JP2001007421A - Solid-state laser light propagation device - Google Patents

Solid-state laser light propagation device

Info

Publication number
JP2001007421A
JP2001007421A JP11172140A JP17214099A JP2001007421A JP 2001007421 A JP2001007421 A JP 2001007421A JP 11172140 A JP11172140 A JP 11172140A JP 17214099 A JP17214099 A JP 17214099A JP 2001007421 A JP2001007421 A JP 2001007421A
Authority
JP
Japan
Prior art keywords
concave mirror
focal length
point
laser light
solid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11172140A
Other languages
Japanese (ja)
Inventor
Fumio Matsuzaka
文夫 松坂
Minoru Uehara
実 上原
Yoshihisa Yamauchi
淑久 山内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Priority to JP11172140A priority Critical patent/JP2001007421A/en
Publication of JP2001007421A publication Critical patent/JP2001007421A/en
Pending legal-status Critical Current

Links

Landscapes

  • Lasers (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a solid-state laser light propagation device by which a beam diameter and diverging angle that is all the same as those at the output point can be precisely transferred to the incident point even if the thermal lens effect varies with oscillation output of the laser light. SOLUTION: Regarding the solid-state laser light propagation device in which the laser light outputted from the output point returns in a U-shape through a pair of returning mirrors is inputted to an incident point, each of the returning mirrors is composed of a first concave mirror 7 and a second concave mirror 8 respectively having the same focal length (f), the first concave mirror 7 is placed in a position separated from the output point by a distance equal to the focal length (f) and the second concave mirror 8 is placed in a position separated from the incident point by a distance equal to the focal length (f) in such a way that the space between the first and second concave mirrors 7 and 8 is set twice as long as the focal length (f).

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、固体レーザ光伝搬
装置に関するものである。
The present invention relates to a solid-state laser light propagation device.

【0002】[0002]

【従来の技術】図2は一般的なレーザ発振装置の一例を
示すもので、光共振器1を成す透過鏡2及び反射鏡3の
相互間にレーザ共振部を成す固体レーザ媒質4,4(例
えばNd:YAGレーザロッドなど)を直列に配置し、
該固体レーザ媒質4,4をクリプトンランプなどの図示
しない励起源により励起状態として光を出射させ、その
光を透過鏡2及び反射鏡3の相互間を往復させて前記固
体レーザ媒質4,4に対し入出射を繰り返させることに
より光共振を起こなわせて光のエネルギーを増幅し、透
過鏡2を介しレーザ光を発振し得るようにしてある。
2. Description of the Related Art FIG. 2 shows an example of a general laser oscillation device. Solid laser media 4 and 4 (which form a laser resonator between a transmission mirror 2 and a reflection mirror 3 forming an optical resonator 1) are shown. For example, Nd: YAG laser rod) are arranged in series,
The solid-state laser media 4 and 4 are excited by an excitation source (not shown) such as a krypton lamp to emit light, and the light is reciprocated between the transmission mirror 2 and the reflection mirror 3 to be transmitted to the solid-state laser media 4 and 4. By repeating input and output, optical resonance is caused to amplify light energy, and laser light can be oscillated through the transmission mirror 2.

【0003】更に、レーザ共振部を成す固体レーザ媒質
4,4に対しレーザ増幅部を成す固体レーザ媒質5,5
を同一光軸上に直列に配置し、透過鏡2を介しレーザ共
振部側から発振されたレーザ光を図示しない励起源によ
り励起状態とした各固体レーザ媒質5,5を通すことで
更に増幅し、これにより高出力のレーザ光が得られるよ
うにしてある。
Further, the solid-state laser mediums 5, 5 forming a laser amplifying section are compared with the solid-state laser mediums 4, 4 forming a laser resonator.
Are arranged in series on the same optical axis, and the laser light oscillated from the laser resonator side via the transmission mirror 2 is further amplified by passing through the respective solid-state laser media 5 and 5 which are excited by an excitation source (not shown). Thus, a high output laser beam can be obtained.

【0004】そして、レーザ共振部のレーザ出力の集光
位置(透過鏡2の反出力側表面)を出射点としてレーザ
増幅部側へ向け所要のビーム拡がり角で拡径しながら発
振するレーザ光を、該レーザ増幅部の入側に設定した入
射点に対し前記出射点と同じビーム径を転写して入射さ
せるために、レーザ光の伝搬装置を成す焦点距離fの凸
レンズ6を、幾何光学の結像公式に基づき出射点と入射
点の双方から焦点距離fの二倍の距離を隔てた中間位置
に配置するようにしてある。
Then, the laser beam oscillating while expanding the diameter at a required beam divergence angle toward the laser amplifying section with the laser beam condensing position of the laser output of the laser resonating section (the surface on the opposite side of the transmission mirror 2) as the emission point. In order to transfer the same beam diameter as the emission point to the incidence point set on the entrance side of the laser amplifying section and to make the same incident, the convex lens 6 having the focal length f forming the laser beam propagation device is connected to the geometrical optics. It is arranged at an intermediate position at a distance of twice the focal length f from both the exit point and the entrance point based on the image formula.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、固体レ
ーザにおいては、励起源からの励起光による加熱と冷却
水による冷却の作用で固体レーザ媒質4,4及び5,5
の内部における屈折率分布が変化し、該固体レーザ媒質
4,4及び5,5が凸レンズと同じ作用を成す熱レンズ
効果が起こり、この熱レンズ効果は、レーザ光の発振出
力に応じて変化することになるので、前述した如き単純
に出射点から入射点に対しビーム径を転写するだけの伝
搬光学系では、熱レンズ効果が変わってレーザ光の横モ
ードが変化した際に、ビーム径を転写することができて
もビーム拡がり角を転写することができないという問題
があった。
However, in the solid-state laser, the solid-state laser mediums 4, 4 and 5, 5 are heated by the excitation light from the excitation source and cooled by the cooling water.
Of the solid-state laser medium 4, 4, 5, 5 have the same effect as the convex lens, and this thermal lens effect changes according to the oscillation output of the laser light. Therefore, in the propagation optical system that simply transfers the beam diameter from the emission point to the incidence point as described above, the beam diameter is transferred when the thermal lens effect changes and the transverse mode of the laser beam changes. However, there is a problem that the beam divergence angle cannot be transferred.

【0006】即ち、図2に示す如く、熱レンズ効果が強
く現れている場合に、出射点におけるビーム径が小さく
且つビーム拡がり角が大きいレーザ光が発振されて、幾
何光学の結像公式に基づく1対1の像転写が成されると
しても、図3に示す如く、レーザ光の発振出力が低くて
熱レンズ効果が弱い場合には、出射点におけるビーム径
が大きく且つビーム拡がり角が小さいレーザ光が発振さ
れる結果、レンズ後の集光位置が前方(凸レンズ6側)
に移動するので、ビーム径が同一に維持されていても、
そのビーム拡がり角は著しく相違するものとなってしま
う。
That is, as shown in FIG. 2, when the thermal lens effect appears strongly, a laser beam having a small beam diameter and a large beam divergence angle at the emission point is oscillated, and is based on the imaging formula of geometrical optics. Even if one-to-one image transfer is performed, as shown in FIG. 3, when the oscillation output of the laser beam is low and the thermal lens effect is weak, a laser having a large beam diameter at the emission point and a small beam divergence angle is used. As a result of the light being oscillated, the condensing position after the lens is in front (convex lens 6 side)
, So even if the beam diameter is kept the same,
The beam divergence angles will be significantly different.

【0007】そして、レーザ共振部側では、固体レーザ
媒質4,4の断面全てを光が通っているので、出射点か
ら入射点に対しビーム径だけが転写されてビーム拡がり
角が転写されなかったような場合には、同様の熱レンズ
効果を生じているレーザ増幅部側に入射したレーザ光が
必ず固体レーザ媒質5,5の側面に当たってビーム品質
の低下を招いてしまうことになり、ビーム径を小さくし
たりビームの外側をカットしたりしなければならなくな
って無駄が生じる。
On the laser resonator side, since light passes through all the cross sections of the solid-state laser media 4 and 4, only the beam diameter is transferred from the emission point to the incidence point, and the beam divergence angle is not transferred. In such a case, the laser light incident on the side of the laser amplifying section having the same thermal lens effect always impinges on the side surfaces of the solid-state laser media 5 and 5, causing a decrease in beam quality. It has to be made smaller and the outside of the beam must be cut, causing waste.

【0008】本発明は上述の実情に鑑みてなしたもの
で、レーザ光の発振出力に応じて熱レンズ効果が変化し
ても、出射点と全く同じビーム径及びビーム拡がり角を
入射点に対し正確に転写し得るようにした固体レーザ光
伝搬装置を提供することを目的としている。
The present invention has been made in view of the above-described circumstances, and even if the thermal lens effect changes according to the oscillation output of laser light, the same beam diameter and beam divergence angle as the exit point are set with respect to the incident point. It is an object of the present invention to provide a solid-state laser light propagation device capable of accurately transferring.

【0009】[0009]

【課題を解決するための手段】本発明は、出射点から出
射したレーザ光を一対の折り返しミラーを介しコの字状
に折り返して入射点に入射させるようにした固体レーザ
光伝搬装置であって、前記各折り返しミラーの夫々を互
いに焦点距離の等しい第一の凹面鏡と第二の凹面鏡とに
より構成し、出射点から焦点距離分だけ離れた位置に第
一の凹面鏡を、入射点から焦点距離分だけ離れた位置に
第二の凹面鏡を夫々配置し、且つ第一の凹面鏡と第二の
凹面鏡との間隔を相互の焦点距離の二倍に設定して配置
したことを特徴とするものである。
SUMMARY OF THE INVENTION The present invention relates to a solid-state laser light propagation device wherein a laser beam emitted from an emission point is folded in a U-shape through a pair of folding mirrors and is incident on the incidence point. Each of the folding mirrors is composed of a first concave mirror and a second concave mirror having the same focal length from each other, and the first concave mirror is located at a position away from the exit point by the focal length, and the focal length is equal to the focal length from the entrance point. The second concave mirrors are respectively arranged at positions apart from each other, and the distance between the first concave mirror and the second concave mirror is set to be twice the focal length of each other.

【0010】従って、本発明では、出射点から第一の凹
面鏡までの距離と焦点距離とを等しくしたことによっ
て、第一の凹面鏡の反射後焦点距離と等距離の位置でビ
ーム拡がり角が無限大となり、しかも、この位置を基点
として対称を成すように第二の凹面鏡から成る同一の光
学系が第一の凹面鏡の後方に構築されているので、出射
点から入射点までの間で全く対称的なビーム軌跡が形成
されることになり、出射点からの距離が焦点距離の四倍
となる入射点にて出射点と全く同じビーム径及びビーム
拡がり角が転写される。
Therefore, in the present invention, by making the focal length equal to the distance from the emission point to the first concave mirror, the beam divergence angle is infinite at a position equidistant from the focal length after reflection of the first concave mirror. Moreover, since the same optical system composed of the second concave mirror is constructed behind the first concave mirror so as to be symmetrical with respect to this position as a base point, it is completely symmetrical from the exit point to the incident point. A beam trajectory is formed, and the same beam diameter and beam divergence angle as the exit point are transferred at the entrance point where the distance from the exit point is four times the focal length.

【0011】[0011]

【発明の実施の形態】以下本発明の実施の形態を図面を
参照しつつ説明する。
Embodiments of the present invention will be described below with reference to the drawings.

【0012】図1は本発明を実施する形態の一例を示す
もので、図2と同一の符号を付した部分は同一物を表わ
している。
FIG. 1 shows an example of an embodiment of the present invention, and the portions denoted by the same reference numerals as those in FIG. 2 represent the same components.

【0013】本形態例においては、レーザ共振部を成す
固体レーザ媒質4,4とレーザ増幅部を成す固体レーザ
媒質5,5とを並列に配置し、レーザ共振部のレーザ出
力の集光位置(透過鏡2の反出力側表面)を出射点とし
て出射したレーザ光を一対の折り返しミラーを介しコの
字状に折り返してレーザ増幅部の入側に設定した入射点
に対し入射させるようになっており、前記各折り返しミ
ラーの夫々を互いに焦点距離fの等しい第一の凹面鏡7
と第二の凹面鏡8とにより構成している。
In this embodiment, the solid-state laser media 4, 4 forming the laser resonator and the solid-state laser media 5, 5 forming the laser amplifier are arranged in parallel, and the laser output focusing position ( The laser light emitted from the transmission mirror 2 at the output side (the surface opposite to the output side) is turned into a U-shape via a pair of turning mirrors, and is incident on the incident point set on the input side of the laser amplification unit. And each of the folding mirrors is provided with a first concave mirror 7 having the same focal length f.
And the second concave mirror 8.

【0014】そして、第一の凹面鏡7及び第二の凹面鏡
8の相互の位置関係については、出射点から焦点距離f
分だけ離れた位置に第一の凹面鏡7を、入射点から焦点
距離f分だけ離れた位置に第二の凹面鏡8を夫々配置
し、且つ第一の凹面鏡7と第二の凹面鏡8との間隔を相
互の焦点距離fの二倍に設定して配置するように設定し
ている。
The relative positions of the first concave mirror 7 and the second concave mirror 8 are determined with respect to the focal length f from the emission point.
A first concave mirror 7 at a position separated by a distance, and a second concave mirror 8 at a position separated by a focal length f from an incident point, and a distance between the first concave mirror 7 and the second concave mirror 8. Is set to be twice the mutual focal length f.

【0015】ここで、第一の凹面鏡7及び第二の凹面鏡
8につき付言すると、これらの凹面鏡7,8には、例え
ば球面鏡や放物面鏡を採用することができるが、放物面
鏡を採用した方が球面収差を低減できるという利点があ
る。
Here, as to the first concave mirror 7 and the second concave mirror 8, it is possible to use, for example, a spherical mirror or a parabolic mirror as the concave mirrors 7, 8, but a parabolic mirror is used. Adopting this method has the advantage that spherical aberration can be reduced.

【0016】而して、このようにすれば、出射点から第
一の凹面鏡7までの距離と焦点距離fとを等しくしたこ
とによって、第一の凹面鏡7の反射後焦点距離fと等距
離の位置でビーム拡がり角が無限大となり、しかも、こ
の位置を基点として対称を成すように第二の凹面鏡8か
ら成る同一の光学系が第一の凹面鏡7の後方に構築され
ているので、出射点から入射点までの間で全く対称的な
ビーム軌跡が形成されることになり、出射点からの距離
が焦点距離fの四倍となる入射点にて出射点と全く同じ
ビーム径及びビーム拡がり角が転写される。
Thus, by making the distance from the emission point to the first concave mirror 7 equal to the focal length f, the focal length f after reflection of the first concave mirror 7 is equal to the focal length f. Since the beam divergence angle becomes infinite at the position, and the same optical system composed of the second concave mirror 8 is constructed behind the first concave mirror 7 so as to be symmetrical with respect to this position, the emission point A completely symmetrical beam trajectory is formed between the point of incidence and the point of incidence, and at the point of incidence where the distance from the point of emission is four times the focal length f, the same beam diameter and beam divergence angle as the point of emission. Is transferred.

【0017】即ち、レーザ光のようなガウスビーム(伝
搬方向に垂直な断面内の波動の振幅分布がガウス関数で
表される光ビーム)では、凹面鏡を反射した際に反射後
焦点距離でビームの波面の曲率半径が一義的に決まると
いう性質があり、この曲率半径は、反射前集光位置がど
の位置にあるかで変化し、特に反射前集光位置と凹面鏡
との間の距離が焦点距離と等しい場合に無限大(平行
光)になるということが判っているので、図示のよう
に、出射点から第一の凹面鏡7までの距離と焦点距離f
とを等しくした場合には、第一の凹面鏡7の反射後焦点
距離fと等距離の位置でビーム拡がり角が無限大となる
のである。
That is, in the case of a Gaussian beam such as a laser beam (a light beam whose amplitude distribution of a wave in a cross section perpendicular to the propagation direction is represented by a Gaussian function), when the beam is reflected by a concave mirror, the beam is reflected at a focal length after reflection. There is a characteristic that the radius of curvature of the wavefront is uniquely determined, and this radius of curvature changes depending on the position of the converging position before reflection, and the distance between the converging position before reflection and the concave mirror is particularly the focal length. Since it is known that infinity (parallel light) is obtained when the distance is equal to the distance, the distance from the emission point to the first concave mirror 7 and the focal length f are
Is equal to the focal length f of the first concave mirror 7, the beam divergence angle becomes infinite at a position equidistant from the focal length f.

【0018】従って、上記形態例によれば、レーザ光の
発振出力に応じて熱レンズ効果が変化しても、出射点と
全く同じビーム径及びビーム拡がり角を入射点に対し正
確に転写することができるので、レーザ共振部側と同様
の熱レンズ効果を生じているレーザ増幅部側に入射した
レーザ光が固体レーザ媒質5,5内を支障なく透過され
ることになり、レーザ光の発振出力と無関係にビーム品
質を良好に且つ安定して維持することができる。
Therefore, according to the above embodiment, even if the thermal lens effect changes according to the oscillation output of the laser beam, the exact same beam diameter and beam divergence angle as the emission point can be accurately transferred to the incidence point. Therefore, the laser beam incident on the laser amplifying unit side, which has the same thermal lens effect as the laser resonator unit side, is transmitted through the solid-state laser media 5, 5 without any trouble, and the oscillation output of the laser beam Irrespective of this, the beam quality can be maintained satisfactorily and stably.

【0019】また、レーザ共振部を成す固体レーザ媒質
4,4とレーザ増幅部を成す固体レーザ媒質5,5とを
並列に配置することができるので、レーザ設備全体の配
置構成を大幅にコンパクト化することができる。
Further, since the solid-state laser media 4, 4 forming the laser resonator and the solid-state laser media 5, 5 forming the laser amplifying unit can be arranged in parallel, the arrangement of the entire laser equipment can be made much more compact. can do.

【0020】更に、出射点から入射点に向けレーザ光を
伝搬するに際し、透過による損失の大きなレンズ系を用
いずに一対の凹面鏡7,8による反射のみを利用するよ
うにしているので、レンズを用いた光学系よりもレーザ
光の伝搬損失を大幅に低減することができる。
Further, when the laser light is propagated from the emission point to the incidence point, only the reflection by the pair of concave mirrors 7 and 8 is used without using a lens system having a large loss due to transmission. The propagation loss of laser light can be significantly reduced as compared with the used optical system.

【0021】尚、本発明の固体レーザ光伝搬装置は、上
述の形態例にのみ限定されるものではなく、レーザ共振
部からレーザ増幅部へのレーザ光の伝搬以外にも採用し
て良いこと、その他、本発明の要旨を逸脱しない範囲内
において種々変更を加え得ることは勿論である。
It should be noted that the solid-state laser light propagation device of the present invention is not limited to the above-described embodiment, and may be used for other than propagation of laser light from the laser resonance section to the laser amplification section. In addition, it goes without saying that various changes can be made without departing from the spirit of the present invention.

【0022】[0022]

【発明の効果】上記した本発明の固体レーザ光伝搬装置
によれば、レーザ光の発振出力に応じて熱レンズ効果が
変化しても、出射点と全く同じビーム径及びビーム拡が
り角を入射点に対し正確に転写することができ、また、
出射点と入射点とを並列な配置としてレーザ設備全体の
配置構成を大幅にコンパクト化することができ、更に
は、出射点から入射点に向けレーザ光を伝搬するに際
し、透過による損失の大きなレンズ系を用いずに一対の
凹面鏡による反射のみを利用するようにしているので、
レンズを用いた光学系よりもレーザ光の伝搬損失を大幅
に低減することができるという優れた効果を奏し得る。
According to the solid-state laser light propagation apparatus of the present invention described above, even if the thermal lens effect changes in accordance with the oscillation output of the laser light, the same beam diameter and beam divergence angle as the emission point are obtained. Can be accurately transferred to
By arranging the emission point and the incidence point in parallel, the arrangement of the entire laser equipment can be significantly reduced in size, and further, when transmitting the laser light from the emission point to the incidence point, a lens having a large loss due to transmission. Since only the reflection by a pair of concave mirrors is used without using a system,
An excellent effect that the propagation loss of laser light can be greatly reduced as compared with an optical system using a lens can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明を実施する形態の一例を示す概略図であ
る。
FIG. 1 is a schematic diagram showing an example of an embodiment for implementing the present invention.

【図2】従来例を示す概略図である。FIG. 2 is a schematic diagram showing a conventional example.

【図3】図2の各固体レーザ媒質の熱レンズ効果が弱い
場合を示す概略図である。
3 is a schematic diagram showing a case where the thermal lens effect of each solid-state laser medium of FIG. 2 is weak.

【符号の説明】[Explanation of symbols]

7 第一の凹面鏡 8 第二の凹面鏡 f 焦点距離 7 First concave mirror 8 Second concave mirror f Focal length

───────────────────────────────────────────────────── フロントページの続き (72)発明者 山内 淑久 東京都江東区豊洲三丁目1番15号 石川島 播磨重工業株式会社東二テクニカルセンタ ー内 Fターム(参考) 5F072 JJ01 JJ20 KK05  ────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Yoshihisa Yamauchi 3-1-1, Toyosu, Koto-ku, Tokyo

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 出射点から出射したレーザ光を一対の折
り返しミラーを介しコの字状に折り返して入射点に入射
させるようにした固体レーザ光伝搬装置であって、前記
各折り返しミラーの夫々を互いに焦点距離の等しい第一
の凹面鏡と第二の凹面鏡とにより構成し、出射点から焦
点距離分だけ離れた位置に第一の凹面鏡を、入射点から
焦点距離分だけ離れた位置に第二の凹面鏡を夫々配置
し、且つ第一の凹面鏡と第二の凹面鏡との間隔を相互の
焦点距離の二倍に設定して配置したことを特徴とする固
体レーザ光伝搬装置。
1. A solid-state laser light propagation device in which laser light emitted from an emission point is folded in a U-shape through a pair of folding mirrors to be incident on an incident point, wherein each of said folding mirrors is A first concave mirror and a second concave mirror having the same focal length from each other, the first concave mirror at a position away from the exit point by the focal length, the second concave mirror at a position away from the entrance point by the focal length. A solid-state laser light propagation device, wherein concave mirrors are arranged, and an interval between the first concave mirror and the second concave mirror is set to twice the mutual focal length.
JP11172140A 1999-06-18 1999-06-18 Solid-state laser light propagation device Pending JP2001007421A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11172140A JP2001007421A (en) 1999-06-18 1999-06-18 Solid-state laser light propagation device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11172140A JP2001007421A (en) 1999-06-18 1999-06-18 Solid-state laser light propagation device

Publications (1)

Publication Number Publication Date
JP2001007421A true JP2001007421A (en) 2001-01-12

Family

ID=15936317

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11172140A Pending JP2001007421A (en) 1999-06-18 1999-06-18 Solid-state laser light propagation device

Country Status (1)

Country Link
JP (1) JP2001007421A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006179932A (en) * 2004-12-23 2006-07-06 Trumpf Laser Gmbh & Co Kg Laser amplifier with multiple laser-active media and laser resonator
US7336690B2 (en) 2004-03-30 2008-02-26 Mitsubishi Denki Kabushiki Kaisha Solid-state laser system
JP2010186990A (en) * 2009-01-14 2010-08-26 Komatsu Ltd Laser light amplifier and laser apparatus using the same
JP2011216850A (en) * 2010-03-15 2011-10-27 Komatsu Ltd Regenerative amplifier, laser apparatus, and extreme ultraviolet light generation system

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7336690B2 (en) 2004-03-30 2008-02-26 Mitsubishi Denki Kabushiki Kaisha Solid-state laser system
JP2006179932A (en) * 2004-12-23 2006-07-06 Trumpf Laser Gmbh & Co Kg Laser amplifier with multiple laser-active media and laser resonator
JP2010186990A (en) * 2009-01-14 2010-08-26 Komatsu Ltd Laser light amplifier and laser apparatus using the same
US9099836B2 (en) 2009-01-14 2015-08-04 Gigaphoton Inc. Laser beam amplifier and laser apparatus using the same
JP2011216850A (en) * 2010-03-15 2011-10-27 Komatsu Ltd Regenerative amplifier, laser apparatus, and extreme ultraviolet light generation system
US9153927B2 (en) 2010-03-15 2015-10-06 Gigaphoton Inc. Regenerative amplifier, laser apparatus, and extreme ultraviolet light generation system

Similar Documents

Publication Publication Date Title
JP3265173B2 (en) Solid state laser device
JPH09509010A (en) A device for minimizing laser beam depolarization due to thermally induced birefringence.
KR101750821B1 (en) Laser Amplifier
JP2003502850A (en) Solid state laser
JP3621623B2 (en) Laser resonator
JP2001007421A (en) Solid-state laser light propagation device
JP2001007427A (en) Sold-state laser light propagation device
EP0957546A2 (en) solid-state laser device and solid-state laser amplifier provided therewith
JP2008028316A (en) Transmission optical system
JP3655086B2 (en) Afocal imaging optical system and laser apparatus
KR100697915B1 (en) Solid-state laser system
JP2725648B2 (en) Solid-state laser excitation method and solid-state laser device
JP2001094177A (en) Solid-state laser beam projector
JPH03261191A (en) Laser amplifying system
JP5831896B2 (en) Optical vortex laser beam oscillation device and oscillation method
JP2550693B2 (en) Solid-state laser device
JP3383217B2 (en) Solid state laser device
JP2940050B2 (en) Laser equipment
WO2007032066A1 (en) Rod type solid state laser
JP2002252398A (en) Laser
JP2002033534A (en) Laser oscillator
JP2003115627A (en) Laser amplifying device
JPH05297253A (en) Coupled lens device
JP2005045174A (en) Laser resonator and method for assembling the same
JP4863301B2 (en) Laser equipment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060608

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080724

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080729

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080912

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20080912

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090203