JP2001007427A - Sold-state laser light propagation device - Google Patents

Sold-state laser light propagation device

Info

Publication number
JP2001007427A
JP2001007427A JP11172139A JP17213999A JP2001007427A JP 2001007427 A JP2001007427 A JP 2001007427A JP 11172139 A JP11172139 A JP 11172139A JP 17213999 A JP17213999 A JP 17213999A JP 2001007427 A JP2001007427 A JP 2001007427A
Authority
JP
Japan
Prior art keywords
point
focal length
laser light
convex lens
laser
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11172139A
Other languages
Japanese (ja)
Inventor
Fumio Matsuzaka
文夫 松坂
Minoru Uehara
実 上原
Yoshihisa Yamauchi
淑久 山内
Akihiro Nishimi
昭浩 西見
Yuko Kanazawa
祐孝 金澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Priority to JP11172139A priority Critical patent/JP2001007427A/en
Publication of JP2001007427A publication Critical patent/JP2001007427A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To obtain a solid-state laser light propagation device by which a beam diameter and diverging angle that is all the same as those at the outputting point can be precisely transferred to the incident point even if the thermal lens effect varies with oscillation output of the laser light. SOLUTION: In the solid-state laser light propagation device in which the laser light is propagated from an output point toward an incident point, there are provided a first concave lens 7 and a second concave lens 8, respectively, having the same focal length (f) and placed between the output point and the incident point, which are composed in such a way that the first concave lens 7 is placed in a position separated from the output point by a distance equal to the focal length (f), the second concave lens 8 is placed in a position separated from the first concave lens 7 by a distance twice as long as the focal length (f) and the incident point is separated by a distance equal to the focal length (f) from the second concave lens 8.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、固体レーザ光伝搬
装置に関するものである。
The present invention relates to a solid-state laser light propagation device.

【0002】[0002]

【従来の技術】図2は一般的なレーザ発振装置の一例を
示すもので、光共振器1を成す透過鏡2及び反射鏡3の
相互間にレーザ共振部を成す固体レーザ媒質4,4(例
えばNd:YAGレーザロッドなど)を直列に配置し、
該固体レーザ媒質4,4をクリプトンランプなどの図示
しない励起源により励起状態として光を出射させ、その
光を透過鏡2及び反射鏡3の相互間を往復させて前記固
体レーザ媒質4,4に対し入出射を繰り返させることに
より光共振を起こなわせて光のエネルギーを増幅し、透
過鏡2を介しレーザ光を発振し得るようにしてある。
2. Description of the Related Art FIG. 2 shows an example of a general laser oscillation device. Solid laser media 4 and 4 (which form a laser resonator between a transmission mirror 2 and a reflection mirror 3 forming an optical resonator 1) are shown. For example, Nd: YAG laser rod) are arranged in series,
The solid-state laser media 4 and 4 are excited by an excitation source (not shown) such as a krypton lamp to emit light, and the light is reciprocated between the transmission mirror 2 and the reflection mirror 3 to be transmitted to the solid-state laser media 4 and 4. By repeating input and output, optical resonance is caused to amplify light energy, and laser light can be oscillated through the transmission mirror 2.

【0003】更に、レーザ共振部を成す固体レーザ媒質
4,4に対しレーザ増幅部を成す固体レーザ媒質5,5
を同一光軸上に直列に配置し、透過鏡2を介しレーザ共
振部側から発振されたレーザ光を図示しない励起源によ
り励起状態とした各固体レーザ媒質5,5を通すことで
更に増幅し、これにより高出力のレーザ光が得られるよ
うにしてある。
Further, the solid-state laser mediums 5, 5 forming a laser amplifying section are compared with the solid-state laser mediums 4, 4 forming a laser resonator.
Are arranged in series on the same optical axis, and the laser light oscillated from the laser resonator side via the transmission mirror 2 is further amplified by passing through the respective solid-state laser media 5 and 5 which are excited by an excitation source (not shown). Thus, a high output laser beam can be obtained.

【0004】そして、レーザ共振部のレーザ出力の集光
位置(透過鏡2の反出力側表面)を出射点としてレーザ
増幅部側へ向け所要のビーム拡がり角で拡径しながら発
振するレーザ光を、該レーザ増幅部の入側に設定した入
射点に対し前記出射点と同じビーム径を転写して入射さ
せるために、レーザ光の伝搬装置を成す焦点距離fの凸
レンズ6を、幾何光学の結像公式に基づき出射点と入射
点の双方から焦点距離fの二倍の距離を隔てた中間位置
に配置するようにしてある。
Then, the laser beam oscillating while expanding the diameter at a required beam divergence angle toward the laser amplifying section with the laser beam condensing position of the laser output of the laser resonating section (the surface on the opposite side of the transmission mirror 2) as the emission point. In order to transfer the same beam diameter as the emission point to the incidence point set on the entrance side of the laser amplifying section and to make the same incident, the convex lens 6 having the focal length f forming the laser beam propagation device is connected to the geometrical optics. It is arranged at an intermediate position at a distance of twice the focal length f from both the exit point and the entrance point based on the image formula.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、固体レ
ーザにおいては、励起源からの励起光による加熱と冷却
水による冷却の作用で固体レーザ媒質4,4及び5,5
の内部における屈折率分布が変化し、該固体レーザ媒質
4,4及び5,5が凸レンズと同じ作用を成す熱レンズ
効果が起こり、この熱レンズ効果は、レーザ光の発振出
力に応じて変化することになるので、前述した如き単純
に出射点から入射点に対しビーム径を転写するだけの伝
搬光学系では、熱レンズ効果が変わってレーザ光の横モ
ードが変化した際に、ビーム径を転写することができて
もビーム拡がり角を転写することができないという問題
があった。
However, in the solid-state laser, the solid-state laser mediums 4, 4 and 5, 5 are heated by the excitation light from the excitation source and cooled by the cooling water.
Of the solid-state laser medium 4, 4, 5, 5 have the same effect as the convex lens, and this thermal lens effect changes according to the oscillation output of the laser light. Therefore, in the propagation optical system that simply transfers the beam diameter from the emission point to the incidence point as described above, the beam diameter is transferred when the thermal lens effect changes and the transverse mode of the laser beam changes. However, there is a problem that the beam divergence angle cannot be transferred.

【0006】即ち、図2に示す如く、熱レンズ効果が強
く現れている場合に、出射点におけるビーム径が小さく
且つビーム拡がり角が大きいレーザ光が発振されて、幾
何光学の結像公式に基づく1対1の像転写が成されると
しても、図3に示す如く、レーザ光の発振出力が低くて
熱レンズ効果が弱い場合には、出射点におけるビーム径
が大きく且つビーム拡がり角が小さいレーザ光が発振さ
れる結果、レンズ後の集光位置が前方(凸レンズ6側)
に移動するので、ビーム径が同一に維持されていても、
そのビーム拡がり角は著しく相違するものとなってしま
う。
That is, as shown in FIG. 2, when the thermal lens effect appears strongly, a laser beam having a small beam diameter and a large beam divergence angle at the emission point is oscillated, and is based on the imaging formula of geometrical optics. Even if one-to-one image transfer is performed, as shown in FIG. 3, when the oscillation output of the laser beam is low and the thermal lens effect is weak, a laser having a large beam diameter at the emission point and a small beam divergence angle is used. As a result of the light being oscillated, the condensing position after the lens is in front (convex lens 6 side)
, So even if the beam diameter is kept the same,
The beam divergence angles will be significantly different.

【0007】そして、レーザ共振部側では、固体レーザ
媒質4,4の断面全てを光が通っているので、出射点か
ら入射点に対しビーム径だけが転写されてビーム拡がり
角が転写されなかったような場合には、同様の熱レンズ
効果を生じているレーザ増幅部側に入射したレーザ光が
必ず固体レーザ媒質5,5の側面に当たってビーム品質
の低下を招いてしまうことになり、ビーム径を小さくし
たりビームの外側をカットしたりしなければならなくな
って無駄が生じる。
On the laser resonator side, since light passes through all the cross sections of the solid-state laser media 4 and 4, only the beam diameter is transferred from the emission point to the incidence point, and the beam divergence angle is not transferred. In such a case, the laser light incident on the side of the laser amplifying section having the same thermal lens effect always impinges on the side surfaces of the solid-state laser media 5 and 5, causing a decrease in beam quality. It has to be made smaller and the outside of the beam must be cut, causing waste.

【0008】本発明は上述の実情に鑑みてなしたもの
で、レーザ光の発振出力に応じて熱レンズ効果が変化し
ても、出射点と全く同じビーム径及びビーム拡がり角を
入射点に対し正確に転写し得るようにした固体レーザ光
伝搬装置を提供することを目的としている。
The present invention has been made in view of the above-described circumstances, and even if the thermal lens effect changes according to the oscillation output of laser light, the same beam diameter and beam divergence angle as the exit point are set with respect to the incident point. It is an object of the present invention to provide a solid-state laser light propagation device capable of accurately transferring.

【0009】[0009]

【課題を解決するための手段】本発明は、出射点から入
射点に向けレーザ光を伝搬する固体レーザ光伝搬装置で
あって、出射点と入射点との間に配置された互いに焦点
距離の等しい第一の凸レンズと第二の凸レンズとから成
り、出射点から焦点距離分だけ離れた位置に第一の凸レ
ンズが配置され、該第一の凸レンズから二倍の焦点距離
分だけ離れた位置に第二の凸レンズが配置され、該第二
の凸レンズから焦点距離分だけ離れた位置に入射点が配
置されるように構成したことを特徴とするものである。
SUMMARY OF THE INVENTION The present invention relates to a solid-state laser light propagation device for propagating laser light from an emission point to an incidence point. Consisting of an equal first convex lens and a second convex lens, the first convex lens is arranged at a position away from the emission point by a focal length, and at a position away from the first convex lens by a double focal length. A second convex lens is arranged, and an incident point is arranged at a position away from the second convex lens by a focal length.

【0010】従って、本発明では、出射点から第一の凸
レンズまでの距離と焦点距離とを等しくしたことによっ
て、第一の凸レンズのレンズ後焦点距離と等距離の位置
でビーム拡がり角が無限大となり、しかも、この位置を
基点として対称を成すように第二の凸レンズから成る同
一のレンズ系が第一の凸レンズの後方に構築されている
ので、出射点から入射点までの間で全く対称的なビーム
軌跡が形成されることになり、出射点からの距離が焦点
距離の四倍となる入射点にて出射点と全く同じビーム径
及びビーム拡がり角が転写される。
Therefore, in the present invention, by making the distance from the emission point to the first convex lens equal to the focal length, the beam divergence angle is infinite at a position equidistant from the rear focal length of the first convex lens. Further, since the same lens system composed of the second convex lens is constructed behind the first convex lens so as to be symmetrical with respect to this position as a base point, it is completely symmetrical from the exit point to the entrance point. A beam trajectory is formed, and the same beam diameter and beam divergence angle as the exit point are transferred at the entrance point whose distance from the exit point is four times the focal length.

【0011】[0011]

【発明の実施の形態】以下本発明の実施の形態を図面を
参照しつつ説明する。
Embodiments of the present invention will be described below with reference to the drawings.

【0012】図1は本発明を実施する形態の一例を示す
もので、図2と同一の符号を付した部分は同一物を表し
ている。
FIG. 1 shows an example of an embodiment of the present invention, and portions denoted by the same reference numerals as those in FIG. 2 represent the same components.

【0013】本形態例においては、前述した図2におけ
る一枚の凸レンズ6から成る伝搬光学系に換えて、互い
に焦点距離fの等しい第一の凸レンズ7と第二の凸レン
ズ8とを出射点と入射点との間に以下のようにして配置
している。
In this embodiment, the first and second convex lenses 7 and 8 having the same focal length f are replaced by the exit point instead of the above-described propagation optical system comprising one convex lens 6 in FIG. It is arranged as follows between the incident point.

【0014】即ち、出射点から焦点距離f分だけ離れた
位置に第一の凸レンズ7が配置され、該第一の凸レンズ
7から二倍の焦点距離f分だけ離れた位置に第二の凸レ
ンズ8が配置され、該第二の凸レンズ8から焦点距離f
分だけ離れた位置に入射点が配置されるように相互の位
置関係を設定してある。
That is, the first convex lens 7 is arranged at a position away from the emission point by the focal length f, and the second convex lens 8 is placed at a position twice the focal length f from the first convex lens 7. Are disposed, and the focal length f is set from the second convex lens 8.
The mutual positional relationship is set so that the incident points are arranged at positions separated by a distance.

【0015】而して、このようにすれば、出射点から第
一の凸レンズ7までの距離と焦点距離fとを等しくした
ことによって、第一の凸レンズ7のレンズ後焦点距離f
と等距離の位置でビーム拡がり角が無限大となり、しか
も、この位置を基点として対称を成すように第二の凸レ
ンズ8から成る同一のレンズ系が第一の凸レンズ7の後
方に構築されているので、出射点から入射点までの間で
全く対称的なビーム軌跡が形成されることになり、出射
点からの距離が焦点距離fの四倍となる入射点にて出射
点と全く同じビーム径及びビーム拡がり角が転写され
る。
Thus, by making the distance from the emission point to the first convex lens 7 equal to the focal length f, the rear focal length f of the first convex lens 7 can be reduced.
The same lens system consisting of the second convex lens 8 is constructed behind the first convex lens 7 so that the beam divergence angle becomes infinite at a position equidistant from the first convex lens 7 and symmetrical with respect to this position. Therefore, a completely symmetric beam trajectory is formed between the exit point and the entrance point, and the beam diameter at the entrance point where the distance from the exit point is four times the focal length f is exactly the same as the exit point. And the beam divergence angle is transferred.

【0016】即ち、レーザ光のようなガウスビーム(伝
搬方向に垂直な断面内の波動の振幅分布がガウス関数で
表される光ビーム)では、凸レンズを透過した際にレン
ズ後焦点距離でビームの波面の曲率半径が一義的に決ま
るという性質があり、この曲率半径は、レンズ前集光位
置がどの位置にあるかで変化し、特にレンズ前集光位置
と凸レンズとの間の距離が焦点距離と等しい場合に無限
大(平行光)になるということが判っているので、図示
のように、出射点から第一の凸レンズ7までの距離と焦
点距離fとを等しくした場合には、第一の凸レンズ7の
レンズ後焦点距離fと等距離の位置でビーム拡がり角が
無限大となるのである。
That is, in the case of a Gaussian beam such as a laser beam (a light beam whose amplitude distribution of a wave in a cross section perpendicular to the propagation direction is represented by a Gaussian function), when the beam passes through a convex lens, the beam has a focal length after the lens. There is a property that the radius of curvature of the wavefront is uniquely determined, and this radius of curvature changes depending on the position of the focal position before the lens, and the distance between the focal position before the lens and the convex lens is particularly the focal length. Since it is known that infinity (parallel light) is obtained when the focal length f is equal to the distance from the emission point to the first convex lens 7 as shown in FIG. The beam divergence angle becomes infinite at a position equidistant from the rear focal length f of the convex lens 7 of FIG.

【0017】従って、上記形態例によれば、レーザ光の
発振出力に応じて熱レンズ効果が変化しても、出射点と
全く同じビーム径及びビーム拡がり角を入射点に対し正
確に転写することができるので、レーザ共振部側と同様
の熱レンズ効果を生じているレーザ増幅部側に入射した
レーザ光が固体レーザ媒質5,5内を支障なく透過され
ることになり、レーザ光の発振出力と無関係にビーム品
質を良好に且つ安定して維持することができる。
Therefore, according to the above embodiment, even if the thermal lens effect changes in accordance with the oscillation output of the laser beam, the exact same beam diameter and beam divergence angle at the emission point can be accurately transferred to the incidence point. Therefore, the laser beam incident on the laser amplifying unit side, which has the same thermal lens effect as the laser resonator unit side, is transmitted through the solid-state laser media 5, 5 without any trouble, and the oscillation output of the laser beam Irrespective of the above, the beam quality can be maintained well and stably.

【0018】尚、本発明の固体レーザ光伝搬装置は、上
述の形態例にのみ限定されるものではなく、レーザ共振
部からレーザ増幅部へのレーザ光の伝搬以外にも採用し
て良いこと、その他、本発明の要旨を逸脱しない範囲内
において種々変更を加え得ることは勿論である。
It should be noted that the solid-state laser light propagation device of the present invention is not limited to the above-described embodiment, and may be used for other than the propagation of laser light from the laser resonator to the laser amplifier. In addition, it goes without saying that various changes can be made without departing from the spirit of the present invention.

【0019】[0019]

【発明の効果】上記した本発明の固体レーザ光伝搬装置
によれば、レーザ光の発振出力に応じて熱レンズ効果が
変化しても、出射点と全く同じビーム径及びビーム拡が
り角を入射点に対し正確に転写することができるという
優れた効果を奏し得る。
According to the solid-state laser light propagation apparatus of the present invention described above, even if the thermal lens effect changes in accordance with the oscillation output of the laser light, the same beam diameter and beam divergence angle as the emission point are obtained. An excellent effect that accurate transfer can be achieved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明を実施する形態の一例を示す概略図であ
る。
FIG. 1 is a schematic diagram showing an example of an embodiment for implementing the present invention.

【図2】従来例を示す概略図である。FIG. 2 is a schematic diagram showing a conventional example.

【図3】図2の各固体レーザ媒質の熱レンズ効果が弱い
場合を示す概略図である。
3 is a schematic diagram showing a case where the thermal lens effect of each solid-state laser medium of FIG. 2 is weak.

【符号の説明】[Explanation of symbols]

7 第一の凸レンズ 8 第二の凸レンズ f 焦点距離 7 First convex lens 8 Second convex lens f Focal length

───────────────────────────────────────────────────── フロントページの続き (72)発明者 山内 淑久 東京都江東区豊洲三丁目1番15号 石川島 播磨重工業株式会社東二テクニカルセンタ ー内 (72)発明者 西見 昭浩 東京都江東区豊洲三丁目1番15号 石川島 播磨重工業株式会社東二テクニカルセンタ ー内 (72)発明者 金澤 祐孝 東京都江東区豊洲三丁目1番15号 石川島 播磨重工業株式会社東二テクニカルセンタ ー内 Fターム(参考) 5F072 AB02 AK01 JJ05 KK01 KK30 MM20 PP01 YY17  ──────────────────────────────────────────────────続 き Continued on front page (72) Inventor Yoshihisa Yamauchi 3-1-1-15 Toyosu, Koto-ku, Tokyo Ishikawajima-Harima Heavy Industries Co., Ltd. Toji Technical Center (72) Inventor Akihiro Nishimi Toyosu, Koto-ku, Tokyo No. 1-115, Ishikawajima-Harima Heavy Industries, Ltd., Toji Technical Center (72) Inventor Yutaka Kanazawa 3-1-1, Toyosu, Koto-ku, Tokyo Ishikawajima-Harima Heavy Industries, Ltd. ) 5F072 AB02 AK01 JJ05 KK01 KK30 MM20 PP01 YY17

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 出射点から入射点に向けレーザ光を伝搬
する固体レーザ光伝搬装置であって、出射点と入射点と
の間に配置された互いに焦点距離の等しい第一の凸レン
ズと第二の凸レンズとから成り、出射点から焦点距離分
だけ離れた位置に第一の凸レンズが配置され、該第一の
凸レンズから二倍の焦点距離分だけ離れた位置に第二の
凸レンズが配置され、該第二の凸レンズから焦点距離分
だけ離れた位置に入射点が配置されるように構成したこ
とを特徴とする固体レーザ光伝搬装置。
1. A solid-state laser light propagation device for propagating laser light from an emission point to an incidence point, comprising: a first convex lens disposed between the emission point and the incidence point and having the same focal length and a second convex lens. The first convex lens is disposed at a position away from the emission point by the focal length, and the second convex lens is disposed at a position away from the first convex lens by a double focal length, A solid-state laser light propagation device, wherein an incident point is arranged at a position apart from the second convex lens by a focal length.
JP11172139A 1999-06-18 1999-06-18 Sold-state laser light propagation device Pending JP2001007427A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11172139A JP2001007427A (en) 1999-06-18 1999-06-18 Sold-state laser light propagation device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11172139A JP2001007427A (en) 1999-06-18 1999-06-18 Sold-state laser light propagation device

Publications (1)

Publication Number Publication Date
JP2001007427A true JP2001007427A (en) 2001-01-12

Family

ID=15936299

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11172139A Pending JP2001007427A (en) 1999-06-18 1999-06-18 Sold-state laser light propagation device

Country Status (1)

Country Link
JP (1) JP2001007427A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002091533A1 (en) * 2001-05-07 2002-11-14 Mitsubishi Denki Kabushiki Kaisha Laser device, method of exciting the same, and laser processing machine
JP2006179932A (en) * 2004-12-23 2006-07-06 Trumpf Laser Gmbh & Co Kg Laser amplifier with multiple laser-active media and laser resonator
JP2008028316A (en) * 2006-07-25 2008-02-07 Ihi Corp Transmission optical system
JP2008135631A (en) * 2006-11-29 2008-06-12 Komatsu Ltd Narrow-band laser device for exposure apparatus
JP7214056B1 (en) * 2022-04-21 2023-01-27 三菱電機株式会社 Laser device and laser processing machine

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002091533A1 (en) * 2001-05-07 2002-11-14 Mitsubishi Denki Kabushiki Kaisha Laser device, method of exciting the same, and laser processing machine
CN1323468C (en) * 2001-05-07 2007-06-27 三菱电机株式会社 Laser device, method of exciting the same, and laser processing machine
US7280577B2 (en) * 2001-05-07 2007-10-09 Mitsubishi Denki Kabushiki Kaisha Pumping method for laser equipment
CN100377450C (en) * 2001-05-07 2008-03-26 三菱电机株式会社 Laser device, method of exciting the same, and laser processing machine
DE10296788B4 (en) * 2001-05-07 2011-03-31 Mitsubishi Denki K.K. Laser pump method
JP2006179932A (en) * 2004-12-23 2006-07-06 Trumpf Laser Gmbh & Co Kg Laser amplifier with multiple laser-active media and laser resonator
JP2008028316A (en) * 2006-07-25 2008-02-07 Ihi Corp Transmission optical system
JP2008135631A (en) * 2006-11-29 2008-06-12 Komatsu Ltd Narrow-band laser device for exposure apparatus
JP7214056B1 (en) * 2022-04-21 2023-01-27 三菱電機株式会社 Laser device and laser processing machine
WO2023203711A1 (en) * 2022-04-21 2023-10-26 三菱電機株式会社 Laser apparatus and laser processing machine

Similar Documents

Publication Publication Date Title
US5125001A (en) Solid laser device
KR101750821B1 (en) Laser Amplifier
JP2001007427A (en) Sold-state laser light propagation device
JP3621623B2 (en) Laser resonator
JP2001007421A (en) Solid-state laser light propagation device
JP2008028316A (en) Transmission optical system
JP2001094177A (en) Solid-state laser beam projector
JP3655086B2 (en) Afocal imaging optical system and laser apparatus
JP2725648B2 (en) Solid-state laser excitation method and solid-state laser device
JPH03261191A (en) Laser amplifying system
JP2002244078A (en) Laser optical system and laser beam machine
JP2550693B2 (en) Solid-state laser device
JP5831896B2 (en) Optical vortex laser beam oscillation device and oscillation method
JP2014229813A (en) Laser amplifier and laser oscillator
JP2002033534A (en) Laser oscillator
JPH10294511A (en) Solid-state laser resonator
JP2940050B2 (en) Laser equipment
JP3383217B2 (en) Solid state laser device
JPH0637368A (en) Laser and beam expander
JP2005286144A (en) Solid state laser device
WO2007032066A1 (en) Rod type solid state laser
JP2001015837A (en) Solid state laser oscillator
JP2002252398A (en) Laser
JP2001127360A (en) Solid laser oscillator
JPH11220194A (en) Semiconductor laser pumped solid-state laser

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060608

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080724

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080729

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080912

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090203