JPH06177474A - Dye laser apparatus - Google Patents

Dye laser apparatus

Info

Publication number
JPH06177474A
JPH06177474A JP32676892A JP32676892A JPH06177474A JP H06177474 A JPH06177474 A JP H06177474A JP 32676892 A JP32676892 A JP 32676892A JP 32676892 A JP32676892 A JP 32676892A JP H06177474 A JPH06177474 A JP H06177474A
Authority
JP
Japan
Prior art keywords
dye laser
aperture stop
amplifier
dye
optical path
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP32676892A
Other languages
Japanese (ja)
Inventor
Tomohiro Iijima
智浩 飯島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
LASER NOSHUKU GIJUTSU KENKYU KUMIAI
Toshiba Corp
Original Assignee
LASER NOSHUKU GIJUTSU KENKYU KUMIAI
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by LASER NOSHUKU GIJUTSU KENKYU KUMIAI, Toshiba Corp filed Critical LASER NOSHUKU GIJUTSU KENKYU KUMIAI
Priority to JP32676892A priority Critical patent/JPH06177474A/en
Publication of JPH06177474A publication Critical patent/JPH06177474A/en
Pending legal-status Critical Current

Links

Landscapes

  • Lasers (AREA)

Abstract

PURPOSE:To provide a dye laser apparatus which can control in precision an image forming position in a pattern formed by an aperture stop. CONSTITUTION:A dye laser apparatus comprises a dye laser resonator 1 which outputs a dye laser beam, an aperture stop 2 which forms a pattern of the dye laser beam outputted by the dye laser resonator, an amplifier 4 which amplifies the dye laser beam formed by the aperture stop, an image forming optical system 3 which changes the diameter of the dye laser beam discharged by the aperture stop and puts it into the amplifier, and wedge shape glass plates 11 and 12 of the parallel planar type which are provided in between the aperture stop and the amplifier to vary an optical path length of the dye laser beam.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は色素レ−ザ発振器から
出力された色素レ−ザの強度を増幅する増幅器を備えた
色素レ−ザ装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a dye laser device equipped with an amplifier for amplifying the intensity of a dye laser output from a dye laser oscillator.

【0002】[0002]

【従来の技術】たとえば、レ−ザ法によってウランを濃
縮するような場合、大出力のレ−ザが要求され、そのよ
うなレ−ザを得ることができる装置として色素レ−ザ装
置が注目されている。色素レ−ザ装置は色素レ−ザ発振
器と、この色素レ−ザ発振器から出力された色素レ−ザ
を増幅する増幅器とから構成されていて、大出力の色素
レ−ザを得るためには上記増幅器での増幅効率を高める
ことが要求される。
2. Description of the Related Art For example, when uranium is concentrated by a laser method, a laser having a large output is required, and a dye laser device is noted as a device capable of obtaining such a laser. Has been done. The dye laser device is composed of a dye laser oscillator and an amplifier for amplifying the dye laser output from the dye laser oscillator. To obtain a high output dye laser, It is required to improve the amplification efficiency of the above amplifier.

【0003】図3に従来の色素レ−ザ装置を示す。同図
中1は色素レ−ザ発振器である。この色素レ−ザ発振器
1から出力された色素レ−ザLは開口絞り2を通過して
強度分布が均一なパタ−ンに成形されたのち、複数のレ
ンズ3aから構成された無焦点型の結像光学系3に入射
して口径が変換される。この結像光学系3から出射した
色素レ−ザLは、増幅器4に入射する。この増幅器4は
色素セル5を有し、この色素セル5には流入口5aと流
出口5bとが設けられている。
FIG. 3 shows a conventional dye laser device. In the figure, 1 is a dye laser oscillator. The dye laser L output from the dye laser oscillator 1 passes through the aperture stop 2 and is shaped into a pattern having a uniform intensity distribution, and is then a focusless type composed of a plurality of lenses 3a. The light enters the imaging optical system 3 and the aperture is converted. The dye laser L emitted from the imaging optical system 3 enters the amplifier 4. The amplifier 4 has a dye cell 5, which is provided with an inlet 5a and an outlet 5b.

【0004】上記色素セル5に形成された空間部6に
は、上記流入口5aから色素溶液が供給され、上記流出
口5bから流出するようになっている。色素セル5の空
間部6を流れる色素溶液は、上記色素レ−ザLの光軸に
対して直交する方向から上記色素セル5の空間部6に入
射する励起レ−ザQによって励起される。上記空間部6
には上記結像光学系3から出射した色素レ−ザLが通過
する。それによって、上記色素レ−ザLは増幅されて上
記空間部6から出射する。
The space 6 formed in the dye cell 5 is supplied with the dye solution from the inflow port 5a and flows out from the outflow port 5b. The dye solution flowing in the space 6 of the dye cell 5 is excited by the excitation laser Q which enters the space 6 of the dye cell 5 from the direction orthogonal to the optical axis of the dye laser L. The space 6
The dye laser L emitted from the imaging optical system 3 passes through. As a result, the dye laser L is amplified and emitted from the space 6.

【0005】上記構成の色素レ−ザ装置において、色素
レ−ザLが開口絞り2で成形されると、その開口による
フレネル回析で、上記結像光学系3においては、開口通
過直後の均一パタ−ンP1 から上記回析の影響を受けた
不均一パタ−ンP2 に変化する。上記色素セル5におい
て不均一パタ−ンP2 の状態で増幅されると、増幅効率
が低下して大出力の色素レ−ザLを得ることができな
い。
In the dye laser device having the above-mentioned structure, when the dye laser L is formed by the aperture stop 2, Fresnel diffraction by the aperture causes the image-forming optical system 3 to be uniform immediately after passing through the aperture. The pattern P1 changes to a non-uniform pattern P2 affected by the above diffraction. When the dye cell 5 is amplified in the state of the non-uniform pattern P 2 , the amplification efficiency is lowered and the dye laser L having a large output cannot be obtained.

【0006】そこで、従来は増幅器4において色素セル
4の励起レ−ザQの光軸と一致する位置に開口絞り2で
成形された均一パタ−ンP1 が転送されるように、上記
結像光学系3を位置決めしている。しかしながら、上記
結像光学系3の収差や製作公差によって開口絞り2で成
形された均一パタ−ンP1 の転送位置に誤差が生じるこ
とが避けられず、その結果、増幅器4における増幅効率
の低下を招くということがあった。
Therefore, in the prior art, the above-mentioned imaging optics is used so that the uniform pattern P1 formed by the aperture stop 2 is transferred to a position in the amplifier 4 which coincides with the optical axis of the excitation laser Q of the dye cell 4. The system 3 is positioned. However, it is unavoidable that an error occurs in the transfer position of the uniform pattern P1 formed by the aperture stop 2 due to the aberration of the imaging optical system 3 and the manufacturing tolerance, and as a result, the amplification efficiency of the amplifier 4 is lowered. I was invited.

【0007】このような転送の位置ずれは、カメラ、顕
微鏡、望遠鏡等の一般的な光学系ではピントずれと呼ば
れ、レンズ位置を調整することで回避できる。しかしな
がら、色素レ−ザ装置のように高出力の色素レ−ザLの
場合、上記結像光学系3のレンズ3aを移動させると、
そのレンズ3aが受ける熱影響が大きく変化して損傷す
ることがあるばかりか、レンズ3aの光軸がずれて精密
な調整が難しいなどのことがあった。
Such a positional shift of the transfer is called a focus shift in a general optical system such as a camera, a microscope and a telescope, and can be avoided by adjusting the lens position. However, in the case of a high-output dye laser L such as a dye laser device, when the lens 3a of the imaging optical system 3 is moved,
The thermal effect on the lens 3a may change greatly and damage the lens 3a, and the optical axis of the lens 3a may be displaced to make precise adjustment difficult.

【0008】[0008]

【発明が解決しようとする課題】このように、従来の色
素レ−ザ装置は、増幅器において色素レ−ザを強度分布
が均一なパタ−ンの状態で増幅することが難しいため、
十分な増幅効率が得られないということがあった。
As described above, in the conventional dye laser device, it is difficult to amplify the dye laser in the amplifier in a pattern in which the intensity distribution is uniform.
There have been cases where sufficient amplification efficiency cannot be obtained.

【0009】この発明は上記事情に基づきなされたもの
で、その目的とするところは、光軸のずれや光学系の損
傷を招くことなく、強度分布が均一なパタ−ンの色素レ
−ザを増幅器で増幅できるようにした色素レ−ザ装置を
提供することにある。
The present invention has been made in view of the above circumstances. An object of the present invention is to provide a dye laser of a pattern having a uniform intensity distribution without causing deviation of the optical axis and damage to the optical system. An object of the present invention is to provide a dye laser device which can be amplified by an amplifier.

【0010】[0010]

【課題を解決するための手段】上記課題を解決するため
にこの発明は、色素レ−ザを出力する色素レ−ザ発振器
と、この色素レ−ザ発振器から出力された色素レ−ザの
パタ−ンを成形する開口絞りと、この開口絞りによって
成形された色素レ−ザを増幅する増幅器と、上記開口絞
りから出射した色素レ−ザの口径を変えて上記増幅器に
入射させる結像光学系と、上記開口絞りと上記増幅器と
の間に設けられ上記色素レ−ザの光路長を可変する平行
平板型の光路長制御手段とを具備したことを特徴とす
る。
In order to solve the above problems, the present invention relates to a dye laser oscillator for outputting a dye laser, and a dye laser pattern output from the dye laser oscillator. An aperture stop for shaping the lens, an amplifier for amplifying the dye laser formed by the aperture stop, and an imaging optical system for changing the diameter of the dye laser emitted from the aperture stop and making it enter the amplifier. And a parallel plate type optical path length control means provided between the aperture stop and the amplifier for varying the optical path length of the dye laser.

【0011】[0011]

【作用】上記構成によれば、光路長制御手段によって色
素レ−ザの光路長を調整することで、上記開口絞りで強
度分布が均一に成形された色素レ−ザのパタ−ンの転送
位置を制御することができる。
According to the above construction, by adjusting the optical path length of the dye laser by the optical path length control means, the transfer position of the pattern of the dye laser whose intensity distribution is uniformly formed by the aperture stop. Can be controlled.

【0012】[0012]

【実施例】以下、この発明の一実施例を図1と図2を参
照して説明する。なお、図3に示す構成と同一部分には
同一記号を付して説明を省略する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to FIGS. Note that the same parts as those in the configuration shown in FIG.

【0013】すなわち、この発明においては、無焦点型
の結像光学系3と、増幅器4との間に平行平板型の光路
長制御手段である一対の楔形ガラス板11、12がこれ
らの斜面11a、12aを平行にし、かつ側面11b、
12bを色素レ−ザLの光軸に対して垂直にして配置さ
れている。これら一対の楔形ガラス板11、12の少な
くともどちらか一方、この実施例では結像光学系3側に
位置する一方の等方性ガラス板11はマイクロメ−タな
どの駆動装置13によって図1に矢印で示す上記色素レ
−ザLの光軸に対して直交する方向に駆動されるように
なっている。
That is, according to the present invention, a pair of wedge-shaped glass plates 11 and 12 which are parallel plate type optical path length control means are provided between the afocal type image forming optical system 3 and the amplifier 4 and the inclined surfaces 11a thereof. , 12a are parallel, and side surfaces 11b,
12b is arranged perpendicular to the optical axis of the dye laser L. At least one of the pair of wedge-shaped glass plates 11 and 12, that is, the isotropic glass plate 11 located on the side of the image forming optical system 3 in this embodiment is indicated by an arrow in FIG. 1 by a driving device 13 such as a micrometer. The dye laser L is driven in a direction orthogonal to the optical axis.

【0014】上記斜面11a、12aが所定間隔で離間
した一対の楔形ガラス板11、12は等価的に一枚のガ
ラス板と見做すことができる。そして、一方のガラス板
11が駆動装置13によって矢印方向に駆動され、これ
らの斜面11a、12aの間隔が変われば、同図中Dで
示す一対の楔形ガラス板11、12がなす見掛け上の厚
さ寸法が変化したことになる。つまり、等価的に一枚の
ガラス板の厚さが変化したと見做すことができる。色素
レ−ザLの光路中に設けられた一対の楔形ガラス板1
1、12の厚さが変化すれば、その光路が等価的に変化
したと見做せるから、結像光学系3による結像位置を後
述するごとく調整することができる。
The pair of wedge-shaped glass plates 11 and 12 in which the slopes 11a and 12a are separated by a predetermined distance can be regarded as equivalent to one glass plate. If one of the glass plates 11 is driven in the direction of the arrow by the driving device 13 and the distance between the slopes 11a and 12a changes, the apparent thickness formed by the pair of wedge-shaped glass plates 11 and 12 shown by D in FIG. The size has changed. That is, it can be considered that the thickness of one glass plate is equivalently changed. A pair of wedge-shaped glass plates 1 provided in the optical path of the dye laser L
If the thicknesses of 1 and 12 change, it can be considered that the optical paths have changed equivalently. Therefore, the image forming position by the image forming optical system 3 can be adjusted as described later.

【0015】たとえば、結像光学系3の収差や製作上の
公差などによって図2(a)に示すように増幅器4の色
素セル5において、開口絞り2によって成形された色素
レ−ザLの強度分布が均一なパタ−ンP1 が入射端e側
にずれ、励起レ−ザQの光軸f上と出射端g側に不均一
なパタ−ンP2 が位置した場合には、上記楔形ガラス板
11、12の間隔を変えて光路長を調整すれば、図2
(b)に示すように励起レ−ザQの光軸f上に均一なパ
タ−ンP1 を位置させることができる。それによって、
増幅器4による色素レ−ザLの増幅を効率よく行うこと
ができる。また、光路長を変えるために一方の楔形ガラ
ス板11を駆動しても、光路長制御手段の光軸がずれた
り、一対の楔形ガラス板11、12を通過する色素レ−
ザLの強度が変化することがないから、精密な調整が行
えるばかりか、上記楔形ガラス板11、12を熱損させ
るようなことがない。
For example, the intensity of the dye laser L formed by the aperture stop 2 in the dye cell 5 of the amplifier 4 as shown in FIG. 2A due to the aberration of the imaging optical system 3 and manufacturing tolerances. If the pattern P1 having a uniform distribution is shifted to the entrance end e side and the non-uniform pattern P2 is located on the optical axis f of the excitation laser Q and the exit end g side, the wedge-shaped glass plate If the optical path length is adjusted by changing the distance between 11 and 12,
As shown in (b), a uniform pattern P1 can be positioned on the optical axis f of the excitation laser Q. Thereby,
The amplification of the dye laser L by the amplifier 4 can be efficiently performed. Further, even if one of the wedge-shaped glass plates 11 is driven in order to change the optical path length, the optical axis of the optical path length control means shifts, or the dye layer passing through the pair of wedge-shaped glass plates 11 and 12.
Since the strength of the L does not change, not only precise adjustment can be performed, but also the wedge-shaped glass plates 11 and 12 are not damaged by heat.

【0016】つぎに、色素レ−ザLの光路長を変化させ
ることで、結像位置が調整されることについて説明す
る。上述したように一対の楔形ガラス板11、12がな
す見掛上の厚さをD、屈折率をnとすると、そこを通る
光線(位置r0 、傾きθ0 とする)は下記(1)式の変
換を受ける。
Next, it will be described that the imaging position is adjusted by changing the optical path length of the dye laser L. As described above, assuming that the apparent thickness formed by the pair of wedge-shaped glass plates 11 and 12 is D and the refractive index is n, a ray (position r 0 and inclination θ 0 ) passing therethrough has the following (1). Receive the conversion of the expression.

【0017】[0017]

【数1】 ただし、(r1 、θ1 )は変換後の位置と傾き、n0
空気中の屈折率である。上記(1)式により、下記
(2)式の関係が成り立つ。
[Equation 1] However, (r 1 , θ 1 ) is the position and inclination after conversion, and n 0 is the refractive index in air. From the above equation (1), the relationship of the following equation (2) is established.

【0018】[0018]

【数2】 上記(2)式の関係は(r0 、θ0 )で入射した光線が
(D・n0 /n1 )の距離だけ進行したときと同等であ
る。
[Equation 2] The relation of the above equation (2) is equivalent to that when the light ray incident at (r 0 , θ 0 ) travels a distance of (D · n 0 / n 1 ).

【0019】等価的な距離(D・n0 /n1 )は空間の
実寸法D(ガラス板の厚さ)に比べて{D−(D・n0
/n1 )}、つまりD(1−n0 /n1 )だけ長いた
め、像の転送位置は、(A)の場合と(B)の場合とで
は以下の分だけ移動する。 (A)実施例のごとく一対の楔形ガラス板11、12を
結像光学系3の出射側に配置した場合、その移動量u
は、 u=D(1−n0 /n1 ) …(3)式 である。 (B)上記一対の楔形ガラス板11、12を結像光学系
3の出射側に配置した場合、その移動量u´は、 u´=m2 ・D(1−n0 /n1 ) …(4)式 である。なお、mは結像倍率である。
The equivalent distance (D · n 0 / n 1 ) is compared to the actual size D space (the thickness of the glass plate) {D- (D · n 0
/ N 1 )}, that is, D (1−n 0 / n 1 ) is long, so the image transfer position moves by the following amount between the case of (A) and the case of (B). (A) When a pair of wedge-shaped glass plates 11 and 12 is arranged on the exit side of the imaging optical system 3 as in the embodiment, the movement amount u thereof
Is, u = D (1-n 0 / n 1) ... (3) is a formula. (B) When the pair of wedge-shaped glass plates 11 and 12 are arranged on the exit side of the imaging optical system 3, the movement amount u ′ is u ′ = m 2 · D (1-n 0 / n 1) ... (4) is a formula. In addition, m is an imaging magnification.

【0020】以上のことから、結像位置の移動量は、一
対の楔形ガラス板11、12がなす厚さ寸法Dに比例す
るから、上記楔形ガラス板11を移動させ、上記寸法D
を変えることで、結像位置を任意に、しかも連続的に調
整できる。
From the above, the amount of movement of the image forming position is proportional to the thickness dimension D formed by the pair of wedge-shaped glass plates 11 and 12, so that the wedge-shaped glass plate 11 is moved and the dimension D is changed.
By changing the, the imaging position can be adjusted arbitrarily and continuously.

【0021】なお、この発明はその要旨を逸脱しない範
囲で種々変形可能である。たとえば、上記一実施例では
一対の楔形ガラス板の一方だけを駆動してこれらガラス
板の見掛け上の厚さを変えるようにしたが、両方の楔形
ガラス板を駆動してこれらがなす厚さを変えるように構
成としてもよい。
The present invention can be variously modified without departing from the gist thereof. For example, in the above-described embodiment, only one of the pair of wedge-shaped glass plates is driven to change the apparent thickness of these glass plates, but both wedge-shaped glass plates are driven to change the thickness formed by them. The configuration may be changed.

【0022】また、光路長制御手段としては楔形ガラス
板に限られず、厚さの異なる複数の平行平板を用意して
おき、結像位置に応じて色素レ−ザの光路に挿入する平
行平板の厚さを変えるようにしてもよい。その場合、回
転駆動される回転盤に厚さの異なる複数の平行平板を取
付けておき、上記回転盤を回転制御することで、所定の
厚さの平行平板を光路上に位置させるようにしてもよ
く、要は光路長制御手段が平行平板型であればよい。
The optical path length control means is not limited to the wedge-shaped glass plate, but a plurality of parallel flat plates having different thicknesses are prepared, and the parallel flat plates to be inserted into the optical path of the dye laser according to the image forming position. The thickness may be changed. In that case, a plurality of parallel flat plates having different thicknesses are attached to a rotary disc that is driven to rotate, and the parallel flat plates having a predetermined thickness are positioned on the optical path by controlling the rotation of the rotary disc. Well, the point is that the optical path length control means may be a parallel plate type.

【0023】[0023]

【発明の効果】以上述べたようにこの発明は、色素レ−
ザのパタ−ンを成形する開口絞りと増幅器との間に、結
像光学系および上記色素レ−ザの光路長を可変する光路
長制御手段とを設けるようにした。
As described above, the present invention is a dye dye.
An image forming optical system and an optical path length control means for changing the optical path length of the dye laser are provided between the amplifier and the aperture stop for shaping the pattern of the laser.

【0024】上記光路長制御手段によって光路長を変え
れば、上記結像光学系による結像位置を制御することが
できるから、上記結像光学系の収差や製作上の公差など
によって上記開口絞りで成形された像の転送位置にずれ
が生じても、そのずれを修正することができる。それに
よって、上記増幅器における色素レ−ザの増幅を効率よ
く行うことができる。
By changing the optical path length by the optical path length control means, the image forming position of the image forming optical system can be controlled. Therefore, the aperture stop can be controlled by the aberration of the image forming optical system or manufacturing tolerance. Even if a shift occurs in the transfer position of the formed image, the shift can be corrected. As a result, the dye laser can be efficiently amplified in the amplifier.

【0025】また、光路長制御手段は平行平板型である
から、その厚さを調整して結像位置を変える場合に、従
来のレンズ位置を調整する場合のように、光軸がずれて
結像位置の調整が精密に行えなかったり、レンズが受け
る熱影響が大きく変動してレンズの損傷を招くなどのこ
とがない。
Further, since the optical path length control means is a parallel plate type, when the thickness is adjusted to change the image forming position, the optical axis is shifted as in the conventional lens position adjustment. There is no possibility that the image position cannot be adjusted precisely and that the lens is greatly affected by heat and that the lens is damaged.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明の一実施例の色素レ−ザ装置の構成
図。
FIG. 1 is a configuration diagram of a dye laser apparatus according to an embodiment of the present invention.

【図2】(a)は結像位置を調整する前の増幅器の各位
置における色素レ−ザのパタ−ンの強度分布の説明図、
(b)は結像位置を調整した後の増幅器の各位置におけ
る色素レ−ザのパタ−ンの強度分布の説明図。
FIG. 2 (a) is an explanatory view of the intensity distribution of the dye laser pattern at each position of the amplifier before adjusting the image forming position,
(B) is an explanatory view of the intensity distribution of the dye laser pattern at each position of the amplifier after the image forming position is adjusted.

【図3】従来の色素レ−ザ装置の構成図。FIG. 3 is a block diagram of a conventional dye laser device.

【符号の説明】[Explanation of symbols]

1…色素レ−ザ発振器、2…開口絞り、3…結像光学
系、4…増幅器、11、12…楔形ガラス板(光路長制
御手段)。
1 ... Dye laser oscillator, 2 ... Aperture stop, 3 ... Imaging optical system, 4 ... Amplifier, 11, 12 ... Wedge glass plate (optical path length control means).

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 色素レ−ザを出力する色素レ−ザ発振器
と、この色素レ−ザ発振器から出力された色素レ−ザの
パタ−ンを成形する開口絞りと、この開口絞りによって
成形された色素レ−ザを増幅する増幅器と、上記開口絞
りから出射した色素レ−ザの口径を変えて上記増幅器に
入射させる結像光学系と、上記開口絞りと上記増幅器と
の間に設けられ上記色素レ−ザの光路長を可変する平行
平板型の光路長制御手段とを具備したことを特徴とする
色素レ−ザ装置。
1. A dye laser oscillator for outputting a dye laser, an aperture stop for shaping the pattern of the dye laser output from the dye laser oscillator, and an aperture stop for shaping the pattern. Provided between the aperture stop and the amplifier, an amplifier for amplifying the dye laser, an imaging optical system for changing the aperture of the dye laser emitted from the aperture stop and allowing the dye laser to enter the amplifier. A dye laser device, comprising: a parallel plate type optical path length control means for varying the optical path length of the dye laser.
JP32676892A 1992-12-07 1992-12-07 Dye laser apparatus Pending JPH06177474A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32676892A JPH06177474A (en) 1992-12-07 1992-12-07 Dye laser apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32676892A JPH06177474A (en) 1992-12-07 1992-12-07 Dye laser apparatus

Publications (1)

Publication Number Publication Date
JPH06177474A true JPH06177474A (en) 1994-06-24

Family

ID=18191481

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32676892A Pending JPH06177474A (en) 1992-12-07 1992-12-07 Dye laser apparatus

Country Status (1)

Country Link
JP (1) JPH06177474A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008135631A (en) * 2006-11-29 2008-06-12 Komatsu Ltd Narrow-band laser device for exposure apparatus
JP2008197621A (en) * 2007-01-16 2008-08-28 Anritsu Corp Optical phase-modulation evaluating device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008135631A (en) * 2006-11-29 2008-06-12 Komatsu Ltd Narrow-band laser device for exposure apparatus
JP2008197621A (en) * 2007-01-16 2008-08-28 Anritsu Corp Optical phase-modulation evaluating device
US8160458B2 (en) 2007-01-16 2012-04-17 Anritsu Corporation Optical phase-modulation evaluating device

Similar Documents

Publication Publication Date Title
US7372478B2 (en) Pattern exposure method and pattern exposure apparatus
US8107168B2 (en) Beam splitter apparatus and system
US20080083886A1 (en) Optical system suitable for processing multiphoton curable photoreactive compositions
US7167312B2 (en) Beam shaping optics and module for a diode laser arrangement
US8619370B2 (en) Optical combiner for combining multiple laser beams in a flow cytometer
JPH0428274A (en) Solid-state laser oscillator
JPS61254915A (en) Optical system for adjusting diameter of luminous flux
KR0163404B1 (en) Laser beam profile by 3-d uniformizer using an optical fiber, making method and apparatus of that
JPH06177474A (en) Dye laser apparatus
CN109343162A (en) Laser direct-writing device and its laser direct writing method based on super lens
JP2002139673A (en) Illumination system and coordinate measuring instrument having the illuminator
JP3655086B2 (en) Afocal imaging optical system and laser apparatus
EP3771936A1 (en) Laser unit, laser marker, and laser printing system
JPH1093161A (en) Measuring device for array of laser amplification device
US6853442B2 (en) Projection exposure apparatus and device manufacturing method that change a resonator length of a continuous emission excimer laser
JPH1197340A (en) Exposing optical system, optical processing device, exposing device, and photocoupler
US5991082A (en) Lens system with multiple focal lines
CN221261339U (en) Optical imaging device
JPH1168197A (en) Solid laser device excited by semiconductor laser
CN115166953B (en) 3D printing zooming device and method using axicon
JP2019020731A (en) Apparatus for generating line-shaped intensity distribution of laser beam
CN219590577U (en) Optical imaging device
KR102425179B1 (en) Line beam forming device
JPH1190665A (en) Laser beam machining device
JP2001007427A (en) Sold-state laser light propagation device