JPH06178459A - Charging device for vehicle - Google Patents

Charging device for vehicle

Info

Publication number
JPH06178459A
JPH06178459A JP4351751A JP35175192A JPH06178459A JP H06178459 A JPH06178459 A JP H06178459A JP 4351751 A JP4351751 A JP 4351751A JP 35175192 A JP35175192 A JP 35175192A JP H06178459 A JPH06178459 A JP H06178459A
Authority
JP
Japan
Prior art keywords
voltage
circuit
field coil
battery
energization
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4351751A
Other languages
Japanese (ja)
Inventor
Hideo Ishida
秀夫 石田
Keiichiro Tomoari
慶一郎 伴在
Yasuhiko Sakurai
靖彦 桜井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
NipponDenso Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NipponDenso Co Ltd filed Critical NipponDenso Co Ltd
Priority to JP4351751A priority Critical patent/JPH06178459A/en
Publication of JPH06178459A publication Critical patent/JPH06178459A/en
Pending legal-status Critical Current

Links

Landscapes

  • Control Of Charge By Means Of Generators (AREA)
  • Control Of Eletrric Generators (AREA)

Abstract

PURPOSE:To provide a charging device, for vehicles, wherein the power- generation current of a generator can be increased before a battery voltage is dropped when a short-time large-current load is used. CONSTITUTION:A boosting circuit 11 is operated when a control circuit 10 is operated and an electrification detection circuit 12 detects that an electric current is applied to a short-time large-current load 9. A prescribed voltage in which the portion of a boosting voltage has been added to the voltage of a battery 1 is applied to a field coil 3R, and the output current of a generator 2 is increased. A voltage to be applied to the field coil 3R so as to correspond to the operating state of the short-time large-current load 9 is set at a first prescribed voltage of 18 V when the electrification detection circuit 12 is operated.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、車両用充電装置に関
し、特に車両アイドリング時及び低速走行時等におい
て、短時間大電流負荷の使用に対応して、発電機の発電
電圧より高い電圧を界磁コイルへ印加し出力電流を増加
させて、バッテリを充電し短時間大電流負荷を給電する
車両用充電装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a charging device for a vehicle, and in particular, when the vehicle is idling or traveling at a low speed, it is suitable for use with a large current load for a short time, and a voltage higher than a voltage generated by a generator is applied. The present invention relates to a vehicle charging device that applies a magnetic coil to increase an output current to charge a battery and supply a large current load for a short time.

【0002】[0002]

【従来の技術】車両アイドリング時等の充電発電機の低
速回転時において、大容量の電気負荷を使用した場合、
充電発電機の出力以上の電流が必要となりバッテリから
の放電が行われるためバッテリ電圧が低下する。バッテ
リ電圧の低下は、界磁コイルの励磁電流の減少を生じ発
電機出力を減少してバッテリからの放電が促進される。
そのため、発電機のロータコイルの励磁電流を制御する
トランジスタのデューティが100%になったときにバ
ッテリ放電を検出するもの及びバッテリ電圧の低下によ
りバッテリ放電を検出した際、昇圧電圧を生じる昇圧回
路を作動することにより、バッテリの放電量を小さく抑
えることが可能な車両用充電装置が、特開平1−186
134号公報で開示されている。
2. Description of the Related Art When a large-capacity electric load is used when a charging generator is rotating at a low speed such as when a vehicle is idling,
Since a current higher than the output of the charging generator is required and the battery is discharged, the battery voltage drops. The decrease in the battery voltage causes a decrease in the exciting current of the field coil, which reduces the output of the generator and promotes discharge from the battery.
Therefore, a device that detects battery discharge when the duty of the transistor that controls the exciting current of the rotor coil of the generator reaches 100% and a booster circuit that generates a boosted voltage when battery discharge is detected due to a decrease in battery voltage A vehicle charging device capable of suppressing the amount of discharge of a battery by operating is disclosed in JP-A-1-186.
No. 134 publication.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、近来、
自動車には、排気ガス対策としての電気加熱触媒システ
ムや安全性を確保するためのヒータ付きフロントガラス
等の短時間大電流負荷が開発された。これらの短時間大
電流負荷が車両に装着された場合、上記、車両用充電装
置は、バッテリ放電を検出した時に発電機の発電電流を
大幅に増加させて負荷に対応するため、発電機の発電電
流が増加したときには、既にバッテリ電圧が回復し難い
という問題点がある。本発明は、上記問題点に鑑み、短
時間大電流負荷を使用した際において、バッテリ電圧が
下がらない内に発電機の発電電流を増加することが可能
な車両用充電装置を提供することを第1の課題とする。
[Problems to be Solved by the Invention]
For automobiles, an electric heating catalyst system as an exhaust gas countermeasure and a short-time large current load such as a windshield with a heater for ensuring safety have been developed. When these short-time high-current loads are mounted on the vehicle, the above-described vehicle charger significantly increases the generator current when the battery discharge is detected, and responds to the load. When the current increases, it is difficult to recover the battery voltage. In view of the above problems, the present invention provides a vehicle charging device capable of increasing the generated current of a generator before the battery voltage drops when a large current load is used for a short time. Let's take the first challenge.

【0004】また、従来の車両用充電装置は、昇圧回路
として使用するDC−DCコンバータが、1次側及び2
次側の間を絶縁して電圧変換するので界磁コイルには昇
圧回路の昇圧電圧だけが印加されバッテリ電圧が印加さ
れないので、同一の昇圧電圧に対して発電機の発電電流
が僅かにしか増加できず、回路効率が悪い。本発明は、
上記問題点に鑑み、昇圧回路の回路効率の向上を図る車
両用充電装置を提供することを第2の課題とする。
Further, in the conventional vehicle charging device, the DC-DC converter used as the booster circuit has a primary side and a secondary side.
Since the voltage between the secondary side is insulated and voltage conversion is performed, only the boost voltage of the boost circuit is applied to the field coil, and the battery voltage is not applied.Therefore, the generator current slightly increases for the same boost voltage. Not possible, circuit efficiency is poor. The present invention is
In view of the above problems, a second object is to provide a vehicle charging device that improves the circuit efficiency of the booster circuit.

【0005】更に、従来の車両用充電装置は、界磁コイ
ルへの電流供給を昇圧回路から行う線路及びバッテリか
ら直接行う線路を設けているので、無駄があり複雑であ
る。本発明は、上記問題点に鑑み、界磁コイルへの電流
供給を継続的に無駄なくできる回路構成として簡素化す
る車両用充電装置を提供することを第3の課題とする。
Further, the conventional vehicle charging device is wasteful and complicated because it is provided with a line for supplying current to the field coil from the booster circuit and a line for directly supplying from the battery. In view of the above problems, it is a third object of the present invention to provide a vehicle charging device having a simplified circuit configuration capable of continuously supplying current to the field coil without waste.

【0006】しかも、従来の車両用充電装置は、バッテ
リ放電を検出した後に、界磁コイルへの印加電圧を18
Vとして印加され続けるから、界磁コイルが異常発熱を
起こすという問題点がある。本発明は、上記問題点に鑑
み、バッテリの印加電圧を短時間大電流負荷の使用に対
応して小さく抑えて、界磁コイルの異常発熱を抑える車
両用充電装置を提供することを第4の課題とする。
In addition, the conventional vehicle charging apparatus detects the discharge of the battery and then applies the voltage applied to the field coil to 18
Since it is continuously applied as V, there is a problem that the field coil causes abnormal heat generation. In view of the above problems, the present invention provides a vehicle charging device that suppresses the applied voltage of the battery to a small value for a short time in response to the use of a large current load to suppress abnormal heat generation of the field coil. It is an issue.

【0007】[0007]

【課題を解決するための手段】上記第1の課題を解決す
るため、本発明は、短時間大電流負荷の通電を検出する
通電検出回路と、通電検出回路の検出によりバッテリ電
圧を所定電圧に昇圧し前記界磁コイルへ印加する昇圧回
路とを備えることを特徴とする車両用充電装置を提供す
る。通電検出回路が短時間大電流負荷への通電を検出す
ると、昇圧回路が作動しバッテリ電圧より高い昇圧電圧
を界磁コイルへ印加し、発電機の出力電流を増加させ
る。
In order to solve the above first problem, the present invention relates to an energization detection circuit for detecting energization of a large current load for a short time, and a battery voltage to a predetermined voltage detected by the energization detection circuit. A booster circuit for boosting the voltage and applying it to the field coil is provided. When the energization detection circuit detects the energization of the large current load for a short time, the booster circuit operates and applies a boosted voltage higher than the battery voltage to the field coil to increase the output current of the generator.

【0008】また、第2の課題を解決するため、本発明
は、昇圧回路が作動する際にはバッテリ電圧に昇圧電圧
を上乗せした所定電圧を界磁コイルへ供給することを特
徴とする車両用充電装置を提供する。前記構成によれ
ば、昇圧電圧は、低くても界磁コイルには昇圧電圧より
大きな所定電圧が印加されるため、昇圧回路の損失が少
なく、回路効率を上げる。
In order to solve the second problem, the present invention is characterized by supplying a predetermined voltage obtained by adding the boost voltage to the battery voltage to the field coil when the boost circuit operates. Provide a charging device. According to the above configuration, even if the boosted voltage is low, a predetermined voltage higher than the boosted voltage is applied to the field coil, so that the loss of the booster circuit is small and the circuit efficiency is improved.

【0009】更に、第3の課題を解決するため、本発明
は、前記昇圧回路が昇圧作動しない時に、バッテリ電圧
が昇圧回路を通して界磁コイルへ供給されることを特徴
とする車両用充電装置を提供する。そして、短時間大電
流負荷が非通電となり昇圧回路が作動を停止すると、界
磁コイルへの電圧印加は、バッテリ電圧を昇圧回路の電
源端子から出力端子を通して印加する。昇圧回路の電源
端子は、昇圧回路の作動に関係なく継続的に共用され回
路構成を簡素化する。
Further, in order to solve the third problem, the present invention provides a vehicle charging device characterized in that the battery voltage is supplied to the field coil through the boosting circuit when the boosting circuit does not perform boosting operation. provide. Then, when the high current load is de-energized for a short time and the booster circuit stops operating, the voltage is applied to the field coil by applying the battery voltage from the power supply terminal of the booster circuit to the output terminal. The power supply terminal of the booster circuit is continuously shared regardless of the operation of the booster circuit to simplify the circuit configuration.

【0010】しかも、第4の課題を解決するため、本発
明は、短時間大電流負荷の通電を検出する通電検出回路
と、バッテリの放電を検出する放電検出回路と、前記界
磁コイルに印加する直流電圧を昇圧する昇圧回路を有
し、前記昇圧回路は、通電検出回路が短時間大電流負荷
への通電を検出した際は、第1所定電圧を界磁コイルへ
印加し、放電検出回路が検出した際は、第1所定電圧よ
り低く設定する第2所定電圧を界磁コイルに印加するこ
とを特徴とする車両用充電装置を提供する。そして、通
電検出回路が短時間大電流負荷への通電を検出すると、
昇圧回路が高い第1所定電圧を界磁コイルへ印加し、電
流不足を急速に解消する。放電検出回路がバッテリの放
電を検出すれば、第1所定電圧より低い第2所定電圧を
界磁コイルへ印加する。このように界磁コイルへの印加
電圧を短時間大電流負荷の使用に対応して変えれば、界
磁コイルの異常発熱を小さく抑える。
In order to solve the fourth problem, the present invention provides an energization detection circuit for detecting energization of a large current load for a short time, a discharge detection circuit for detecting discharge of a battery, and an application to the field coil. A boosting circuit for boosting a direct current voltage, the boosting circuit applies a first predetermined voltage to the field coil when the energization detecting circuit detects energization to a large current load for a short time, and the discharge detecting circuit Is detected, the second predetermined voltage set to be lower than the first predetermined voltage is applied to the field coil. Then, when the energization detection circuit detects energization to a large current load for a short time,
The booster circuit applies a high first predetermined voltage to the field coil to quickly eliminate the current shortage. When the discharge detection circuit detects the discharge of the battery, the second predetermined voltage lower than the first predetermined voltage is applied to the field coil. In this way, by changing the voltage applied to the field coil in response to the use of a large current load for a short time, abnormal heat generation of the field coil can be suppressed to a small level.

【0011】[0011]

【実施例】本発明の第1実施例を図を参照して説明す
る。図1は、第1実施例の車両用充電装置の電気回路構
成図である。図1において、バッテリ1には点火負荷6
と一般負荷7と制御回路10及び短時間大電流負荷9の
直列回路と昇圧制御回路8と発電機2とが並列に接続さ
れている。発電機2は、車両用電気負荷及びバッテリ1
を充電するために発電するオルタネータ3と、その発電
電圧を制御する電圧調整器5と、前記オルタネータ3の
発電電圧を整流する整流器4とから構成する。オルタネ
ータ3は、界磁コイル3Rを励磁制御してステータコイ
ル3Sに発電電圧を生じる。電圧調整器5は、点火負荷
6と同時にバッテリ電圧が供給され、バッテリ1の電圧
を検出して界磁コイル3Rの励磁電流をトランジスタ5
aにより、オルタネータ3の出力電圧を一定の調整電圧
に制御する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A first embodiment of the present invention will be described with reference to the drawings. FIG. 1 is an electric circuit configuration diagram of the vehicle charging device of the first embodiment. In FIG. 1, the battery 1 has an ignition load 6
A series circuit of the general load 7, the control circuit 10 and the short-time high-current load 9, the boost control circuit 8, and the generator 2 are connected in parallel. The generator 2 is an electric load for the vehicle and the battery 1.
It is composed of an alternator 3 for generating electric power to charge the battery, a voltage regulator 5 for controlling the generated voltage, and a rectifier 4 for rectifying the generated voltage of the alternator 3. The alternator 3 excites the field coil 3R to generate a generated voltage in the stator coil 3S. The voltage regulator 5 is supplied with the battery voltage at the same time as the ignition load 6, detects the voltage of the battery 1 and outputs the exciting current of the field coil 3R to the transistor 5.
By a, the output voltage of the alternator 3 is controlled to a constant adjustment voltage.

【0012】昇圧制御回路8は、短時間大電流負荷9の
通電を検出する通電検出回路12と、その作動信号によ
り昇圧を開始する昇圧回路11から構成され、バッテリ
1の+電源を電源端子8aに接続し、−電源をアース端
子8dに接続して、出力端子8bを界磁コイル3Rの片
側端子と接続する。また、入力端子8cは、短時間大電
流負荷9の電流供給側と接続している。昇圧回路11
は、出力側電圧が電源電圧に昇圧電圧分を上乗せするた
め、2次側の−OUT端子と1次側の+IN端子を電源
端子8aへ接続し、2次側の+OUT端子を出力端子8
bへ接続し、1次側の−IN端子をアース端子8dへ接
地し、通電検出回路12の検出信号が検出信号入力端子
8eへ入力されるように接続する。通電検出回路12
は、入力側を入力端子8cと接続し、出力側を昇圧回路
11の検出信号入力端子8eと接続する。
The step-up control circuit 8 is composed of an energization detection circuit 12 for detecting energization of the large current load 9 for a short time and a step-up circuit 11 for starting the step-up in response to its operation signal. , The power source is connected to the ground terminal 8d, and the output terminal 8b is connected to one terminal of the field coil 3R. The input terminal 8c is connected to the current supply side of the large current load 9 for a short time. Boost circuit 11
Since the output side voltage adds the boosted voltage to the power supply voltage, the -OUT terminal on the secondary side and the + IN terminal on the primary side are connected to the power supply terminal 8a, and the + OUT terminal on the secondary side is connected to the output terminal 8
b, the -IN terminal on the primary side is grounded to the ground terminal 8d, and the detection signal of the energization detection circuit 12 is connected to the detection signal input terminal 8e. Energization detection circuit 12
Connects the input side to the input terminal 8c and the output side to the detection signal input terminal 8e of the booster circuit 11.

【0013】以下、作動説明をするにあたり、界磁コイ
ル3Rに印加する励磁電圧と発電機出力電流との関係を
図2を参照して説明する。図2は、発電機2の出力電圧
を媒介変数とした出力電流と励磁電圧との依存特性を示
す。図2では、励磁電圧と出力電流の関係を出力電圧1
1Vと13.5Vの場合について示し、界磁コイル励磁
電圧が大きくなる程、発電機2の出力電流が増加してい
る。また、発電機2の低出力電圧11Vの方が、出力電
流を増加するから、界磁コイル励磁電圧を大きくするこ
とにより更に出力電流を増加できる。
Before describing the operation, the relationship between the excitation voltage applied to the field coil 3R and the generator output current will be described with reference to FIG. FIG. 2 shows the dependence characteristics of the output current and the excitation voltage with the output voltage of the generator 2 as a parameter. In FIG. 2, the relationship between the excitation voltage and the output current is shown as the output voltage 1
The case of 1 V and 13.5 V is shown, and the output current of the generator 2 increases as the field coil excitation voltage increases. Moreover, since the low output voltage 11V of the generator 2 increases the output current, the output current can be further increased by increasing the field coil excitation voltage.

【0014】次に第1実施例の作動につてい説明する。
車両が操作され制御回路10が作動し、バッテリ1から
短時間大電流負荷9へ通電が開始されると、その通電を
通電検出回路12が検出し、昇圧制御回路8が作動す
る。同時に昇圧回路11が作動し、バッテリ電圧に昇圧
電圧を上乗せした高い所定電圧を界磁コイル3Rへ印加
し、発電機2の出力電流を増加する。例えば、短時間大
電流負荷9による電流不足が生じた場合、昇圧制御回路
8は、電源電圧を所定電圧18Vまで昇圧し、界磁コイ
ル3Rに印加することにより大きな励磁電流を供給し発
電機2の出力電流を増加する。
Next, the operation of the first embodiment will be described.
When the vehicle is operated to operate the control circuit 10 and the energization of the large current load 9 from the battery 1 is started for a short time, the energization detection circuit 12 detects the energization and the boost control circuit 8 operates. At the same time, the booster circuit 11 operates to apply a high predetermined voltage obtained by adding the boosted voltage to the battery voltage to the field coil 3R to increase the output current of the generator 2. For example, when a shortage of current due to the large current load 9 occurs for a short time, the boost control circuit 8 boosts the power supply voltage to a predetermined voltage of 18 V and applies it to the field coil 3R to supply a large exciting current, thereby generating the generator 2. Increase the output current of.

【0015】短時間大電流負荷9がその制御回路10に
より通電が停止されると、昇圧制御回路8は、通電検出
回路12から通電信号は無く、昇圧回路11の昇圧を停
止する。昇圧制御回路8の出力側では、バッテリ電圧が
電源端子8aから供給され、出力側へ向かって順方向に
昇圧回路11の−OUT端子から+OUT端子を介し
て、出力端子8bを通して界磁コイル3Rに前記バッテ
リ電圧が供給され、電圧調整器5により発電電圧が制御
される。
When the control circuit 10 stops energizing the large-current load 9 for a short time, the boost control circuit 8 stops the boosting of the booster circuit 11 because there is no energization signal from the energization detection circuit 12. On the output side of the boost control circuit 8, the battery voltage is supplied from the power supply terminal 8a, and in the forward direction toward the output side, from the -OUT terminal of the boost circuit 11 to the + OUT terminal, through the output terminal 8b to the field coil 3R. The battery voltage is supplied, and the generated voltage is controlled by the voltage regulator 5.

【0016】以上説明した第1実施例の車両用充電装置
は、短時間大電流負荷9が通電し昇圧制御回路8が作動
する時のみ界磁コイル3Rに昇圧した所定電圧を印加す
ることにより、発電機2の出力電流を増加させ、バッテ
リ1の放電量を抑え、バッテリ電圧が下がらない内に早
く電圧を回復する。尚、昇圧する所定電圧の設定値は、
短時間大電流負荷9の電流量とその通電継続時間から界
磁コイル3Rの温度上昇等による発熱を十分考慮して決
定する。
The vehicle charging apparatus of the first embodiment described above applies the boosted predetermined voltage to the field coil 3R only when the large current load 9 is energized for a short time and the boost control circuit 8 operates. The output current of the generator 2 is increased, the amount of discharge of the battery 1 is suppressed, and the voltage is quickly recovered before the battery voltage drops. The set value of the predetermined voltage to be boosted is
It is determined from the amount of current of the large-current load 9 for a short period of time and the duration of its energization, with due consideration given to heat generation due to the temperature rise of the field coil 3R.

【0017】次に昇圧回路11について具体的な実施例
を図面を参照して説明をする。図3は、昇圧回路11の
実施例を示す基本回路図である。図3(a)の昇圧回路
11の構成は、発振回路13の入力側を検出信号入力端
子8eに接続し、出力側をトランジスタTR1のベース
側と接続する。トランス14の1次巻線L1の一端を+
IN端子に接続し、1次巻線L1の他端を発振回路13
がon−off制御するトランジスタTR1のコレクタ
側に接続する。トランス14の2次巻線L2は、一端を
+OUT端子に接続するダイオードD1のアノード側に
接続し、他端を+OUT端子に接続するダイオードD2
のアノード側に接続し、中央のタップより−OUT端子
に接続する。
Next, a concrete embodiment of the booster circuit 11 will be described with reference to the drawings. FIG. 3 is a basic circuit diagram showing an embodiment of the booster circuit 11. In the configuration of the booster circuit 11 of FIG. 3A, the input side of the oscillation circuit 13 is connected to the detection signal input terminal 8e, and the output side is connected to the base side of the transistor TR1. + One end of the primary winding L1 of the transformer 14
The other end of the primary winding L1 is connected to the IN terminal and the oscillation circuit 13
Is connected to the collector side of the transistor TR1 for on-off control. The secondary winding L2 of the transformer 14 has one end connected to the anode side of the diode D1 connected to the + OUT terminal and the other end connected to the diode D2 connected to the + OUT terminal.
Connected to the anode side of, and connected to the -OUT terminal from the central tap.

【0018】上記図3(a)の昇圧回路11の作動につ
いて説明する。電気負荷の通電検出信号が検出信号入力
端子8eに入力され、発振回路13を作動しトランジス
タTR1を駆動すると、トランス14は、2次巻線L2
に1次巻線L1より誘起する昇圧電圧を、昇圧回路11
の電源電圧に上乗せして所定電圧を得る。所定電圧は、
ダイオードD1又はダイオードD2を通し+OUT端子
から出力される。電気負荷の通電検出信号がなく発振回
路13が停止すれば、図示するトランス14の2次巻線
L21とダイオードD1、2次巻線L22とダイオード
D2が構成する並列回路を通してバッテリ電圧を+OU
T端子に供給する。
The operation of the booster circuit 11 shown in FIG. 3A will be described. When the energization detection signal of the electric load is input to the detection signal input terminal 8e and the oscillation circuit 13 is operated and the transistor TR1 is driven, the transformer 14 turns the secondary winding L2.
Boosting voltage induced from the primary winding L1 to the boosting circuit 11
To obtain a predetermined voltage. The predetermined voltage is
It is output from the + OUT terminal through the diode D1 or the diode D2. If the oscillation circuit 13 is stopped without the electric load energization detection signal, the battery voltage is + OU through the parallel circuit formed by the secondary winding L21, the diode D1, and the secondary winding L22 and the diode D2 of the illustrated transformer 14.
Supply to the T terminal.

【0019】図3(b)に示す昇圧回路11の構成は、
図3(a)の昇圧回路11に対して、トランス14の2
次巻線L2は、一端を−OUT端子に接続するダイオー
ドD1のカソード側に接続し、他端を−OUT端子に接
続するダイオードD2のカソード側に接続し、中央のタ
ップを+OUT端子に接続する。作動については、トラ
ンス14の2次巻線を流れる電流方向が異なるが、上記
図3(a)と同様であるから省略する。
The structure of the booster circuit 11 shown in FIG. 3B is as follows.
As compared with the booster circuit 11 of FIG.
The secondary winding L2 has one end connected to the cathode side of the diode D1 connected to the -OUT terminal, the other end connected to the cathode side of the diode D2 connected to the -OUT terminal, and the central tap connected to the + OUT terminal. . Regarding the operation, although the direction of the current flowing through the secondary winding of the transformer 14 is different, it is omitted because it is the same as in FIG.

【0020】図3(c)に示す昇圧回路11の構成は、
トランス14の1次巻線L1と2次巻線L2とが逆極性
で結合されいる。発振回路13の入力側を入力端子8e
に接続し、発振回路13の出力側をトランジスタTR1
のベース側と接続する。トランス14の1次巻線L1
は、一端を+IN端子に接続し、他端をトランジスタT
R1のコレクタ側とダイオードD1のアノード側に接続
して、ダイオードD1のカソード側を+OUT端子に接
続する。2次巻線L2は、一端を−OUT端子に接続
し、他端を+OUT端子に接続するダイオードD2のア
ノード側に接続する。
The configuration of the booster circuit 11 shown in FIG. 3C is as follows.
The primary winding L1 and the secondary winding L2 of the transformer 14 are coupled with opposite polarities. The input side of the oscillator circuit 13 is connected to the input terminal 8e.
And the output side of the oscillation circuit 13 is connected to the transistor TR1.
Connect to the base side of. Primary winding L1 of transformer 14
Has one end connected to the + IN terminal and the other end connected to the transistor T
The collector side of R1 and the anode side of the diode D1 are connected, and the cathode side of the diode D1 is connected to the + OUT terminal. The secondary winding L2 has one end connected to the −OUT terminal and the other end connected to the anode side of a diode D2 connected to the + OUT terminal.

【0021】上記図3(c)の昇圧回路11の作動につ
いて説明する。電気負荷の通電信号を検出信号入力端子
8eへ入力し発振回路13が作動すれば、トランジスタ
TR1がon−off駆動する。トランジスタTR1が
onすると、1次巻線L1が通電して2次巻線L2に誘
起電圧が発生し、ダイオードD2を通して昇圧回路11
の電源電圧に誘起電圧を上乗せした所定電圧を+OUT
端子へ供給する。トランジスタTR1がoffすると、
昇圧回路11は、on時間中に1次巻線L1に蓄えられ
たエネルギーにより発生した電圧を、ダイオードD1を
通し、電源電圧に上乗せして+OUT端子に供給する。
電気負荷の通電検出信号がなく発振回路13が停止すれ
ば、バッテリ電圧を、+IN端子から1次巻線L1を通
しダイオードD1へ通じる回路と−OUT端子から2次
巻線L2を通しダイオードD2へ通じる回路との並列回
路を通して+OUT端子に供給する。そして、界磁コイ
ル3Rに供給されて電圧調整器5により発電機2の出力
電圧を調整電圧に制御する。また、トランス14の1次
巻線L1と2次巻線L2は、同じ巻線比であるなら、発
生する磁界は打ち消され、純抵抗に近似できる。
The operation of the booster circuit 11 shown in FIG. 3C will be described. When the energization signal of the electric load is input to the detection signal input terminal 8e and the oscillation circuit 13 operates, the transistor TR1 is driven on-off. When the transistor TR1 is turned on, the primary winding L1 is energized to generate an induced voltage in the secondary winding L2, and the booster circuit 11 is passed through the diode D2.
+ OUT is a specified voltage that is the induced voltage added to the power supply voltage of
Supply to the terminal. When the transistor TR1 turns off,
The booster circuit 11 supplies the voltage generated by the energy stored in the primary winding L1 during the on time to the + OUT terminal through the diode D1 to add it to the power supply voltage.
If the oscillation circuit 13 is stopped without the electric load energization detection signal, the circuit for passing the battery voltage from the + IN terminal to the diode D1 through the primary winding L1 and the -OUT terminal to the diode D2 through the secondary winding L2. It is supplied to the + OUT terminal through a parallel circuit with a circuit that communicates. Then, the voltage is supplied to the field coil 3R and the voltage regulator 5 controls the output voltage of the generator 2 to the regulated voltage. If the winding ratios of the primary winding L1 and the secondary winding L2 of the transformer 14 are the same, the generated magnetic field is canceled and the resistance can be approximated to a pure resistance.

【0022】以上、説明した昇圧回路11は、出力電圧
0 がバッテリ電圧VB とトランス14による昇圧電圧
分ΔVとの和となるため、バッテリ電圧VB と所定の出
力電圧V0 との差電圧ΔVは、 ΔV=VO−VB を上乗せする昇圧電圧分ΔVのみ変換すれば良いからト
ランジスタTR1等による回路損失を低減し昇圧回路1
1の効率を向上できる。また、昇圧作動しない場合は、
変換部のダイオードD1及びD2を通して界磁コイル3
Rへバッテリ電圧を供給することができ、出力側が順方
向になるから、特別な回路及び配線等を設ける必要がな
い。更に、界磁コイル3Rの発熱による熱的影響を考慮
し、短時間大電流負荷9の使用に対応して通電する時の
み通電時間により印加電圧を設定することで、効果的に
発電機2の発電量を増加させバッテリ1の放電量を抑え
ることもできる。尚、昇圧回路11は、発電機2の電圧
調整器5内に一体構成することもできる。通電検出回路
12は、制御回路10の作動信号でも代用できる。
[0022] above, the booster circuit 11 described, since the output voltage V 0 becomes the sum of the boost voltage of ΔV due to the battery voltage V B and the transformer 14, the difference between the battery voltage V B and a predetermined output voltage V 0 As for the voltage ΔV, only the boosted voltage ΔV to which ΔV = V O −V B is added needs to be converted, so that the circuit loss due to the transistor TR1 or the like is reduced and the booster circuit 1
The efficiency of 1 can be improved. If the boosting does not work,
Field coil 3 through diodes D1 and D2 of the converter
Since the battery voltage can be supplied to R and the output side is in the forward direction, it is not necessary to provide a special circuit and wiring. Furthermore, in consideration of the thermal effect due to the heat generation of the field coil 3R, the applied voltage is set by the energization time only when energizing in response to the use of the large current load 9 for a short time, so that the generator 2 can be effectively used. It is also possible to increase the amount of power generation and suppress the amount of discharge of the battery 1. The booster circuit 11 may be integrally formed in the voltage regulator 5 of the generator 2. The energization detection circuit 12 can be substituted with an operation signal of the control circuit 10.

【0023】次に第2実施例について説明する。図4
は、第2実施例の車両用充電装置の電気回路構成図であ
る。本実施例は、主要構成が第1実施例と同様である
が、界磁コイル3Rの一端を整流器4の共通カソード側
に接続し、バッテリ1の電源電圧が供給され、他端を昇
圧制御回路8の出力端子8fと接続する。そして、電流
が整流器4の共通カソード側から界磁コイル3Rに流
れ、更に、出力端子8fから昇圧回路11の−OUT端
子を通し+OUT端子を経由して出力端子8bを介し電
圧調整器5に流れる込むように接続する。昇圧制御回路
8は、バッテリ1から電源端子8aを通して昇圧回路1
1の+IN端子へ電源が供給され、−IN端子を通して
接地端子8dからアースへ接地する。入力端子8cは、
短時間大電流負荷9の電流供給側と接続している。ま
た、昇圧回路11は、図3の実施例を利用した構成であ
る。
Next, a second embodiment will be described. Figure 4
FIG. 4 is an electric circuit configuration diagram of a vehicle charging device of a second embodiment. This embodiment has the same main configuration as that of the first embodiment, but one end of the field coil 3R is connected to the common cathode side of the rectifier 4, the power supply voltage of the battery 1 is supplied, and the other end is a boost control circuit. 8 is connected to the output terminal 8f. Then, the current flows from the common cathode side of the rectifier 4 to the field coil 3R, and further flows from the output terminal 8f to the voltage regulator 5 via the -OUT terminal of the booster circuit 11 and the + OUT terminal to the voltage regulator 5b. Connect so that it plugs in. The booster control circuit 8 includes a booster circuit 1 from the battery 1 through a power supply terminal 8a.
Power is supplied to the + IN terminal of 1 and grounded from the ground terminal 8d to the ground through the -IN terminal. The input terminal 8c is
It is connected to the current supply side of the high-current load 9 for a short time. Further, the booster circuit 11 has a configuration using the embodiment of FIG.

【0024】次に上記第2実施例の作動について説明す
る。通電検出回路12が短時間大電流負荷9の通電を検
出すると、昇圧回路11が作動し、昇圧制御回路8の出
力端子8fと出力端子8b間に−ΔVの電圧を発生す
る。電源電圧VB が界磁コイル3Rに印加され、更に昇
圧回路11の電圧−ΔVが加えられることにより、界磁
コイル3Rには、VB +ΔVが印加されたことになり、
第1実施例同様界磁コイル3Rに流れる励磁電流を増加
する。また、短時間大電流負荷9が非通電時には、バッ
テリ電圧VB のみが界磁コイル3Rに印加され、電流が
界磁コイル3Rを通り昇圧回路11の−OUT端子及び
+OUT端子を通して電圧調整器5に流れ込み、発電機
2の出力を定電圧に制御する。このように、第2実施例
も昇圧電圧分ΔVだけの電圧を変換すれば良いから第1
実施例同様に効率を向上できる。
Next, the operation of the second embodiment will be described. When the energization detection circuit 12 detects the energization of the large current load 9 for a short time, the booster circuit 11 operates to generate a voltage of -ΔV between the output terminal 8f and the output terminal 8b of the booster control circuit 8. The power supply voltage V B is applied to the field coil 3R, and the voltage −ΔV of the booster circuit 11 is further applied, which means that V B + ΔV is applied to the field coil 3R.
The exciting current flowing through the field coil 3R is increased as in the first embodiment. When the large current load 9 is not energized for a short time, only the battery voltage V B is applied to the field coil 3R, and the current passes through the field coil 3R and the voltage regulator 5 passes through the −OUT terminal and the + OUT terminal of the booster circuit 11. To control the output of the generator 2 to a constant voltage. As described above, in the second embodiment as well, it is only necessary to convert the voltage corresponding to the boosted voltage ΔV, so that the first embodiment
The efficiency can be improved as in the embodiment.

【0025】更に、第3実施例について説明する。図5
は、第3実施例の車両用充電装置の電気回路構成図であ
る。図1の第1実施例及び図4の第2実施例では、昇圧
回路11の電圧降下があり、電圧調整器5に電圧降下分
の調整が必要であるため、図5に示すように、第3実施
例は、図1の主要構成に、昇圧制御回路8内部に通電検
出信号に同期して作動するリレーを内蔵し、昇圧回路1
1の−OUT端子と+OUT端子間に前記リレーの常閉
接点15を挿入する構成である。上記構成の作動は、短
時間大電流負荷9が非通電時に電源電圧を常閉接点15
を介して界磁コイル3Rに供給し、短時間大電流負荷9
が通電時に通電検出回路12がその通電を検出すると共
に常閉接点15を開き昇圧回路11を作動して所定電圧
を界磁コイル3Rに供給する。
Further, a third embodiment will be described. Figure 5
[Fig. 6] is an electric circuit configuration diagram of a vehicle charging device of a third embodiment. In the first embodiment of FIG. 1 and the second embodiment of FIG. 4, there is a voltage drop in the booster circuit 11, and the voltage regulator 5 needs to adjust for the voltage drop. Therefore, as shown in FIG. In the third embodiment, a booster control circuit 8 has a built-in relay that operates in synchronization with an energization detection signal in the main configuration of FIG.
In this configuration, the normally closed contact 15 of the relay is inserted between the -OUT terminal and the + OUT terminal of 1. In the operation of the above configuration, the power supply voltage is normally closed contact 15 when the large current load 9 is not energized for a short time.
Is supplied to the field coil 3R via the
Is energized, the energization detection circuit 12 detects the energization and opens the normally closed contact 15 to operate the booster circuit 11 to supply a predetermined voltage to the field coil 3R.

【0026】上記説明の第3実施例は、短時間大電流負
荷9が非通電時に、界磁コイル3Rにバッテリ電圧を、
抵抗分による電圧降下を無くして直接印加することがで
きるから、平常時の電圧調整器5を調整することなく使
用でき、発電出力を低下しない。同様に、図1及び図4
に示す昇圧回路11の−OUT端子と+OUT端子間に
常閉接点15を追加することにより、同一効果を得る。
また、電圧調整器5のトランジスタ5aに高い電圧を印
加する恐れのある場合には、大容量トランジスタに変更
又は短時間大電流負荷9が通電時のみ作動するトランジ
スタの並列回路を付加することにより対応できる。
In the third embodiment described above, the battery voltage is applied to the field coil 3R when the large-current load 9 is not energized for a short time.
Since the voltage drop due to the resistance component can be eliminated and the voltage can be directly applied, the voltage regulator 5 can be used without adjustment during normal operation, and the power generation output is not reduced. Similarly, FIG. 1 and FIG.
The same effect is obtained by adding the normally closed contact 15 between the -OUT terminal and the + OUT terminal of the booster circuit 11 shown in FIG.
If a high voltage may be applied to the transistor 5a of the voltage regulator 5, a large-capacity transistor may be changed or a parallel circuit of transistors that operates only when the large-current load 9 is energized for a short time is added. it can.

【0027】次に第4実施例について図面を参照して説
明する。図6は、昇圧制御回路8の電気回路構成図であ
る。第4実施例に示す車両用充電装置の電気回路構成図
を図7に示す。図6に示すように、昇圧制御回路8は、
短時間大電流負荷9の通電を検出する通電検出回路12
と、バッテリ1の放電状態を検出する放電検出回路20
と、それらの検出信号を基に電源電圧を昇圧して第1所
定電圧V1及び第2所定電圧V2を出力する昇圧回路1
1から構成する。図7は、図1の主要構成に、バッテリ
1の+電源を電源端子8aに接続し、−電源をアース端
子8dに接続して、出力端子8bを界磁コイル3Rの片
側端子と接続する。また、入力端子8cは、短時間大電
流負荷9の電流供給側と接続し、放電検出入力端子8g
をトランジスタ5aのコレクタ側と接続している。
Next, a fourth embodiment will be described with reference to the drawings. FIG. 6 is an electric circuit configuration diagram of the boost control circuit 8. FIG. 7 shows an electric circuit configuration diagram of the vehicle charging device shown in the fourth embodiment. As shown in FIG. 6, the boost control circuit 8 is
Energization detection circuit 12 for detecting energization of the large current load 9 for a short time
And a discharge detection circuit 20 for detecting the discharge state of the battery 1.
And a booster circuit 1 for boosting a power supply voltage based on those detection signals and outputting a first predetermined voltage V1 and a second predetermined voltage V2.
It consists of 1. In FIG. 7, in addition to the main configuration of FIG. 1, the + power supply of the battery 1 is connected to the power supply terminal 8a, the − power supply is connected to the ground terminal 8d, and the output terminal 8b is connected to one side terminal of the field coil 3R. The input terminal 8c is connected to the current supply side of the large current load 9 for a short time, and the discharge detection input terminal 8g is connected.
Is connected to the collector side of the transistor 5a.

【0028】昇圧回路11の主要構成は、昇圧電圧を出
力する電圧変換回路21と、出力電圧検出回路22と、
電圧平滑回路23とである。また、昇圧回路11は、電
圧変換回路21のトランジスタTR1を駆動する駆動回
路26と、該駆動回路26をデューティ制御するPWM
制御回路25とを備え、パルス発生回路24が、論理回
路27による検出信号入力端子8eと放電検出入力端子
8hからの検出信号の論理和を入力し前記PWM制御回
路25へパルスを供給する。前記電圧平滑回路23は、
電圧変換回路21の出力電圧を平滑化し、出力電圧検出
回路22に平滑された電圧を供給する。出力電圧検出回
路22は、電圧を検出し前記PWM制御回路25へ検出
信号を出力する。そして、出力電圧検出回路22のトラ
ンジスタTR2のベース側と通電検出信号を入力する検
出信号入力端子8eを接続し、+IN端子と−OUT端
子を電源端子8aに接続し、−IN端子をアース端子8
dに接続して、放電検出入力端子8hを放電検出回路2
0の出力側と接続する。また、検出信号入力端子8eを
通電検出回路12の出力側と接続する。出力電圧検出回
路22は、トランジスタTR2の他に、増幅器28と基
準電圧Vrefと、抵抗R1〜R3とを備えている。放電
検出回路20は、公知技術の界磁コイル3Rを制御する
駆動トランジスタ5aの作動デューティが100%の時
放電検出するもの、又は、バッテリ電圧の低下によりバ
ッテリ放電を検出するものでよい。
The main structure of the booster circuit 11 is a voltage conversion circuit 21 for outputting a boosted voltage, an output voltage detection circuit 22,
The voltage smoothing circuit 23. Further, the booster circuit 11 includes a drive circuit 26 that drives the transistor TR1 of the voltage conversion circuit 21, and a PWM that controls the duty of the drive circuit 26.
The control circuit 25 is provided, and the pulse generation circuit 24 inputs the logical sum of the detection signals from the detection signal input terminal 8e and the discharge detection input terminal 8h by the logic circuit 27 and supplies a pulse to the PWM control circuit 25. The voltage smoothing circuit 23 is
The output voltage of the voltage conversion circuit 21 is smoothed, and the smoothed voltage is supplied to the output voltage detection circuit 22. The output voltage detection circuit 22 detects the voltage and outputs a detection signal to the PWM control circuit 25. Then, the base side of the transistor TR2 of the output voltage detection circuit 22 and the detection signal input terminal 8e for inputting the energization detection signal are connected, the + IN terminal and the -OUT terminal are connected to the power supply terminal 8a, and the -IN terminal is connected to the ground terminal 8.
and the discharge detection input terminal 8h is connected to the discharge detection circuit 2
Connect to the output side of 0. Further, the detection signal input terminal 8e is connected to the output side of the energization detection circuit 12. The output voltage detection circuit 22 includes an amplifier 28, a reference voltage Vref, and resistors R1 to R3 in addition to the transistor TR2. The discharge detection circuit 20 may be one that detects discharge when the drive duty of the drive transistor 5a that controls the field coil 3R of the known technology is 100%, or one that detects battery discharge due to a decrease in battery voltage.

【0029】上記構成の昇圧制御回路8は、短時間大電
流負荷9への通電信号を入力した場合、優先的に界磁コ
イル3Rへ印加する昇圧電圧を第1所定電圧V1=18
Vとし、車両アイドリング等に発電出力が不足し放電検
出回路20が作動する場合、高い第1所定電圧V1を長
時間印加することが出来ないから界磁コイル3Rへ印加
する昇圧電圧を第2所定電圧V2としてV1>V2とな
るように設定する。
When the energizing signal to the large current load 9 is input for a short time, the step-up control circuit 8 having the above-mentioned configuration preferentially applies the step-up voltage to the field coil 3R as the first predetermined voltage V1 = 18.
If the electric power generation output is insufficient due to vehicle idling and the discharge detection circuit 20 operates, it is not possible to apply the high first predetermined voltage V1 for a long time. Therefore, the boosted voltage applied to the field coil 3R is the second predetermined voltage. The voltage V2 is set so that V1> V2.

【0030】次に第4実施例の作動について説明する。
昇圧制御回路8は、発電能力を超える大容量の短時間大
電流負荷9を通電すると、通電検出回路12がその通電
を検出し、検出信号が昇圧回路11へ入力され、昇圧回
路11を作動する。そして、前記通電検出回路12の通
電検出によりPWM制御回路25へパルス発生回路24
からパルスの供給が開始される。それと共に、トランジ
スタTR2が作動し、電圧変換回路21の出力電圧を、
抵抗R2とR3の並列抵抗とR1とで分圧し、増幅器2
8へ入力して基準電圧Vref との演算信号をPWM制御
回路25へ入力する。
Next, the operation of the fourth embodiment will be described.
When the boost control circuit 8 energizes the large-capacity short-time high-current load 9 that exceeds the power generation capacity, the energization detection circuit 12 detects the energization, and a detection signal is input to the booster circuit 11 to operate the booster circuit 11. . Then, when the energization detection circuit 12 detects the energization, the pulse generation circuit 24 is sent to the PWM control circuit 25.
The pulse supply is started from. At the same time, the transistor TR2 operates to change the output voltage of the voltage conversion circuit 21 to
The voltage is divided by the parallel resistance of the resistors R2 and R3 and R1, and the amplifier 2
8 and the arithmetic signal with the reference voltage Vref is input to the PWM control circuit 25.

【0031】このように、短時間大電流負荷9に通電さ
れた際、出力電圧検出回路22の増幅器28の入力電圧
- は、 V-=V0(R2・R3/(R1・R2+R2・R3+R1・R3)) となり、入力電圧V- が低下するため、優先してPWM
制御回路25によって、電圧変換回路21の出力電圧V
O をバッテリ電圧より高い第1所定電圧V1に制御す
る。電圧変換回路21は、図3(c)に示す回路構成に
より、同様な作動が行われるので省略する。出力電圧V
0 は、平滑回路23で平滑された後、電圧検出回路22
により検出した検出信号をPWM制御回路25へ入力し
て帰還すると共に、電圧の高い第1所定電圧V1を界磁
コイル3Rに印加し、発電機2の出力電流を増加し発電
出力を大幅に上昇する。
As described above, when the large current load 9 is energized for a short time, the input voltage V of the amplifier 28 of the output voltage detection circuit 22 is V = V 0 (R 2 · R 3 / (R 1 · R 2 + R 2 · R 3 + R 1 · R 3 )), and the input voltage V decreases, so PWM is given priority.
The output voltage V of the voltage conversion circuit 21 is controlled by the control circuit 25.
O is controlled to a first predetermined voltage V1 higher than the battery voltage. The voltage conversion circuit 21 is omitted because the same operation is performed by the circuit configuration shown in FIG. Output voltage V
After 0 is smoothed by the smoothing circuit 23, the voltage detecting circuit 22
The detection signal detected by is input to the PWM control circuit 25 and fed back, and the first predetermined voltage V1 having a high voltage is applied to the field coil 3R to increase the output current of the generator 2 and greatly increase the power generation output. To do.

【0032】車両アイドリング状態で負荷が発電機の発
電量をうわまわっている時、放電検出回路20が放電状
態を検出し、昇圧回路11は作動を開始する。PWM制
御回路25へは、パルス発生回路24のパルス信号及び
出力電圧検出回路22の増幅器28から抵抗R1とR2
とで出力電圧VO を分圧し基準電圧Vref との演算信号
を入力する。放電検出回路20が作動した際、増幅器2
8の入力電圧V- の電位は、 V-=V0・(R2/(R1+R2)) となりPWM制御回路25によって、電圧変換回路21
の出力電圧VOを第2昇圧電圧V2に制御する。長時間
作動する時には、第2昇圧電圧V2に設定され、V1>
V2となるから、界磁コイル3Rの異常発熱の問題は解
消される。尚、上記各実施例においては、昇圧制御回路
により電源電圧を18Vまで昇圧するものについてのみ
述べているが、これに限定されるものではなく、14V
以上であればよい。
In the idling state of the vehicle, when the load is known about the amount of electricity generated by the generator, the discharge detection circuit 20 detects the discharge state and the booster circuit 11 starts operating. To the PWM control circuit 25, the pulse signal of the pulse generation circuit 24 and the amplifier 28 of the output voltage detection circuit 22 are connected to the resistors R1 and R2.
The output voltage V O is divided by and and the operation signal of the reference voltage V ref is input. When the discharge detection circuit 20 operates, the amplifier 2
The potential of the input voltage V of 8 becomes V = V 0 · (R 2 / (R 1 + R 2 )), and the PWM control circuit 25 causes the voltage conversion circuit 21
Controlling the output voltage V O of the second boosted voltage V2. When operating for a long time, the second boosted voltage V2 is set and V1>
Since it becomes V2, the problem of abnormal heat generation of the field coil 3R is solved. In each of the above-described embodiments, only the case where the booster control circuit boosts the power supply voltage to 18V is described, but the invention is not limited to this, and 14V is used.
The above is sufficient.

【0033】[0033]

【発明の効果】以上、説明したように本発明は、車載電
気負荷の使用状態及びバッテリの放電状態を把握し、そ
れらに対応して、バッテリ電圧に昇圧電圧を上乗せして
所定電圧を界磁コイルへ印加する構成が、回路の簡素化
を図り、所定電圧を負荷に対応して切換え使用すること
により、バッテリ電圧が下がらない内に発電電流を増加
すると共に、界磁コイルの異常発熱を抑える実用上優れ
た効果がある。
As described above, according to the present invention, the operating condition of the on-vehicle electric load and the discharging condition of the battery are grasped, and the boosted voltage is added to the battery voltage and the predetermined voltage is applied to the field voltage. The structure applied to the coil simplifies the circuit, and by switching and using a predetermined voltage according to the load, the generated current is increased while the battery voltage does not drop, and abnormal heat generation of the field coil is suppressed. It has an excellent effect in practice.

【0034】また、昇圧回路は、電源電圧より高い所定
電圧を得るため、電源電圧に昇圧分の電圧を上乗せする
から電圧変換効率を著しく向上することができ、また、
昇圧作動なき場合、出力端子を通してバッテリ電圧を界
磁コイルへ供給できる簡素な回路構成による車両用充電
装置を実現でき、その回路効率を向上させることができ
る効果がある。
Further, since the booster circuit obtains a predetermined voltage higher than the power supply voltage, the boosted voltage is added to the power supply voltage, so that the voltage conversion efficiency can be remarkably improved.
When the boosting operation is not performed, there is an effect that a vehicle charging device having a simple circuit configuration capable of supplying the battery voltage to the field coil through the output terminal can be realized and the circuit efficiency thereof can be improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】第1実施例の車載用充電装置の電気回路構成図
である。
FIG. 1 is an electric circuit configuration diagram of a vehicle-mounted charging device according to a first embodiment.

【図2】発電機の出力電圧に対する出力電流と励磁電圧
の特性図である。
FIG. 2 is a characteristic diagram of an output current and an exciting voltage with respect to an output voltage of a generator.

【図3】昇圧回路の実施例を示す基本回路図である。FIG. 3 is a basic circuit diagram showing an embodiment of a booster circuit.

【図4】第2実施例の電気回路構成図である。FIG. 4 is an electric circuit configuration diagram of a second embodiment.

【図5】第3実施例の電気回路構成図である。FIG. 5 is an electric circuit configuration diagram of a third embodiment.

【図6】第4実施例の昇圧制御回路の電気回路構成図で
ある。
FIG. 6 is an electric circuit configuration diagram of a boost control circuit according to a fourth embodiment.

【図7】第4実施例の車載用充電装置の電気回路構成図
である。
FIG. 7 is an electric circuit configuration diagram of a vehicle-mounted charging device of a fourth embodiment.

【符号の説明】[Explanation of symbols]

1…バッテリ、2…発電機、3R…界磁コイル、3S…
ステータコイル、6…点火負荷、7…一般負荷、9…短
時間大電流負荷、11…昇圧回路、12…通電検出回
路、20…放電検出回路。
1 ... Battery, 2 ... Generator, 3R ... Field coil, 3S ...
Stator coil, 6 ... Ignition load, 7 ... General load, 9 ... Short-time large current load, 11 ... Booster circuit, 12 ... Energization detection circuit, 20 ... Discharge detection circuit.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 発電機のステータコイルに生じる発電電
圧によりバッテリを充電し、短時間大電流負荷、一般負
荷及び点火負荷に給電する車両用充電装置において、 短時間大電流負荷の通電を検出する通電検出回路と、通
電検出回路の検出によりバッテリ電圧を所定電圧に昇圧
し前記界磁コイルへ印加する昇圧回路とを備えることを
特徴とする車両用充電装置。
1. A vehicle charging device for charging a battery by a generated voltage generated in a stator coil of a generator to supply a large current load, a general load and an ignition load for a short time, and detecting energization of a large current load for a short time. A vehicle charging device comprising: an energization detection circuit; and a booster circuit that boosts a battery voltage to a predetermined voltage by detection by the energization detection circuit and applies the boosted voltage to the field coil.
【請求項2】 前記昇圧回路が作動する際にはバッテリ
電圧に昇圧電圧を上乗せした所定電圧を界磁コイルへ供
給することを特徴とする請求項1記載の車両用充電装
置。
2. The vehicle charging apparatus according to claim 1, wherein when the booster circuit operates, a predetermined voltage obtained by adding the boosted voltage to the battery voltage is supplied to the field coil.
【請求項3】 前記昇圧回路が昇圧作動しない時に、バ
ッテリ電圧が昇圧回路を通して界磁コイルへ供給される
ことを特徴とする請求項1記載の車両用充電装置。
3. The vehicle charging apparatus according to claim 1, wherein the battery voltage is supplied to the field coil through the booster circuit when the booster circuit does not perform boosting operation.
【請求項4】 短時間大電流負荷の通電を検出する通電
検出回路と、バッテリの放電を検出する放電検出回路
と、前記界磁コイルに印加する直流電圧を昇圧する昇圧
回路を有し、 前記昇圧回路は、通電検出回路が短時間大電流負荷への
通電を検出した際は、第1所定電圧を界磁コイルへ印加
し、放電検出回路が検出した際は、第1所定電圧より低
く設定する第2所定電圧を界磁コイルに印加することを
特徴とする請求項1記載の車両用充電装置。
4. An energization detection circuit for detecting energization of a large current load for a short time, a discharge detection circuit for detecting battery discharge, and a booster circuit for boosting a DC voltage applied to the field coil, The booster circuit applies a first predetermined voltage to the field coil when the energization detection circuit detects energization to a large current load for a short time, and sets it lower than the first predetermined voltage when the discharge detection circuit detects it. The vehicle charging device according to claim 1, wherein a second predetermined voltage that applies is applied to the field coil.
JP4351751A 1992-12-07 1992-12-07 Charging device for vehicle Pending JPH06178459A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4351751A JPH06178459A (en) 1992-12-07 1992-12-07 Charging device for vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4351751A JPH06178459A (en) 1992-12-07 1992-12-07 Charging device for vehicle

Publications (1)

Publication Number Publication Date
JPH06178459A true JPH06178459A (en) 1994-06-24

Family

ID=18419358

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4351751A Pending JPH06178459A (en) 1992-12-07 1992-12-07 Charging device for vehicle

Country Status (1)

Country Link
JP (1) JPH06178459A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0825700A1 (en) * 1996-08-23 1998-02-25 Robert Bosch Gmbh Voltage supply system with increased power output
US7176659B2 (en) 2000-09-06 2007-02-13 Mitsubishi Denki Kabushiki Kaisha Vehicle electrical power supply system for supplying power to a high power load
WO2008096117A1 (en) * 2007-02-06 2008-08-14 Cummins Generator Technologies Limited Method of and apparatus for controlling excitation
JP2008271767A (en) * 2007-04-18 2008-11-06 Kouichi Yamanoue Generator controller for vehicle
WO2009056964A2 (en) * 2007-11-02 2009-05-07 Toyota Jidosha Kabushiki Kaisha Power generation control device, vehicle equipped with power generation control device, and power generation control method
US7535203B2 (en) 2006-02-08 2009-05-19 Denso Corporation Alternator
JP2012210086A (en) * 2011-03-30 2012-10-25 Mitsubishi Electric Corp Power generation control device for vehicle ac generator

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0825700A1 (en) * 1996-08-23 1998-02-25 Robert Bosch Gmbh Voltage supply system with increased power output
US7176659B2 (en) 2000-09-06 2007-02-13 Mitsubishi Denki Kabushiki Kaisha Vehicle electrical power supply system for supplying power to a high power load
EP1186476B1 (en) * 2000-09-06 2015-04-22 Mitsubishi Denki Kabushiki Kaisha Electrical power supply system for a vehicle
US7535203B2 (en) 2006-02-08 2009-05-19 Denso Corporation Alternator
WO2008096117A1 (en) * 2007-02-06 2008-08-14 Cummins Generator Technologies Limited Method of and apparatus for controlling excitation
US7843175B2 (en) 2007-02-06 2010-11-30 Cummins Generator Technologies Limited Method and apparatus for controlling excitation
JP2008271767A (en) * 2007-04-18 2008-11-06 Kouichi Yamanoue Generator controller for vehicle
WO2009056964A2 (en) * 2007-11-02 2009-05-07 Toyota Jidosha Kabushiki Kaisha Power generation control device, vehicle equipped with power generation control device, and power generation control method
WO2009056964A3 (en) * 2007-11-02 2009-08-20 Toyota Motor Co Ltd Power generation control device, vehicle equipped with power generation control device, and power generation control method
JP2012210086A (en) * 2011-03-30 2012-10-25 Mitsubishi Electric Corp Power generation control device for vehicle ac generator

Similar Documents

Publication Publication Date Title
US6982499B1 (en) Power converting method and apparatus
US5334926A (en) Electric power system for automotive vehicle
EP0464694B1 (en) Power source unit for an automotive vehicle
JP3676184B2 (en) Vehicle power supply
EP2071714B1 (en) Dc/dc converter
JP4893368B2 (en) Power supply
JP4274364B2 (en) DC-DC converter
JP3537833B2 (en) Control device for vehicle alternator
JP2003153597A (en) Power supply
JP4119492B2 (en) Generator control method
KR100436692B1 (en) Electric Power Supply System For a Vehicle
JP2006081263A (en) Bidirectional dc-dc converter
JP5477189B2 (en) Vehicle power control device
JPH06178459A (en) Charging device for vehicle
US6707275B2 (en) Automative generator control apparatus
JP5901383B2 (en) In-vehicle charging system
JP2003111203A (en) Drive gear for automotive dynamo-electric machine
JP3622633B2 (en) Charging system with multiple AC generators for vehicles
JP2000102177A (en) Battery charger for hybrid vehicle
JPH10155298A (en) Electric motor controlling device and regenerative power processing circuit
JP4191874B2 (en) Uninterruptible power system
KR100534795B1 (en) Apparatus for driving converter in hybrid electric vehicle and method of controlling the same
JPH03124201A (en) Auxiliary battery charger for electric car
JP3149520B2 (en) Power supply device for electric loads for vehicles
JP3228000B2 (en) Engine starter