JP2006081263A - Bidirectional dc-dc converter - Google Patents

Bidirectional dc-dc converter Download PDF

Info

Publication number
JP2006081263A
JP2006081263A JP2004260852A JP2004260852A JP2006081263A JP 2006081263 A JP2006081263 A JP 2006081263A JP 2004260852 A JP2004260852 A JP 2004260852A JP 2004260852 A JP2004260852 A JP 2004260852A JP 2006081263 A JP2006081263 A JP 2006081263A
Authority
JP
Japan
Prior art keywords
voltage side
low
voltage
switching unit
winding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004260852A
Other languages
Japanese (ja)
Other versions
JP4454444B2 (en
Inventor
Motohisa Shimizu
元寿 清水
Hiroyuki Eguchi
博之 江口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2004260852A priority Critical patent/JP4454444B2/en
Publication of JP2006081263A publication Critical patent/JP2006081263A/en
Application granted granted Critical
Publication of JP4454444B2 publication Critical patent/JP4454444B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a bidirectional DC-DC converter that can transform a voltage to a prescribed output voltage in a wide range of an input voltage. <P>SOLUTION: When stepping up a voltage for feeding power to a high-voltage side from a low-voltage side, a pair of FETs 4-1, 4-4 and a pair of FETs 4-2, 4-3 at a low-voltage side switch 4 are alternately turned on and off. When stepping down a voltage for feeding power to the low-voltage side from the high-voltage side, a pair of FETs 5-1, 5-4 and a pair of FETs 5-2, 5-3 at a high-voltage side switch 5 are alternately turned on and off. A current flowing at this time forms a sine wave due to the existence of an LC resonance circuit 6. A voltage ratio exceeding a winding ratio of a transformer 3 can be obtained by controlling conduction angles of the FETs 5-1 to 5-4 of the high-voltage side switch 5 or FETs 4-1 to 4-4 of the low-voltage side switch 4 in a control zone of almost 50%. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、双方向DC−DCコンバータに関し、特に、広い入力電圧範囲で所定出力電圧への変圧(降圧または昇圧)を可能にした双方向DC−DCコンバータに関するものである。   The present invention relates to a bidirectional DC-DC converter, and more particularly to a bidirectional DC-DC converter that enables transformation (step-down or step-up) to a predetermined output voltage over a wide input voltage range.

車両などでは異なる電圧値を有するバッテリの2つの電源系を持っているものがある。このような電圧値が異なる2つの直流電源系で電力を融通し合う場合、一般に、直流電源系間に直流昇圧回路と直流降圧回路とを並列に配設し、それらを適宜使用する構成が採用されている。   Some vehicles have two power supply systems of batteries having different voltage values. When power is interchanged between two DC power supply systems having different voltage values, generally, a configuration is adopted in which a DC booster circuit and a DC stepdown circuit are arranged in parallel between the DC power supply systems and used appropriately. Has been.

また、直流電源系で電力を融通し合う場合に、小規模の回路で十分な高圧直流電圧が得られるようにするために双方向DC−DCコンバータを用いることも提案されている。   It has also been proposed to use a bidirectional DC-DC converter in order to obtain a sufficiently high DC voltage in a small circuit when power is interchanged in a DC power supply system.

例えば、下記特許文献1には、トランスの両側にそれぞれ双方向型の直交変換部をもち、特に二次側直交変換部は、順送電(第1直流端子から第2直流端子への降圧送電)時に、平滑コイルとして作動するチョークコイルを、チョークコイル利用チョッパ回路型インバータのチョークコイルとして用い、このチョークコイルとトランスの二次コイルとの間のスイッチング・整流部が順送電時には整流器として機能し、逆送電(第2直流端子から第1直流端子への昇圧送電)時にはチョッパ回路として機能する双方向DC−DCコンバータが記載されている。
特開平2002−165448号公報
For example, the following Patent Document 1 has bidirectional orthogonal transform units on both sides of the transformer, and in particular, the secondary-side orthogonal transform unit is forward power transmission (step-down power transmission from the first DC terminal to the second DC terminal). Sometimes, a choke coil that operates as a smoothing coil is used as a choke coil for a choke circuit type chopper circuit type inverter, and a switching / rectifying unit between the choke coil and a secondary coil of the transformer functions as a rectifier during forward power transmission, A bidirectional DC-DC converter is described that functions as a chopper circuit during reverse power transmission (step-up power transmission from the second DC terminal to the first DC terminal).
Japanese Patent Laid-Open No. 2002-165448

しかしながら、2つの直流電源系間に直流昇圧回路と直流降圧回路とを並列に配設する構成では、回路規模が大きくなり、また、同時動作すると回路内部の電圧ロスなどにより十分な性能を得ることができないという課題がある。   However, in a configuration in which a DC booster circuit and a DC stepdown circuit are arranged in parallel between two DC power supply systems, the circuit scale becomes large, and sufficient performance can be obtained due to voltage loss inside the circuit when operated simultaneously. There is a problem that cannot be done.

また、前記特許文献1に記載されているような双方向DC−DCコンバータにおいて、電圧変換用トランスの1次側巻線と2次側巻線の巻線比で電圧変換比が制約されると、要求される出力電圧の下限(あるいは上限)に制約がある場合にはそれに伴い入力電圧の下限(あるいは上限)も制約される。このため、入力電圧が大きく変動することが想定される場合には電圧変換用トランスの巻線比を十分に大きくとっておかざるを得ないという課題がある。   In the bidirectional DC-DC converter as described in Patent Document 1, when the voltage conversion ratio is restricted by the winding ratio of the primary side winding and the secondary side winding of the voltage conversion transformer. If the required lower limit (or upper limit) of the output voltage is restricted, the lower limit (or upper limit) of the input voltage is also restricted accordingly. For this reason, when it is assumed that the input voltage fluctuates greatly, there is a problem that the winding ratio of the voltage conversion transformer must be set sufficiently large.

本発明の目的は、前記の課題を解決し、広い入力電圧範囲で所定出力電圧への変圧を可能にした双方向DC−DCコンバータを提供することにある。   An object of the present invention is to provide a bidirectional DC-DC converter that solves the above-described problems and enables transformation to a predetermined output voltage in a wide input voltage range.

上記課題を解決するために、本発明は、低圧側端子と、高圧側端子と、低圧側巻線および高圧側巻線を含むトランスと、前記低圧側端子と前記低圧側巻線との間に挿入された低圧側スイッチング部と、前記高圧側端子と前記高圧側巻線との間に挿入された高圧側スイッチング部と、前記低圧側スイッチング部の各スイッチング素子に並列接続された低圧側整流素子と、前記高圧側スイッチング部の各スイッチング素子に並列接続された高圧側整流素子と、前記低圧側スイッチング部のスイッチング素子および前記高圧側スイッチング部のスイッチング素子を制御する制御回路とを備えた双方向DC−DCコンバータにおいて、前記高圧側巻線と前記高圧側スイッチング部との間もしくは前記低圧側巻線と前記低圧側スイッチング部との間にLC共振回路を設けると共に、前記高圧側スイッチング部のスイッチング素子を導通角0〜ほぼ50%の範囲の制御ゾーンで制御して降圧制御を行う点に第1の特徴がある。   In order to solve the above problems, the present invention provides a low voltage side terminal, a high voltage side terminal, a transformer including a low voltage side coil and a high voltage side coil, and the low voltage side terminal and the low voltage side coil. The inserted low voltage side switching unit, the high voltage side switching unit inserted between the high voltage side terminal and the high voltage side winding, and the low voltage side rectifying element connected in parallel to each switching element of the low voltage side switching unit And a high voltage side rectifying element connected in parallel to each switching element of the high voltage side switching unit, and a control circuit that controls the switching element of the low voltage side switching unit and the switching element of the high voltage side switching unit. In the DC-DC converter, L between the high-voltage side winding and the high-voltage side switching unit or between the low-voltage side winding and the low-voltage side switching unit. Provided with a resonant circuit, there is first characterized in that performing the step-down control by controlling the switching elements of the high voltage side switching unit in the control zone of the conduction angle 0 of approximately 50% of the range.

また、本発明は、低圧側端子と、高圧側端子と、低圧側巻線および高圧側巻線を含むトランスと、前記低圧側端子と前記低圧側巻線との間に挿入された低圧側スイッチング部と、前記高圧側端子と前記高圧側巻線との間に挿入された高圧側スイッチング部と、前記低圧側スイッチング部の各スイッチング素子に並列接続された低圧側整流素子と、前記高圧側スイッチング部の各スイッチング素子に並列接続された高圧側整流素子と、前記低圧側スイッチング部のスイッチング素子および前記高圧側スイッチング部のスイッチング素子を制御する制御回路とを備えた双方向DC−DCコンバータにおいて、前記高圧側巻線と前記高圧側スイッチング部との間もしくは前記低圧側巻線と前記低圧側スイッチング部との間にLC共振回路を設けると共に、前記低圧側端子への入力電圧に応じて前記低圧側スイッチング部のスイッチング素子を導通角100%あるいはほぼ50%の制御ゾーンで制御して昇圧制御を行う点に第2の特徴がある。   The present invention also provides a low voltage side terminal, a high voltage side terminal, a transformer including a low voltage side coil and a high voltage side coil, and a low voltage side switching inserted between the low voltage side terminal and the low voltage side coil. A high-voltage side switching unit inserted between the high-voltage side terminal and the high-voltage side winding, a low-voltage side rectifying element connected in parallel to each switching element of the low-voltage side switching unit, and the high-voltage side switching In a bidirectional DC-DC converter, comprising: a high-voltage side rectifying element connected in parallel to each switching element of the unit; and a control circuit that controls the switching element of the low-voltage side switching unit and the switching element of the high-voltage side switching unit. When an LC resonance circuit is provided between the high-voltage side winding and the high-voltage side switching unit or between the low-voltage side winding and the low-voltage side switching unit In, there is a second feature that performs control to boost control the switching elements of the low voltage side switching unit conduction angle of 100% or almost 50% of the control zone in accordance with the input voltage to the low-voltage side terminal.

また、本発明は、前記LC共振回路を前記高圧側巻線と前記高圧側スイッチング部との間に設けた点に第3の特徴がある。   The third feature of the present invention is that the LC resonance circuit is provided between the high-voltage side winding and the high-voltage side switching unit.

また、本発明は、前記低圧側スイッチング部および前記高圧側スイッチング部はいずれも、4つのスイッチング素子を含むブリッジ接続構成である点に第4の特徴がある。   In addition, the present invention has a fourth feature in that both the low voltage side switching unit and the high voltage side switching unit have a bridge connection configuration including four switching elements.

さらに、本発明は、前記低圧側端子にはバッテリを接続し、前記高圧側端子には発電機出力を接続した点に第5の特徴がある。   Furthermore, the present invention has a fifth feature in that a battery is connected to the low voltage side terminal and a generator output is connected to the high voltage side terminal.

本発明の第1の特徴によれば、スイッチングによる電流波形をLC共振回路で正弦波状にし、高圧側スイッチング部のスイッチング素子を導通角0〜ほぼ50%の範囲の制御ゾーンで制御することにより、より広い入力電圧範囲で所定出力電圧を得ることができる。   According to the first feature of the present invention, the current waveform due to switching is made sinusoidal in the LC resonance circuit, and the switching element of the high-voltage side switching unit is controlled in the control zone in the range of conduction angle 0 to approximately 50%, A predetermined output voltage can be obtained in a wider input voltage range.

また、第2の特徴によれば、スイッチングによる電流波形をLC共振回路で正弦波状にし、入力電圧に応じて低圧側スイッチング部のスイッチング素子を導通角100%あるいはほぼ50%の制御ゾーンで制御することにより、より広い入力電圧範囲で所定出力電圧を得ることができる。   Further, according to the second feature, the current waveform due to switching is made sinusoidal by an LC resonance circuit, and the switching element of the low-voltage side switching unit is controlled in a control zone with a conduction angle of 100% or almost 50% according to the input voltage. Thus, a predetermined output voltage can be obtained in a wider input voltage range.

また、第3の特徴によれば、電流値が小さい高圧側にLC共振回路を設けることにより、LC共振回路を低圧側に設ける場合と比較してLC共振回路での損失を低減することができる。   Further, according to the third feature, by providing the LC resonance circuit on the high voltage side where the current value is small, the loss in the LC resonance circuit can be reduced compared to the case where the LC resonance circuit is provided on the low voltage side. .

また、第4の特徴によれば、低圧側スイッチング部および高圧側スイッチング部はいずれも、ブリッジ型の単相インバータとなるため、それに接続するトランスの構造を簡素化することができる。   Further, according to the fourth feature, since both the low-voltage side switching unit and the high-voltage side switching unit are bridge-type single-phase inverters, the structure of the transformer connected thereto can be simplified.

さらに、第5の特徴によれば、エンジン発電機、燃料電池、太陽光発電機などの発電電圧の変動が大きな発電機出力であっても、安定してバッテリを充電することが可能になる。   Furthermore, according to the fifth feature, it is possible to stably charge the battery even when the output of the generator such as an engine generator, a fuel cell, or a solar generator has a large fluctuation in generated voltage.

以下、図面を参照して本発明を詳細に説明する。図1は、本発明に係る双方向DC−DCコンバータの一実施形態を示す回路図である。本実施形態の双方向DC−DCコンバータは、低圧側端子1−1、1−2に接続される直流電源と高圧側端子2−1、2−1に接続される直流電源との間でトランス3を介して電圧変換を行うものである。   Hereinafter, the present invention will be described in detail with reference to the drawings. FIG. 1 is a circuit diagram showing an embodiment of a bidirectional DC-DC converter according to the present invention. The bidirectional DC-DC converter according to the present embodiment includes a transformer between a DC power source connected to the low voltage side terminals 1-1 and 1-2 and a DC power source connected to the high voltage side terminals 2-1 and 2-1. 3 is used to perform voltage conversion.

トランス3は、低圧側巻線3−1と高圧側巻線3−2を含む。低圧側端子1−1、1−2と低圧側巻線3−1との間に低圧側スイッチング部4が挿入され、高圧側端子2−1、2−2と高圧側巻線3−2との間に高圧側スイッチング部5が挿入される。   The transformer 3 includes a low voltage side winding 3-1 and a high voltage side winding 3-2. The low-voltage side switching unit 4 is inserted between the low-voltage side terminals 1-1 and 1-2 and the low-voltage side winding 3-1, and the high-voltage side terminals 2-1 and 2-2 and the high-voltage side winding 3-2 The high voltage side switching unit 5 is inserted in between.

低圧側スイッチング部4は、FETなどの4つのスイッチング素子(以下、FETと記す。)4−1〜4−4をブリッジ接続して構成することができ、高圧側スイッチング部5は、4つのFET5−1〜5−4をブリッジ接続して構成することができる。   The low voltage side switching unit 4 can be configured by bridge-connecting four switching elements (hereinafter referred to as FETs) 4-1 to 4-4 such as FETs, and the high voltage side switching unit 5 includes four FETs 5. -1 to 5-4 can be configured by bridge connection.

FET4−1〜4−4、5−1〜5−4のそれぞれには、ダイオードなどの整流素子が並列接続される。これらの整流素子は、FETの寄生ダイオードでよく、別途接続した接合ダイオードでもよい。並列接続された整流素子を合わせれば、低圧側スイッチング部4および高圧側スイッチング部5はそれぞれ、スイッチング・整流部と考えることができる。高圧側端子2−1、2−2と高圧側巻線3−2との間にはLC共振回路6が挿入される。   A rectifying element such as a diode is connected in parallel to each of the FETs 4-1 to 4-4 and 5-1 to 5-4. These rectifying elements may be FET parasitic diodes or junction diodes connected separately. If the rectifying elements connected in parallel are combined, the low-voltage side switching unit 4 and the high-voltage side switching unit 5 can be considered as switching / rectifying units, respectively. The LC resonance circuit 6 is inserted between the high-voltage side terminals 2-1 and 2-2 and the high-voltage side winding 3-2.

低圧側および高圧側の電圧はそれぞれ、電圧検出部7、8で検出され、その検出電圧がCPUなどからなる制御回路9に入力される。制御回路9は、ドライバ10、11を介して低圧側スイッチング部4のFET4−1〜4−4および高圧側スイッチング部5のFET5−1〜5−4をスイッチング制御する。なお、低圧側端子1−1、1−2間、および高圧側端子2−1、2−2間に接続されているコンデンサ12、13は、出力平滑用コンデンサである。   The voltage on the low voltage side and the voltage on the high voltage side are detected by the voltage detectors 7 and 8, respectively, and the detected voltage is input to the control circuit 9 comprising a CPU or the like. The control circuit 9 performs switching control of the FETs 4-1 to 4-4 of the low-voltage side switching unit 4 and the FETs 5-1 to 5-4 of the high-voltage side switching unit 5 via the drivers 10 and 11. The capacitors 12 and 13 connected between the low voltage side terminals 1-1 and 1-2 and between the high voltage side terminals 2-1 and 2-2 are output smoothing capacitors.

次に、図1の動作を説明する。低圧側から高圧側へ電力を供給する昇圧時、低圧側スイッチング部4のFET4−1、4−4のペアとFET4−2、4−3のペアとを交互にオン・オフさせる。このとき、低圧側端子1−1、1−2への入力電圧が所定の電圧値を持っている場合には、このオン・オフは全導通角で行わせる。このとき、後述するように、トランス3の巻線比A/Bに近い値の電圧比で電圧変換が行われる。また、共振回路6により正弦波状にされた電流波形の零クロス点付近でFET4−1〜4−4をオン・オフさせることができるため、大電流時でもスイッチング損失を抑制することができる。   Next, the operation of FIG. 1 will be described. When boosting power from the low voltage side to the high voltage side, the FET4-1 and 4-4 pairs and the FET4-2 and 4-3 pairs of the low voltage side switching unit 4 are alternately turned on and off. At this time, when the input voltage to the low-voltage terminals 1-1 and 1-2 has a predetermined voltage value, this on / off operation is performed at the full conduction angle. At this time, as will be described later, voltage conversion is performed at a voltage ratio close to the winding ratio A / B of the transformer 3. In addition, since the FETs 4-1 to 4-4 can be turned on and off near the zero cross point of the current waveform that has been made sinusoidal by the resonance circuit 6, switching loss can be suppressed even at a large current.

また、低圧側端子1−1、1−2への入力電圧が所定の電圧値を下まわっている場合には、このオン・オフの導通角ほぼ50%の制御ゾーンとしてFET4−1〜4−4を制御する。このとき、後述するように、トランス3の巻線比A/Bを超える電圧比で電圧変換を行うことができる。   Further, when the input voltage to the low-voltage side terminals 1-1 and 1-2 is lower than a predetermined voltage value, the FETs 4-1 to 4- are used as control zones with an ON / OFF conduction angle of approximately 50%. 4 is controlled. At this time, as will be described later, voltage conversion can be performed at a voltage ratio exceeding the winding ratio A / B of the transformer 3.

このオン・オフに伴う電流がトランス3の低圧側巻線3−1に流れる。高圧側巻線3−2に誘起された電流は、LC共振回路6を通して高圧側スイッチング部5に入力され、FET5−1〜5−4に並列接続された整流素子により整流され、平滑コンデンサ13で平滑されて出力される。このとき低圧側および高圧側に流れる電流は、LC共振回路6の存在により正弦波状になる。   The current accompanying this on / off flows to the low-voltage side winding 3-1 of the transformer 3. The current induced in the high-voltage side winding 3-2 is input to the high-voltage side switching unit 5 through the LC resonance circuit 6, rectified by a rectifying element connected in parallel to the FETs 5-1 to 5-4, and Smoothed and output. At this time, the current flowing to the low voltage side and the high voltage side becomes sinusoidal due to the presence of the LC resonance circuit 6.

高圧側から低圧側へ電力を供給する降圧時には、高圧側スイッチング部5のFET5−1、5−4のペアとFET5−2、5−3のペアとを交互に後述する所定導通角でオン・オフさせる。このオン・オフに伴う電流がトランス3の高圧側巻線3−2に流れる。FET5−1〜5−4のオン、オフにより高圧側および低圧側に流れる電流はLC共振回路6の存在により正弦波状に変化する。   When the power is supplied from the high voltage side to the low voltage side, the FET 5-1 and 5-4 pairs and the FET 5-2 and 5-3 pairs of the high voltage side switching unit 5 are alternately turned on at a predetermined conduction angle described later. Turn off. The current accompanying this on / off flows to the high-voltage side winding 3-2 of the transformer 3. When the FETs 5-1 to 5-4 are turned on and off, the current flowing to the high voltage side and the low voltage side changes in a sine wave shape due to the presence of the LC resonance circuit 6.

低圧側巻線3−1に誘起された電流は、低圧側スイッチング部4に入力され、FET4−1〜4−4に並列接続された整流素子により整流され、平滑コンデンサ12で平滑されて出力される。   The current induced in the low-voltage side winding 3-1 is input to the low-voltage side switching unit 4, rectified by the rectifying element connected in parallel to the FETs 4-1 to 4-4, smoothed by the smoothing capacitor 12, and output. The

次に、本発明の原理を説明する。以下では、高圧側端子2−1、2−1へ与えられる高電圧を降圧して低圧側端子1−1、1−2に出力する場合を例として説明するが、本発明は、低圧側端子1−1、1−2側から高圧側端子2−1、2−1側への昇圧を行う場合にも適用することができる。   Next, the principle of the present invention will be described. In the following, the case where the high voltage applied to the high voltage side terminals 2-1 and 2-1 is stepped down and output to the low voltage side terminals 1-1 and 1-2 will be described as an example. The present invention can also be applied to boosting from the 1-1, 1-2 side to the high-voltage side terminals 2-1, 2-1 side.

図2は、高圧側スイッチング部5のFET5−1、5−4のペアとFET5−2、5−3のペアを全導通角(デューティ比100%)で交互にオン・オフさせた場合にトランス3の高圧側巻線3−2あるいは低圧側巻線3−1に流れる電流を示す図である。この電流は、LC共振回路6の存在により正弦波状になる。   FIG. 2 shows a transformer when the FET5-1, 5-4 pair and the FET5-2, 5-3 pair of the high-voltage side switching unit 5 are alternately turned on and off at the full conduction angle (duty ratio 100%). 3 is a diagram showing a current flowing through the high-voltage side winding 3-2 or the low-voltage side winding 3-1. This current becomes sinusoidal due to the presence of the LC resonance circuit 6.

図3は、デューティ比を0〜100%に変化させてFET5−1〜5−4を制御した場合に得られる高圧側電圧と低圧側電圧の電圧比を示す特性図である。同図に示すように、FET5−1〜5−4をデューティ比50%付近でターンオフさせた場合、トランス3の巻線比A/Bに制限されず、それを越える電圧比が得られる。これは、電流が最大値となる付近でターンオフさせることにより、トランス3の巻線やLC共振回路6のチョークコイルなどに蓄えられていたエネルギが放出されるためである。デューティ比が50%を越えると、電圧比はトランス3の巻線比A/Bに近い値に戻る。これは、デューティ50%超では連続するオン、オフにより誘導エネルギが互いに打ち消し合うものとなってしまうためである。   FIG. 3 is a characteristic diagram showing a voltage ratio between the high-voltage side voltage and the low-voltage side voltage obtained when the FETs 5-1 to 5-4 are controlled by changing the duty ratio to 0 to 100%. As shown in the figure, when the FETs 5-1 to 5-4 are turned off in the vicinity of a duty ratio of 50%, the voltage ratio exceeding the winding ratio A / B of the transformer 3 is obtained. This is because the energy stored in the winding of the transformer 3 and the choke coil of the LC resonance circuit 6 is released by turning off near the maximum current. When the duty ratio exceeds 50%, the voltage ratio returns to a value close to the winding ratio A / B of the transformer 3. This is because when the duty exceeds 50%, the induced energies cancel each other out due to continuous on and off.

本発明は、デューティ比50%付近でターンオフさせた場合、トランスの巻線比A/Bを越える電圧比が得られるという点に着目し、より広い入力電圧範囲での変圧制御を可能にするものである。   The present invention pays attention to the fact that a voltage ratio exceeding the winding ratio A / B of the transformer can be obtained when turning off at a duty ratio of around 50%, and enables voltage transformation control in a wider input voltage range. It is.

例えば、降圧時には、高圧側スイッチング部5のFET5−1〜5−4を導通角0〜ほぼ50%の範囲の制御ゾーンとし、高圧側電圧が高いときには高圧側電圧に応じてFET5−1〜5−4の導通角を絞り込み、低いときには導通角をほぼ50%とすることにより、トランス3の巻線比に制約されずに、より広い高圧側電圧範囲での降圧制御を可能にする。本発明での制御ゾーンを図2に示している。   For example, when stepping down, the FETs 5-1 to 5-4 of the high-voltage side switching unit 5 are set as control zones in the range of the conduction angle 0 to almost 50%, and when the high-voltage side voltage is high, the FETs 5-1 to 5-5 The conduction angle of -4 is narrowed down, and when it is low, the conduction angle is approximately 50%, so that the step-down control can be performed in a wider high-voltage side voltage range without being restricted by the winding ratio of the transformer 3. The control zone in the present invention is shown in FIG.

図4は、本発明による電圧変換特性(a)と従来技術による電圧変換特性(b)を対比して示す図である。同図に示すように、従来技術では、所定範囲の低圧側電圧Vl〜Vlを得ようとする場合、トランス3の巻線比A/Bで変換特性が制約され、高圧側電圧はVh〜Vhの範囲である必要がある。 FIG. 4 is a diagram showing a comparison between the voltage conversion characteristic (a) according to the present invention and the voltage conversion characteristic (b) according to the prior art. As shown in the figure, in the prior art, when the low voltage side voltages Vl 1 to Vl 2 in a predetermined range are to be obtained, the conversion characteristics are restricted by the winding ratio A / B of the transformer 3, and the high voltage side voltage is Vh. 1 must be in the range of ~Vh 2.

つまり、高圧側電圧がVhを越えると低圧側電圧はVlを越えてしまい、高圧側電圧がVh未満になると低圧側電圧はVl未満なってしまう。このため、例えば低圧側にバッテリを接続してこれを充電する場合、バッテリの過充電または充電不足を防ぐには、高圧側電圧をVh〜Vhの範囲に制限する必要がある。 That is, when the high voltage side voltage exceeds Vh 2 , the low voltage side voltage exceeds Vl 2 , and when the high voltage side voltage becomes less than Vh 1 , the low voltage side voltage becomes less than Vl 1 . For this reason, for example, when a battery is connected to the low-voltage side and charged, it is necessary to limit the high-voltage side voltage to a range of Vh 1 to Vh 2 in order to prevent overcharging or insufficient charging of the battery.

これに対して、本発明では、所定範囲の出力電圧Vl〜Vlを得ようとする場合、トランス3の巻線比A/Bで変換特性が制約されず、高圧側電圧はVh(Vh<Vh)以上であればよいので、より広い高圧側電圧範囲での降圧制御が可能になる。なお、電圧制御と導通角とはリニアな関係を維持するので、高圧側電圧が変動しても導通角制御により安定かつ容易に所定の低圧側電圧を得ることができる。 On the other hand, in the present invention, when the output voltages Vl 1 to Vl 2 in a predetermined range are to be obtained, the conversion characteristics are not restricted by the winding ratio A / B of the transformer 3 , and the high-voltage side voltage is Vh 3 ( Since Vh 3 <Vh 1 ) or more, step-down control in a wider high-voltage side voltage range is possible. Since the linear relationship between the voltage control and the conduction angle is maintained, a predetermined low-voltage side voltage can be obtained stably and easily by the conduction angle control even if the high-voltage side voltage fluctuates.

図5は、本発明の適用例を示す回路図であり、本発明に係る双方向DC−DCコンバータ50を用いて発電機51を含む直流電源とバッテリ52との間で電力を融通し合う例である。発電機51は、例えばエンジン駆動式の3相の多極磁石発電機である。エンジンの始動時には、双方向DC−DCコンバータ50の低圧側スイッチング部を駆動し、これにより昇圧したバッテリ52のDC電圧を駆動用インバータ(整流回路)53に印加する。駆動用インバータ53は、印加されたDC電圧を3相のAC電圧に変換して発電機51に印加し、これをエンジン始動用電動機として起動する。   FIG. 5 is a circuit diagram showing an application example of the present invention, in which an electric power is exchanged between a direct current power source including a generator 51 and a battery 52 using a bidirectional DC-DC converter 50 according to the present invention. It is. The generator 51 is, for example, an engine-driven three-phase multipolar magnet generator. When the engine is started, the low-voltage side switching unit of the bidirectional DC-DC converter 50 is driven, and the DC voltage of the battery 52 boosted thereby is applied to the drive inverter (rectifier circuit) 53. The drive inverter 53 converts the applied DC voltage into a three-phase AC voltage and applies it to the generator 51, which is activated as an engine starter motor.

エンジンが始動すると、発電機51はエンジンにより駆動され、駆動用インバータ53のスイッチング動作は停止される。発電機51の出力は、整流回路(駆動用インバータ)53で整流され、レギュレータ54で調整され、さらにインバータ55で所定周波数の交流電力に変換されて出力される。   When the engine is started, the generator 51 is driven by the engine, and the switching operation of the drive inverter 53 is stopped. The output of the generator 51 is rectified by a rectifier circuit (drive inverter) 53, adjusted by a regulator 54, and further converted into AC power of a predetermined frequency by an inverter 55 and output.

バッテリ52の電圧が低下した時、双方向DC−DCコンバータ50の高圧側スイッチング部を駆動すれば、整流回路53の出力を双方向DC−DCコンバータ50により降圧し、この電圧によりバッテリ52を充電することができる。   If the high voltage side switching unit of the bidirectional DC-DC converter 50 is driven when the voltage of the battery 52 decreases, the output of the rectifier circuit 53 is stepped down by the bidirectional DC-DC converter 50, and the battery 52 is charged by this voltage. can do.

以上、実施形態について説明したが、本発明は、種々に変形可能である。例えば、LC共振回路は、降圧側ではなく低圧側に設けることもできる。この場合、低圧側スイッチング部とトランスの低圧側巻線の間にLC共振回路を挿入すればよい。   Although the embodiments have been described above, the present invention can be variously modified. For example, the LC resonance circuit can be provided not on the step-down side but on the low-pressure side. In this case, an LC resonance circuit may be inserted between the low voltage side switching unit and the low voltage side winding of the transformer.

本発明は、バッテリ間、あるいはエンジン駆動式発電機からなる直流電源とバッテリ間に限らず、通常の発電機、太陽光発電、風力発電、燃料電池などの適宜の直流電源系で電力を融通し合う場合に使用することができ、例えば、ハイブリッド車両などでの走行電力系と保安電装系とで電力のやり取りを行わせることができる。   The present invention is not limited to between batteries or between a DC power source consisting of an engine-driven generator and a battery, but to allow power to be exchanged with an appropriate DC power source system such as a normal generator, solar power generation, wind power generation, or fuel cell. For example, power can be exchanged between a traveling power system and a safety electrical system in a hybrid vehicle or the like.

本発明に係る双方向DC−DCコンバータの一実施形態を示す回路図である。1 is a circuit diagram showing an embodiment of a bidirectional DC-DC converter according to the present invention. 双方向DC−DCコンバータの動作説明のための波形図である。It is a wave form diagram for explanation of operation of a bidirectional DC-DC converter. デューティ比と電圧比の関係を示す特性図である。It is a characteristic view which shows the relationship between a duty ratio and a voltage ratio. 本発明の電圧変換特性と従来技術の電圧変換特性を示す特性図である。It is a characteristic view which shows the voltage conversion characteristic of this invention, and the voltage conversion characteristic of a prior art. 本発明の適用例を示す回路図である。It is a circuit diagram which shows the example of application of this invention.

符号の説明Explanation of symbols

1−1、1−2・・・低圧側端子、2−1、2−2・・・高圧側端子、3・・・トランス、3−1・・・低圧側巻線、3−2・・・高圧側巻線、4・・・低圧側スイッチング部、4−4〜4−4,5−1〜5−4・・・FET、5・・・高圧側スイッチング部、6・・・LC共振回路、7,8・・・電圧検出部、9・・・制御部、10,11・・・ドライバ、12,13・・・平滑コンデンサ、50・・・双方向DC−DCコンバータ、51・・・発電機、52・・・バッテリ、53・・・駆動用インバータ(整流回路)、54・・・レギュレータ、55・・・インバータ 1-1, 1-2 ... low voltage side terminal, 2-1, 2-2 ... high voltage side terminal, 3 ... transformer, 3-1 ... low voltage side winding, 3-2 ...・ High voltage side winding, 4 ... Low voltage side switching part, 4-4 ~ 4-4,5-1 ~ 5-4 ... FET, 5 ... High voltage side switching part, 6 ... LC resonance Circuit, 7, 8 ... Voltage detection unit, 9 ... Control unit, 10, 11 ... Driver, 12, 13 ... Smoothing capacitor, 50 ... Bidirectional DC-DC converter, 51 ... -Generator, 52 ... Battery, 53 ... Drive inverter (rectifier circuit), 54 ... Regulator, 55 ... Inverter

Claims (5)

低圧側端子と、高圧側端子と、低圧側巻線および高圧側巻線を含むトランスと、前記低圧側端子と前記低圧側巻線との間に挿入された低圧側スイッチング部と、前記高圧側端子と前記高圧側巻線との間に挿入された高圧側スイッチング部と、前記低圧側スイッチング部の各スイッチング素子に並列接続された低圧側整流素子と、前記高圧側スイッチング部の各スイッチング素子に並列接続された高圧側整流素子と、前記低圧側スイッチング部のスイッチング素子および前記高圧側スイッチング部のスイッチング素子を制御する制御回路とを備えた双方向DC−DCコンバータにおいて、
前記高圧側巻線と前記高圧側スイッチング部との間もしくは前記低圧側巻線と前記低圧側スイッチング部との間にLC共振回路を設けると共に、前記高圧側スイッチング部のスイッチング素子を導通角0〜ほぼ50%の範囲の制御ゾーンで制御して降圧制御を行うことを特徴とする双方向DC−DCコンバータ。
A low-voltage side terminal; a high-voltage side terminal; a transformer including a low-voltage side winding and a high-voltage side winding; a low-voltage side switching unit inserted between the low-voltage side terminal and the low-voltage side winding; A high-voltage side switching unit inserted between a terminal and the high-voltage side winding; a low-voltage side rectifying element connected in parallel to each switching element of the low-voltage side switching unit; and each switching element of the high-voltage side switching unit In a bidirectional DC-DC converter comprising a high voltage side rectifying element connected in parallel, and a control circuit for controlling the switching element of the low voltage side switching unit and the switching element of the high voltage side switching unit,
An LC resonance circuit is provided between the high-voltage side winding and the high-voltage side switching unit or between the low-voltage side winding and the low-voltage side switching unit, and the switching element of the high-voltage side switching unit has a conduction angle of 0 to 0. A bidirectional DC-DC converter that performs step-down control by controlling in a control zone in a range of approximately 50%.
低圧側端子と、高圧側端子と、低圧側巻線および高圧側巻線を含むトランスと、前記低圧側端子と前記低圧側巻線との間に挿入された低圧側スイッチング部と、前記高圧側端子と前記高圧側巻線との間に挿入された高圧側スイッチング部と、前記低圧側スイッチング部の各スイッチング素子に並列接続された低圧側整流素子と、前記高圧側スイッチング部の各スイッチング素子に並列接続された高圧側整流素子と、前記低圧側スイッチング部のスイッチング素子および前記高圧側スイッチング部のスイッチング素子を制御する制御回路とを備えた双方向DC−DCコンバータにおいて、
前記高圧側巻線と前記高圧側スイッチング部との間もしくは前記低圧側巻線と前記低圧側スイッチング部との間にLC共振回路を設けると共に、前記低圧側端子への入力電圧に応じて前記低圧側スイッチング部のスイッチング素子を導通角100%あるいはほぼ50%の制御ゾーンで制御して昇圧制御を行うことを特徴とする双方向DC−DCコンバータ。
A low-voltage side terminal; a high-voltage side terminal; a transformer including a low-voltage side winding and a high-voltage side winding; a low-voltage side switching unit inserted between the low-voltage side terminal and the low-voltage side winding; A high-voltage side switching unit inserted between a terminal and the high-voltage side winding; a low-voltage side rectifying element connected in parallel to each switching element of the low-voltage side switching unit; and each switching element of the high-voltage side switching unit In a bidirectional DC-DC converter comprising a high-voltage side rectifying element connected in parallel, and a control circuit for controlling the switching element of the low-voltage side switching unit and the switching element of the high-voltage side switching unit,
An LC resonance circuit is provided between the high-voltage side winding and the high-voltage side switching unit or between the low-voltage side winding and the low-voltage side switching unit, and the low-voltage side according to the input voltage to the low-voltage side terminal A bidirectional DC-DC converter that performs step-up control by controlling a switching element of a side switching unit in a control zone having a conduction angle of 100% or almost 50%.
前記LC共振回路を前記高圧側巻線と前記高圧側スイッチング部との間に設けたことを特徴とする請求項1または2に記載の双方向DC−DCコンバータ。 The bidirectional DC-DC converter according to claim 1 or 2, wherein the LC resonance circuit is provided between the high-voltage side winding and the high-voltage side switching unit. 前記低圧側スイッチング部および前記高圧側スイッチング部はいずれも、4つのスイッチング素子を含むブリッジ接続構成であることを特徴とする請求項1または2に記載の双方向DC−DCコンバータ。 The bidirectional DC-DC converter according to claim 1 or 2, wherein each of the low-voltage side switching unit and the high-voltage side switching unit has a bridge connection configuration including four switching elements. 前記低圧側端子にはバッテリを接続し、前記高圧側端子には発電機出力を接続したことを特徴とする請求項1または2に記載の双方向DC−DCコンバータ。 The bidirectional DC-DC converter according to claim 1 or 2, wherein a battery is connected to the low-voltage side terminal, and a generator output is connected to the high-voltage side terminal.
JP2004260852A 2004-09-08 2004-09-08 Bidirectional DC-DC converter Expired - Fee Related JP4454444B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004260852A JP4454444B2 (en) 2004-09-08 2004-09-08 Bidirectional DC-DC converter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004260852A JP4454444B2 (en) 2004-09-08 2004-09-08 Bidirectional DC-DC converter

Publications (2)

Publication Number Publication Date
JP2006081263A true JP2006081263A (en) 2006-03-23
JP4454444B2 JP4454444B2 (en) 2010-04-21

Family

ID=36160266

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004260852A Expired - Fee Related JP4454444B2 (en) 2004-09-08 2004-09-08 Bidirectional DC-DC converter

Country Status (1)

Country Link
JP (1) JP4454444B2 (en)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007174784A (en) * 2005-12-21 2007-07-05 Hitachi Ltd Bi-directional dc-dc converter and control method therefor
JP2008079480A (en) * 2006-09-25 2008-04-03 Matsushita Electric Ind Co Ltd System interconnection inverter device
CN100424976C (en) * 2006-07-17 2008-10-08 南京航空航天大学 Two way DC converter controlled by one-end voltage stable, one-end current stable phase shift plus PWM and its control method
JP2012005266A (en) * 2010-06-17 2012-01-05 Tdk-Lambda Corp Dc-dc converter
JP2012070491A (en) * 2010-09-21 2012-04-05 Panasonic Corp Resonance type bidirectional converter circuit
CN102656789A (en) * 2009-12-21 2012-09-05 英特赛尔美国股份有限公司 Bidirectional signal conversion
WO2012121016A1 (en) * 2011-03-07 2012-09-13 新電元工業株式会社 Bidirectional dc-dc converter, and power source system
WO2013047119A1 (en) * 2011-09-26 2013-04-04 株式会社村田製作所 Insulation-type switching power supply apparatus
JP2013115926A (en) * 2011-11-29 2013-06-10 Tdk Corp Dc-dc converter and method of controlling dc-dc converter
JP2014027750A (en) * 2012-07-25 2014-02-06 Mitsubishi Electric Corp Bidirectional dc-dc converter and method of controlling bidirectional dc-dc converter
KR101350323B1 (en) 2011-10-28 2014-02-13 전주대학교 산학협력단 Bidirectional DC/DC Converter
US8817490B2 (en) 2011-06-13 2014-08-26 Tdk Corporation DC-DC converter
US8830701B2 (en) 2011-06-13 2014-09-09 Tdk Corporation DC-DC converter
US8830700B2 (en) 2011-06-13 2014-09-09 Tdk Corporation DC-DC converter and method for controlling DC-DC converter
JP2015204640A (en) * 2014-04-10 2015-11-16 トヨタ自動車株式会社 Power conversion device and power conversion method
US9232625B2 (en) 2014-03-18 2016-01-05 Ricoh Company, Ltd. Inverter device, plasma generator apparatus and control method
WO2016103990A1 (en) * 2014-12-26 2016-06-30 日立オートモティブシステムズ株式会社 Power supply device
WO2018116431A1 (en) * 2016-12-21 2018-06-28 株式会社日立製作所 Power conversion device, power conversion device control device, and power conversion device control method

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007174784A (en) * 2005-12-21 2007-07-05 Hitachi Ltd Bi-directional dc-dc converter and control method therefor
JP4719567B2 (en) * 2005-12-21 2011-07-06 日立オートモティブシステムズ株式会社 Bidirectional DC-DC converter and control method thereof
CN100424976C (en) * 2006-07-17 2008-10-08 南京航空航天大学 Two way DC converter controlled by one-end voltage stable, one-end current stable phase shift plus PWM and its control method
JP2008079480A (en) * 2006-09-25 2008-04-03 Matsushita Electric Ind Co Ltd System interconnection inverter device
CN102656789A (en) * 2009-12-21 2012-09-05 英特赛尔美国股份有限公司 Bidirectional signal conversion
JP2012005266A (en) * 2010-06-17 2012-01-05 Tdk-Lambda Corp Dc-dc converter
US8929098B2 (en) 2010-06-17 2015-01-06 Tdk-Lambda Corporation DC-DC converter
JP2012070491A (en) * 2010-09-21 2012-04-05 Panasonic Corp Resonance type bidirectional converter circuit
WO2012121016A1 (en) * 2011-03-07 2012-09-13 新電元工業株式会社 Bidirectional dc-dc converter, and power source system
US9112423B2 (en) 2011-03-07 2015-08-18 Shindengen Electric Manufacturing Co., Ltd. Bidirectional DC-DC converter and power supply system
US8817490B2 (en) 2011-06-13 2014-08-26 Tdk Corporation DC-DC converter
US8830701B2 (en) 2011-06-13 2014-09-09 Tdk Corporation DC-DC converter
US8830700B2 (en) 2011-06-13 2014-09-09 Tdk Corporation DC-DC converter and method for controlling DC-DC converter
WO2013047119A1 (en) * 2011-09-26 2013-04-04 株式会社村田製作所 Insulation-type switching power supply apparatus
KR101350323B1 (en) 2011-10-28 2014-02-13 전주대학교 산학협력단 Bidirectional DC/DC Converter
JP2013115926A (en) * 2011-11-29 2013-06-10 Tdk Corp Dc-dc converter and method of controlling dc-dc converter
JP2014027750A (en) * 2012-07-25 2014-02-06 Mitsubishi Electric Corp Bidirectional dc-dc converter and method of controlling bidirectional dc-dc converter
US9232625B2 (en) 2014-03-18 2016-01-05 Ricoh Company, Ltd. Inverter device, plasma generator apparatus and control method
JP2015204640A (en) * 2014-04-10 2015-11-16 トヨタ自動車株式会社 Power conversion device and power conversion method
US9627986B2 (en) 2014-04-10 2017-04-18 Toyota Jidosha Kabushiki Kaisha Power conversion device and power conversion method
WO2016103990A1 (en) * 2014-12-26 2016-06-30 日立オートモティブシステムズ株式会社 Power supply device
US10763754B2 (en) 2014-12-26 2020-09-01 Hitachi Automotive Systems, Ltd. Power supply device
WO2018116431A1 (en) * 2016-12-21 2018-06-28 株式会社日立製作所 Power conversion device, power conversion device control device, and power conversion device control method
JPWO2018116431A1 (en) * 2016-12-21 2019-06-24 株式会社日立製作所 POWER CONVERTER, CONTROL DEVICE FOR POWER CONVERTER, AND CONTROL METHOD OF POWER CONVERTER
US11296610B2 (en) 2016-12-21 2022-04-05 Hitachi, Ltd. Power conversion device, power conversion device control device, and power conversion device control method

Also Published As

Publication number Publication date
JP4454444B2 (en) 2010-04-21

Similar Documents

Publication Publication Date Title
US7177163B2 (en) Two-way DC-DC converter
JP4274364B2 (en) DC-DC converter
JP4318174B2 (en) DC-DC converter
JP4454444B2 (en) Bidirectional DC-DC converter
JP4514143B2 (en) Power supply device and control method thereof
US8503194B2 (en) Bidirectional signal conversion
US10541549B2 (en) Power supply apparatus
JP5553677B2 (en) Output controller for hybrid generator
US20070041222A1 (en) Dc-dc converter
JP6132887B2 (en) Power converter
US9209698B2 (en) Electric power conversion device
US9866129B2 (en) Power conversion device including primary inverter, transformer, secondary converter, and controller
JP2004282826A (en) Engine driven generator
JP2018148637A (en) Charger and on-vehicle power supply
Jeong et al. Electrolytic capacitor-less single-power-conversion on-board charger with high efficiency
JP6551340B2 (en) Voltage converter
JP6742145B2 (en) Bidirectional DC-DC converter, power supply system using the same, and automobile using the power supply system
JP2006280177A (en) Power supply
US7116012B2 (en) Stable power conversion circuits
KR102200284B1 (en) Power converting method
JP6270753B2 (en) Power converter
JP2850742B2 (en) Charger
JP6750999B2 (en) DC-DC converter and automobile
JP2765492B2 (en) Charger
JP4183189B2 (en) Power supply

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061130

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090827

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090909

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091102

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100127

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100202

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130212

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4454444

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130212

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140212

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees