from microorganisms
Park et al. Effect of dissolved oxygen concentration and impeller tip speed on itaconic acid production by Aspergillus terreus
SU615870A3 (en) Method of obtaining biomass of microorganisms
WO2023040301A1 (en) Artificial and synthetic material having biological activity and agricultural application thereof
JPH06178684A (en) Method for culturing virus-infected cell
CN101250507B (en) Batch supplying fermentation technique for producing acetonic acid oxidase high-effectively by using recombinant bacillus coli
CN110229762A (en) One plant has the hydrogen-oxidizing bacterium of Plant growth promotion and its is separately cultured and applies
JPH10201467A (en) Judgement of growth of material to be cultured and culture apparatus therefor
Mizuno et al. Improvement of the aluminum borate whisker-mediated method of DNA delivery into rice callus
CN1261560C (en) Bioreactor of in vitro stem cell culture
JPS62195276A (en) Cell cultivation
JPH09508796A (en) Microbiological method
NO850534L (en) PROCEDURE FOR CULTING CELLS
CN112779236A (en) Trans-butenoic acid transaminase engineering bacteria and high-density fermentation method and application thereof
JPH05304952A (en) Method for cell culture
RU2053294C1 (en) Method of cultivation of bifidobacteria
CN110228855A (en) The preparation method and sewage water treatment method of graphene oxide composite material
JPS5944036B2 (en) Microbial culture method
JPS62220155A (en) High-density rearing of artemia
CN101386844A (en) Trichoderma phospholipase A2 and gene for expressing thereof
SU1386657A1 (en) Culture medium for cultivating campilobacteria
RU2158302C2 (en) Nutrient medium for bifidobacterium and lactobacterium culturing
RU2142508C1 (en) Method of industrial producing polypeptide showing biological activity of human leukocyte interferon alpha-2
CA1150654A (en) Process for the production of citric acid
JPS6384475A (en) Preparation of food vinegar