JPH06177006A - Projection aligner - Google Patents

Projection aligner

Info

Publication number
JPH06177006A
JPH06177006A JP4343539A JP34353992A JPH06177006A JP H06177006 A JPH06177006 A JP H06177006A JP 4343539 A JP4343539 A JP 4343539A JP 34353992 A JP34353992 A JP 34353992A JP H06177006 A JPH06177006 A JP H06177006A
Authority
JP
Japan
Prior art keywords
transmittance
light
pupil filter
adjusting film
projection lens
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4343539A
Other languages
Japanese (ja)
Other versions
JP3180133B2 (en
Inventor
Toshiyuki Horiuchi
敏行 堀内
Katsuyuki Harada
勝征 原田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP34353992A priority Critical patent/JP3180133B2/en
Publication of JPH06177006A publication Critical patent/JPH06177006A/en
Application granted granted Critical
Publication of JP3180133B2 publication Critical patent/JP3180133B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70216Mask projection systems
    • G03F7/7025Size or form of projection system aperture, e.g. aperture stops, diaphragms or pupil obscuration; Control thereof
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70216Mask projection systems
    • G03F7/70308Optical correction elements, filters or phase plates for manipulating imaging light, e.g. intensity, wavelength, polarisation, phase or image shift

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
  • Optical Elements Other Than Lenses (AREA)
  • Projection-Type Copiers In General (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)

Abstract

PURPOSE:To prevent a pupil filter from scattering, peeling-off, etc., due to the deterioration of transmissivity adjusting film and protect a projection lens against adhering of fine scattering particles or peeled-off pieces by forming a pupil filter fitted on an aperture diaphragm of a projection lens by using two plane plates having light-transmissivity in a manner to hold it in-between. CONSTITUTION:A plane plate 22 made of glass with light-transmissivity is provided with a transmissivity adjusting film 23 and a light-shielding film 24 on the upper surface thereof, and further a plane plate 25 having different transmissivity is placed on the plate 22 to cover the films 23 and 24, thereby constituting a pupil filter 30. Then such a pupil filter 30 is fitted on the aperture diaphragm of projection lens in a projection aligner where a pattern on a master drawing board is projection-exposed and transferred on a board to be exposed by means of the projection lens. Thus, even if the transmissivity adjusting film is deteriorated due to accumulated exposure, its scattering, peeling-off, etc., can be prevented.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、原図基板上の半導体集
積回路等の微細パターンを、半導体等の被露光基板上に
投影露光して転写する投影露光装置に関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a projection exposure apparatus for projecting and transferring a fine pattern of a semiconductor integrated circuit or the like on an original substrate onto a substrate to be exposed such as a semiconductor.

【0002】[0002]

【従来の技術】半導体集積回路等の微細パターンを、半
導体ウエハ等の被露光基板上に、安易、高速、低価格で
形成するため、短波長可視光ないし遠紫外線を用いる投
影露光法が用いられている。図5は、株式会社電気書院
発行「LSI設計製作技術」248頁に記載された従来
の投影露光装置の光学系を示す。これを同図に基づいて
概略説明すると、水銀ランプ1から出た光は、楕円凹面
鏡2、コリメータレンズ3によって集光されて、単色化
のためのフィルタ4を通ってフライアイレンズ5に入
る。水銀ランプ1とコリメータレンズ3との間にはラン
プからの光を光源光軸と略直交する方向に変換すると共
に、熱線を裏側へ透過させる第1反射鏡6が配設されて
いる。フライアイレンズ5は、多くの小口径レンズの集
合体からなり、その各レンズから出る光が第2反射鏡7
によって反射され集光レンズ8によって集光されること
により、それぞれ原図基板であるレチクル9を照明し、
これにより照明の均一性を上げることができる。前記水
銀ランプ1が元々の光源(1次光源)であるのに対し、
フライアイレンズ5の射出側は、レチクル9を照明する
光の実質的な射出源となるため、2次光源と呼ばれる。
第2反射鏡7は、再度光線の向きを変えるためのもので
ある。レチクル9は、半導体集積回路等の微細パターン
の図柄が形成されてレチクル保持台10上に設置されて
おり、集光レンズ系8を出た光により照明されると、前
記微細パターンは投影レンズ11を通して被露光基板で
あるレジストを塗布したウエハ12上に転写される。投
影レンズ11は、各種収差を消すため多くの枚数のレン
ズを組合わせて作られているが、基本的にはレチクル9
側とウエハ12側の2ブロックに分けられており、その
間に開口絞り13が設置されている。レチクル9上の任
意の一点から出た光は、レチクル9側のレンズ群を透過
した後、略平行となって開口絞り13を通過し、ウエハ
12側のレンズ群に入る。その後、ウエハ12側のレン
ズ群で集光され、ウエハ12の表面上のレジスト位置で
一点に集光、結像される。ウエハ12は、位置、および
投影レンズ11に対する高さを調整、決定するための、
X移動ステージ14、Y移動ステージ15、Z移動ステ
ージ16、回転ステージ17上に設置されている。ウエ
ハ12に転写されるパターンの解像性は、レチクル9上
に存在するパターンによる回折光が開口絞り13に取り
込めるかどうかで決まり、最高解像度は、レチクル9上
のパターンから出る0次回折光と1次回折光とが、開口
絞り13に取り込めるかどうかで概ね決まる。1次以上
の回折光が進む方向は、パターンの周期、パターンの細
かさによって決まり、細かいパターン程レチクル9の照
明光の進行方向に対して傾いた方向に出る。したがっ
て、レチクル9を垂直に照明した場合、細かいパターン
の時程投影レンズ11の外側方向へ1次以上の回折光が
進むことになる。このため、開口絞り13の開口が大き
い程細かいパターンからなる回折光まで取り込めること
になり、高解像となる。
2. Description of the Related Art A projection exposure method using short-wavelength visible light or far-ultraviolet rays is used for forming a fine pattern of a semiconductor integrated circuit or the like on a substrate to be exposed such as a semiconductor wafer easily, at high speed and at low cost. ing. FIG. 5 shows an optical system of a conventional projection exposure apparatus described on page 248 of “LSI Design and Manufacturing Technology” published by Denki Shoin Co., Ltd. This will be roughly described with reference to FIG. 1. Light emitted from the mercury lamp 1 is condensed by the elliptic concave mirror 2 and the collimator lens 3, passes through the filter 4 for monochromaticity, and enters the fly-eye lens 5. A first reflecting mirror 6 is provided between the mercury lamp 1 and the collimator lens 3 to convert light from the lamp into a direction substantially orthogonal to the light source optical axis and to transmit heat rays to the back side. The fly-eye lens 5 is composed of an assembly of many small-diameter lenses, and the light emitted from each lens is the second reflecting mirror 7.
Is reflected by the condenser lens 8 and is condensed by the condenser lens 8 to illuminate the reticle 9 which is the original drawing substrate.
This can improve the uniformity of illumination. Whereas the mercury lamp 1 is the original light source (primary light source),
The emission side of the fly-eye lens 5 serves as a substantial emission source of light that illuminates the reticle 9, and is called a secondary light source.
The second reflecting mirror 7 is for changing the direction of the light ray again. The reticle 9 is provided on a reticle holding table 10 on which a pattern of a fine pattern such as a semiconductor integrated circuit is formed, and when illuminated by the light emitted from the condenser lens system 8, the fine pattern is projected onto the projection lens 11. Is transferred onto the wafer 12, which is a substrate to be exposed, coated with a resist. The projection lens 11 is made by combining a large number of lenses to eliminate various aberrations, but basically, the reticle 9 is used.
Side and the wafer 12 side are divided into two blocks, and an aperture stop 13 is installed between them. Light emitted from an arbitrary point on the reticle 9 passes through the lens group on the reticle 9 side, then becomes substantially parallel, passes through the aperture stop 13, and enters the lens group on the wafer 12 side. Then, the light is focused by the lens group on the wafer 12 side, and focused and imaged at one point at the resist position on the surface of the wafer 12. The wafer 12 is for adjusting and determining the position and the height with respect to the projection lens 11,
It is installed on the X moving stage 14, the Y moving stage 15, the Z moving stage 16, and the rotating stage 17. The resolution of the pattern transferred onto the wafer 12 is determined by whether or not the diffracted light due to the pattern existing on the reticle 9 can be taken into the aperture stop 13, and the highest resolution is 0 order diffracted light and 1 It is largely determined whether the second-order diffracted light can be taken into the aperture stop 13. The direction in which the first-order and higher-order diffracted light travels is determined by the cycle of the pattern and the fineness of the pattern. Therefore, when the reticle 9 is illuminated vertically, the diffracted light of the first order or more advances toward the outer side of the projection lens 11 when the pattern is fine. Therefore, the larger the aperture of the aperture stop 13, the more diffracted light having a fine pattern can be captured, resulting in high resolution.

【0003】ところで、同一出願人によって既に出願さ
れた特願平3−99822号、特願平3−157401
号等には、レチクルを斜めに照明して、レチクル上に存
在するパターンの0次回折光が、斜め照明光進行方向の
開口絞り外周付近を通るようにし、片側の1次回折光が
開口絞りの反対側の外周付近を通るようにすれば、レチ
クルを垂直に照明してレチクル上に存在するパターンの
両側の1次回折光が開口絞りを通るようにした場合に比
べて、入射光の方向に対して約2倍の角度で外側に広が
る1次回折光迄取り込めるため、非常に高解像になるこ
とが開示されている。また、このようにレチクルを斜め
に照明する方式をとると、0次回折光と片側の1次回折
光だけで転写像が形成されるため、2光束だけの干渉と
なり、従来の0次回折光と両側の1次回折光の合計3光
束の場合より、微細パターン転写時の焦点深度が大幅に
改善される利点も生じる。レチクルを斜めに照明するに
は、特願平59−211269号に開示されているよう
に、フライアイレンズ5の射出側の中心部からの光をカ
ットして周辺部からの光で照明すればよい。すなわち、
円環状や多点状の2次光源により照明すればよい。しか
し、レチクル9を単に斜めに照明する場合、レチクル9
上に依存するパターンによる1次回折光は、片側分だけ
しか開口絞りに取り込めないのに対し、直進する0次回
折光が全て開口絞りを通過するため、1次回折光と0次
回折光とのバランスが崩れて0次回折光が多過ぎる状態
となり、レジスト位置にできる微細パターンの像のコン
トラストが低下してしまう。この欠点を補う目的で、特
願平3−135317号、特願平3−157401号等
には、斜め照明時に0次回折光の量を適切な量に調整す
るため、開口絞り13の位置に、「開口部周辺の透過率
を調整した投影レンズ開口を有する」ようにした投影露
光装置および方法が開示されている。
By the way, Japanese Patent Application Nos. 3-99822 and 3-157401 already filed by the same applicant.
For example, the reticle is obliquely illuminated so that the 0th-order diffracted light of the pattern existing on the reticle passes near the outer periphery of the aperture stop in the oblique illumination light traveling direction, and the 1st-order diffracted light on one side is opposite to the aperture stop. If the light passes through the outer periphery of the reticle, the reticle is illuminated vertically, and the first-order diffracted light on both sides of the pattern existing on the reticle passes through the aperture stop, compared to the direction of the incident light. It is disclosed that a very high resolution can be obtained because even the first-order diffracted light that spreads outward at an angle of about twice can be captured. In addition, when the method of illuminating the reticle obliquely is adopted as described above, a transfer image is formed only by the 0th-order diffracted light and the 1st-order diffracted light on one side. There is an advantage that the depth of focus at the time of transferring a fine pattern is significantly improved as compared with the case of a total of three light fluxes of the first-order diffracted light. In order to illuminate the reticle obliquely, as disclosed in Japanese Patent Application No. 59-212169, the light from the center of the fly-eye lens 5 on the exit side is cut off and the light from the periphery is illuminated. Good. That is,
Illumination may be performed by an annular or multipoint secondary light source. However, if the reticle 9 is simply illuminated at an angle, the reticle 9
The 1st-order diffracted light due to the pattern depending on the above can be taken into the aperture stop only for one side, whereas the 0-th order diffracted light that travels straight passes through the aperture stop. As a result, the 0th-order diffracted light becomes too much, and the contrast of the image of the fine pattern formed at the resist position decreases. For the purpose of compensating for this drawback, Japanese Patent Application Nos. 3-135317 and 3-157401, etc., adjust the amount of 0th-order diffracted light to an appropriate amount at the time of oblique illumination. Disclosed is a projection exposure apparatus and method having "a projection lens aperture whose transmittance is adjusted around the aperture".

【0004】従来、上記の「透過率を調整した投影レン
ズ開口」である「瞳フィルタ」は、露光光線をよく透過
する平面板上に、所望の透過率を有する薄膜を付したも
のを使用していた。図6は、斜め照明と瞳フィルタとを
併用した、従来の投影露光光学系の例であり、図7は図
6に示したような投影露光装置において使用される従来
の瞳フィルタの断面模式図である。図5に示した従来の
一般的な投影露光光学系に対し、図6では斜め照明を得
るための円環状や多点状の2次光源射出開口20と、単
なる開口絞り13に替えて透過率を調整する瞳フィルタ
21とを付け加えたものである。また、以上に示した図
5および図6においては、露光の1次光源を水銀ランプ
1としている。これに対し、「光技術コンタクト」Vo
l.28.No.3(1990)のP172〜P174
に開示されているように、エキシマレーザを1次側光源
としても、同様の露光ができる。2次光源を作るまでの
光源系が異なるだけで、2次光源入射口から後は、図
5、図6と同様である。透過率を調整する瞳フィルタ2
1は、波長436nmの水銀ランプg線、波長365n
mの水銀ランプi線、波長249nmのKrFエキシマ
レーザ光、波長193nmのArFエキシマレーザ光、
等の短波長可視光ないし遠紫外光を露光光線とする場合
には、合成石英、溶融石英、合成蛍石、溶融蛍石等ガラ
ス材料からなる平面板22の表面または裏面に、薄いク
ロム、酸化クロム、フッ化マグネシウム等の透過率調整
膜23および開口を決定する遮光膜24を形成して構成
されている。透過率調整膜23を付ける開口内での位置
および形状は、照明2次光源の位置および形状と対応す
るようになされている。照明2次光源の射出側の像が瞳
フィルタ21の位置にできるので、2次光源像の位置、
寸法、形状に略合わせて透過率調整膜23を形成してあ
る。なお図7では透過率調整膜23および遮光膜24の
厚みは、平面板22の厚さに対して誇張して描いてあ
る。
Conventionally, the above-mentioned "pupil filter", which is the "projection lens aperture whose transmittance is adjusted", uses a flat plate on which a thin film having a desired transmittance is attached on a flat plate which transmits an exposure light beam well. Was there. FIG. 6 is an example of a conventional projection exposure optical system that uses both oblique illumination and a pupil filter, and FIG. 7 is a schematic sectional view of a conventional pupil filter used in the projection exposure apparatus as shown in FIG. Is. In contrast to the conventional general projection exposure optical system shown in FIG. 5, in FIG. 6, an annular or multipoint secondary light source exit aperture 20 for obtaining oblique illumination and a simple aperture stop 13 are used instead of the transmittance. And a pupil filter 21 for adjusting. Further, in FIGS. 5 and 6 described above, the primary light source for exposure is the mercury lamp 1. On the other hand, "optical technology contact" Vo
l. 28. No. 3 (1990) P172-P174
The same exposure can be performed by using an excimer laser as the primary side light source as disclosed in US Pat. The structure from the secondary light source entrance is the same as that shown in FIGS. 5 and 6 except that the light source system until the secondary light source is manufactured is different. Pupil filter 2 for adjusting the transmittance
1 is a mercury lamp g line with a wavelength of 436 nm, a wavelength of 365 n
Mercury lamp i line of m, KrF excimer laser light of wavelength 249 nm, ArF excimer laser light of wavelength 193 nm,
In the case of using short-wavelength visible light or far-ultraviolet light as the exposure light, thin chrome, oxidation on the front surface or the back surface of the flat plate 22 made of glass material such as synthetic quartz, fused quartz, synthetic fluorite, and fused fluorite. A transmittance adjusting film 23 made of chromium, magnesium fluoride or the like and a light shielding film 24 for determining the opening are formed. The position and shape in the opening to which the transmittance adjusting film 23 is attached correspond to the position and shape of the illumination secondary light source. Since the image on the exit side of the illumination secondary light source can be located at the position of the pupil filter 21, the position of the secondary light source image,
The transmittance adjusting film 23 is formed so as to substantially match the size and shape. In FIG. 7, the thicknesses of the transmittance adjusting film 23 and the light shielding film 24 are exaggerated with respect to the thickness of the plane plate 22.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、上記し
た従来の瞳フィルタ21にあっては、瞳フィルタ21の
入った投影レンズ11を長く使用すると、露光光線の長
時間照射によって、瞳フィルタ21の透過率調整膜23
が劣化し、飛散したり、剥離したりするという問題があ
った。また、1次光源としてエキシマレーザ光を使用す
る場合は、光がパルス的に発生し、断続的に繰り返して
強いエネルギの光が瞳フィルタ21に照明されるため、
特に劣化し易い。透過率調整膜23が劣化して飛散した
り、剥離したりすると、透過率調整膜23の付いた部分
の全域または一部の領域で、透過率が変化して適正に調
整された透過率でなくなる。この結果、瞳フィルタ21
は本来の機能を発揮しなくなり、解像度の劣化、適正露
光量の変化、パターン形状の劣化、露光強度むら等を生
じる。また、透過率調整膜23が飛散したり、剥離した
りすると、瞳フィルタ21の上下の投影レンズ部材に、
飛散したり、剥離した膜材料の微細な飛散粒子や剥離片
が付着する。微細な飛散粒子が投影レンズ部材に付く
と、投影レンズの透過率の低下を生じ、また剥離片が投
影レンズ部材に付くと、局部的に光路長が変わって解像
度の悪い部分を生じたり、露光強度むらを生じたりす
る。さらに、最悪の場合には、これらの付着物は露光時
に転写欠陥を発生する原因となる。したがって、透過率
調整膜23が劣化して飛散したり、剥離したりしないよ
うにすることが必要である。投影レンズ部材に一旦この
ような飛散粒子や剥離片が付着した場合、投影レンズを
分解してオーバーホールしない限り除去することができ
ない。しかし、投影レンズの各レンズ部材には、反射防
止コーティングを施してあるので、飛散粒子や剥離片の
みを除去することはきわめて困難であり、一旦透過率調
整膜23の飛散粒子や剥離片が付くと、投影レンズ各レ
ンズ部材のコーティング迄やり直したり、最悪、投影レ
ンズ全体の寿命にもなりかねない。
However, in the above-mentioned conventional pupil filter 21, when the projection lens 11 having the pupil filter 21 is used for a long time, the exposure light beam is transmitted for a long time by the irradiation of the exposure light beam. Rate adjustment film 23
Was deteriorated, and there was a problem of scattering or peeling. In addition, when excimer laser light is used as the primary light source, light is generated in a pulsed manner, and light of high energy is radiated intermittently and repeatedly to the pupil filter 21,
Especially easy to deteriorate. When the transmittance adjusting film 23 deteriorates and scatters or peels off, the transmittance changes in the entire area or a part of the area where the transmittance adjusting film 23 is attached, and the transmittance is appropriately adjusted. Disappear. As a result, the pupil filter 21
Does not exert its original function, resulting in deterioration of resolution, change of appropriate exposure amount, deterioration of pattern shape, unevenness of exposure intensity, and the like. Further, if the transmittance adjusting film 23 scatters or peels off, the projection lens members above and below the pupil filter 21 are
Fine scattered particles of the film material that has been scattered or peeled off, or peeled pieces adhere. If minute scattered particles attach to the projection lens member, the transmittance of the projection lens decreases, and if a peeling piece attaches to the projection lens member, the optical path length changes locally to cause poor resolution or exposure. It causes uneven strength. Furthermore, in the worst case, these deposits cause transfer defects during exposure. Therefore, it is necessary to prevent the transmittance adjusting film 23 from being deteriorated and scattered or peeled off. Once such scattered particles or peeled pieces adhere to the projection lens member, they cannot be removed unless the projection lens is disassembled and overhauled. However, since each lens member of the projection lens is coated with an antireflection coating, it is extremely difficult to remove only the scattered particles and the peeled pieces, and once the scattered particles and the peeled pieces of the transmittance adjusting film 23 are attached. Then, the coating of each lens member of the projection lens may have to be redone, or at the worst, the life of the entire projection lens may be extended.

【0006】したがって、本発明は上記したような従来
の問題点に鑑みてなされたもので、その目的とするとこ
ろは、透過率調整膜の劣化に伴う飛散、剥離等を防止
し、投影レンズに微細な飛散粒子や剥離片が付着しない
ようにした投影露光装置を提供することにある。
Therefore, the present invention has been made in view of the above-mentioned conventional problems, and an object of the present invention is to prevent scattering, peeling and the like due to deterioration of the transmittance adjusting film, and to provide a projection lens. Another object of the present invention is to provide a projection exposure apparatus in which fine scattered particles and peeling pieces are prevented from adhering.

【0007】[0007]

【課題を解決するための手段】上記目的を達成するため
本発明は、原図基板上のパターンを投影レンズを介して
被露光基板上に投影露光、転写する投影露光装置におい
て、前記投影レンズの開口絞り位置に、前記原図基板を
照明する2次光源の形状に対応させた瞳フィルタを配置
してなり、この瞳フィルタは任意の透過率分布を有する
透過率調整膜を透光性を有する2枚の平面板で挟んで形
成されているものである。
In order to achieve the above object, the present invention provides a projection exposure apparatus for projecting and transferring a pattern on an original drawing substrate onto a substrate to be exposed through a projection lens, and the opening of the projection lens. A pupil filter corresponding to the shape of the secondary light source that illuminates the original drawing substrate is arranged at the diaphragm position, and the pupil filter has two transmissivity adjusting films having an arbitrary transmissivity distribution and having a light transmitting property. It is formed by sandwiching between the flat plates.

【0008】[0008]

【作用】透光性を有する2枚の平面板は透過率調整膜を
挾み込んでいるので、たとえ調整膜が劣化しても、飛散
したり、剥離することがない。
Since the two transparent flat plates sandwich the transmittance adjusting film, they do not scatter or peel even if the adjusting film deteriorates.

【0009】[0009]

【実施例】以下、本発明を図面に示す実施例に基づいて
詳細に説明する。図1は瞳フィルタの断面模式図であ
る。なお、図中図5〜図7に示した従来装置の構成部材
と同一のものに対しては同一符号をもって示す。同図に
おいて、ガラス材料からなり透光性を有する平面板22
の上面に透過率調整膜23と遮光膜24を形成し、更に
平面板22の上に別の透光性を有する平面板25を載置
して透過率調整膜23および遮光膜24を覆い、これら
により瞳フィルタ30を構成したものである。すなわ
ち、本実施例は2枚の平面板22,25によって透過率
調整膜23と遮光膜24を挾み込み、サンドウイッチ構
造としたものである。平面板25としては、平面板22
と同様、合成石英、溶融石英、合成蛍石、溶融蛍石等の
ガラス材料からなる。そして、このような瞳フィルタ3
0は図6に示した投影レンズ11の開口絞り位置に取付
けられる。その他の構成は図6に示した従来の投影露光
装置と同様である。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below in detail with reference to the embodiments shown in the drawings. FIG. 1 is a schematic sectional view of a pupil filter. In the figure, the same components as those of the conventional device shown in FIGS. 5 to 7 are designated by the same reference numerals. In the figure, a plane plate 22 made of a glass material and having translucency
A transmittance adjusting film 23 and a light shielding film 24 are formed on the upper surface of, and another flat plate 25 having translucency is placed on the flat plate 22 to cover the transmittance adjusting film 23 and the light shielding film 24, The pupil filter 30 is configured by these. That is, the present embodiment has a sandwich structure in which the transmittance adjusting film 23 and the light shielding film 24 are sandwiched by the two flat plates 22 and 25. As the flat plate 25, the flat plate 22
Similar to the above, it is made of a glass material such as synthetic quartz, fused quartz, synthetic fluorite, and fused fluorite. And such a pupil filter 3
0 is attached to the aperture stop position of the projection lens 11 shown in FIG. Other configurations are the same as those of the conventional projection exposure apparatus shown in FIG.

【0010】図2(a),(b)はそれぞれ瞳フィルタ
の他の実施例を示す断面模式図である。(a)図は図1
に示した瞳フィルタ30を保持具34と蓋35とで保持
し、投影レンズの開口絞り位置に設置するようにしたも
のである。保持具34と蓋35との固定は、ねじ止め、
はめ込み等任意である。(b)図は平面板25と蓋35
との間にパッキン等の緩衝部材36を介在させ、保持部
材材34と蓋35で瞳フィルタ30を押さえる際、平面
板22,25が割れたり歪んだりしないようにしたもの
である。但し、この場合は透過率調整膜23と、保持具
34または蓋35の投影レンズへの取付面との距離が変
化しない位置に緩衝部材36を挾み、透過率調整膜23
が所望の投影レンズ開口絞り位置に来るようにする。例
えば、図2(b)のように保持具34を投影レンズの基
準となる面に合わせて固定するとし、所定の厚さの平面
板22上に透過率調整膜23を付けて、保持具34の上
に置き、平面板25をその上に重ねた後、緩衝部材36
を置いて蓋35で押さえて固定する。このようにすれ
ば、投影レンズ開口絞り位置への固定の基準となる保持
具34と、透過率調整膜23との相対関係は緩衝部材3
6の有無に関係ない。したがって、透過率調整膜23を
正確に所望の投影レンズ開口絞り位置に設定することが
できる。保持具34の蓋35を投影レンズの基準となる
面に合わせて固定する場合は、蓋35と透過率調整膜2
3とが所望の相対位置関係になるようにする。
2A and 2B are schematic sectional views showing other embodiments of the pupil filter. (A) Figure is Figure 1
The pupil filter 30 shown in (1) is held by a holder 34 and a lid 35, and is installed at the aperture stop position of the projection lens. The holder 34 and the lid 35 are fixed with screws,
It is arbitrary such as fitting. (B) The figure shows the flat plate 25 and the lid 35.
A cushioning member 36 such as packing is interposed between and so that the flat plates 22 and 25 are not cracked or distorted when the pupil filter 30 is pressed by the holding member material 34 and the lid 35. However, in this case, the buffer member 36 is sandwiched at a position where the distance between the transmittance adjusting film 23 and the mounting surface of the holder 34 or the lid 35 on the projection lens does not change, and the transmittance adjusting film 23
Is at the desired projection lens aperture stop position. For example, as shown in FIG. 2B, the holder 34 is fixed to the reference surface of the projection lens, the transmittance adjusting film 23 is attached to the flat plate 22 having a predetermined thickness, and the holder 34 is fixed. The flat plate 25 on top of it, and then the cushioning member 36
Then, the lid 35 is pressed and fixed by the lid 35. By doing so, the relative relationship between the holder 34, which serves as a reference for fixing the aperture stop position of the projection lens, and the transmittance adjusting film 23 is set to the buffer member 3.
Regardless of the presence or absence of 6. Therefore, the transmittance adjusting film 23 can be accurately set at a desired projection lens aperture stop position. When the lid 35 of the holder 34 is fixed according to the reference surface of the projection lens, the lid 35 and the transmittance adjusting film 2
3 and 3 have a desired relative positional relationship.

【0011】図3はさらに瞳フィルタの他の実施例を示
す断面模式図である。この実施例は平面板22と25の
露光光線が通らない周辺部を接着剤40によって接着固
定したものである。露光光線が通る部分に接着剤を置け
ば、接着剤の厚さによって光路長が変わり、収差を発生
する。また、接着剤40は、露光光線による劣化が早
く、透過率の低下等を引き起こす。したがって、接着剤
40の塗布むらは、露光むらとなる。このため、平面板
22と25とを露光光線が通らない周辺部で接着するこ
とが望ましい。接着は、接着剤40の厚さによって平面
板22,25との間に隙間ができないように行う。図3
のごとく、平面板25の周辺部を薄くしておき、平面板
22の最突出面と平面板25とをぴったり合わせて接着
する時、接着剤40が平面板25の周辺部が薄いことに
よって形成される平面板22と25との隙間に広がるよ
うにする。図3では、接着剤40を入れるための隙間を
平面板25の周辺部に形成した例を示したが、平面板2
2の周辺部あるいは平面板22、25双方の周辺部を接
着剤用に薄く形成してもよい。また、平面板22および
/または平面板25の周辺部の露光光線が通らない部分
の任意位置に、任意の大きさ、任意の深さ、任意の数の
凹みまたは段差を設けてもよい。
FIG. 3 is a schematic sectional view showing another embodiment of the pupil filter. In this embodiment, the peripheral portions of the flat plates 22 and 25 through which the exposure light beam does not pass are adhered and fixed by an adhesive 40. If an adhesive is placed on the portion through which the exposure light beam passes, the optical path length changes depending on the thickness of the adhesive, causing aberration. Further, the adhesive 40 deteriorates rapidly due to exposure light rays, and causes a decrease in transmittance. Therefore, uneven application of the adhesive 40 results in uneven exposure. For this reason, it is desirable to bond the flat plates 22 and 25 to each other at the peripheral portion where the exposure light beam does not pass. The bonding is performed so that there is no gap between the flat plates 22 and 25 due to the thickness of the adhesive 40. Figure 3
As described above, when the peripheral portion of the plane plate 25 is thinned and the most protruding surface of the plane plate 22 and the plane plate 25 are closely aligned and bonded, the adhesive 40 is formed by the peripheral portion of the plane plate 25 being thin. It spreads in the gap between the flat plates 22 and 25. Although FIG. 3 shows an example in which a gap for inserting the adhesive 40 is formed in the peripheral portion of the flat plate 25, the flat plate 2
The peripheral portion of 2 or the peripheral portions of both the flat plates 22 and 25 may be thinly formed for the adhesive. Further, an arbitrary size, an arbitrary depth, an arbitrary number of depressions or steps may be provided at an arbitrary position in the peripheral portion of the plane plate 22 and / or the plane plate 25 where the exposure light ray does not pass.

【0012】図1〜図3において、透過率調整膜23お
よび遮光膜24とが同じ材料の場合、遮光膜24の方が
透過率調整膜23より厚いので、遮光膜24の面が平面
板25に接している。透過率調整膜23と遮光膜24と
の材料が異なり、透過率調整膜23が遮光膜24より厚
い場合は、透過率調整膜23の面が平面板25に接す
る。また、図には描いていないが、瞳フィルタの開口内
の全ての部分を通る露光光線の位相が透過率調整膜23
の部分を通る露光光線の位相変化と等しい量変化するよ
うに、瞳フィルタの透過部に高透過率の位相調整材料を
付けてもよい。その場合には高透過率の位相調整材料を
付けてある透過部分、透過率調整膜23の部分、遮光膜
24の部分のうち、最も厚い部分の面が平面板25に接
する。
1 to 3, when the transmittance adjusting film 23 and the light shielding film 24 are made of the same material, the light shielding film 24 is thicker than the transmittance adjusting film 23, and thus the surface of the light shielding film 24 is a flat plate 25. Touches. When the materials of the transmittance adjusting film 23 and the light shielding film 24 are different and the transmittance adjusting film 23 is thicker than the light shielding film 24, the surface of the transmittance adjusting film 23 contacts the flat plate 25. Although not shown in the drawing, the phase of the exposure light beam that passes through all the portions inside the aperture of the pupil filter is the transmittance adjustment film 23.
A phase adjusting material having a high transmittance may be attached to the transmissive portion of the pupil filter so that the transmissive portion of the pupil filter changes by an amount equal to the change in the phase of the exposure light beam passing through the area. In that case, the surface of the thickest portion of the transparent portion, the portion of the transmittance adjusting film 23, and the portion of the light shielding film 24 to which the phase adjusting material having a high transmittance is attached is in contact with the flat plate 25.

【0013】図4(a)〜(i)は透過率調整膜の分布
形状の各種の例を示す図である。(a)図は開口の中に
円環状の透過率調整膜を設けた例、(b)図は開口の中
に多点状の透過率調整膜を設けた例、(c)図は開口の
中に透過率T1 ,T2 の異なる透過率調整膜を同心円状
に設けた例、(d)図は開口の中に多点状の透過率調整
膜を設け、さらにその外側にも透過率調整膜を設けた
例、(e)図も開口の中に多点状の透過率調整膜を設
け、さらにその外側にも透過率調整膜を設けた例、
(f)図は(d)の中心部にも透過率T3 を有する透過
率調整膜を設けた例、(g)図は(e)の中心部にも透
過率T3 を有する透過率調整膜を設けた例、(h)図は
(f)の中心部にも透過率T3 を有する透過率調整膜を
設けた例、(i)図は図に示すように透過率が任意に連
続的に変化するようにした透過率調整膜を設けた例であ
る。なお、図中、遮光膜の付いている部分を黒色、透過
率調整膜23の付いている部分、すなわち、意図的に透
過率を低下させている部分をハッチングまたはクロスハ
ッチングで示した。透過率調整膜23の形状、分布は、
フライアイレンズ射出口の形状、すなわち2次光源の形
状に合わせて決める。フライアイレンズ射出口が円環状
の場合には、(a)図の円環状の透過率調整部は、フラ
イアイレンズ射出口の円環状の像の大きさに大略合わせ
る。また、(c)、(f)図の場合には、透過率T1
部分の形状をフライアイレンズ射出口の多点状の像の大
きさに大略または完全に合わせる。フライアイレンズ射
出口の形状が多点状の場合に、開口絞り位置にできる多
点状の像を包絡するような円環状の透過率調整膜23を
持つ(a)、(c)、(f)図のような瞳フィルタを用
いてもよい。透過率調整膜23の透過率は任意であり、
特別の場合として、T1 =T2 、T2 =T3 、T1 =T
3 、T1 =T2 =T3 等の条件の瞳フィルタも適用す
ることができる。
FIGS. 4A to 4I are views showing various examples of distribution shapes of the transmittance adjusting film. (A) is an example in which an annular transmittance adjusting film is provided in the opening, (b) is an example in which a multi-point transmittance adjusting film is provided in the opening, and (c) is an example of the opening. An example in which transmittance adjusting films having different transmittances T 1 and T 2 are concentrically provided therein, (d) is a multipoint transmittance adjusting film provided in the opening, and the transmittance is further provided outside thereof. An example in which an adjusting film is provided, (e) also shows an example in which a multi-point transmittance adjusting film is provided in the opening, and a transmittance adjusting film is provided outside thereof.
(F) drawing the example in which a transmittance adjustment film also has the transmittance T 3 in the center of (d), (g) drawing transmittance adjusting having transmittance T 3 in the center of (e) An example in which a film is provided, (h) is an example in which a transmittance adjusting film having a transmittance T 3 is provided also in the central part of (f), and (i) is a continuous transmittance as shown in the figure. This is an example in which a transmittance adjusting film that is changed in a variable manner is provided. In the figure, the portion with the light shielding film is shown in black, and the portion with the transmittance adjusting film 23, that is, the portion in which the transmittance is intentionally lowered is shown by hatching or cross hatching. The shape and distribution of the transmittance adjusting film 23 are
It is determined according to the shape of the fly-eye lens exit, that is, the shape of the secondary light source. In the case where the fly-eye lens exit is annular, the annular transmittance adjusting section in FIG. 7A is approximately matched to the size of the annular image of the fly-eye lens exit. Further, in the case of FIGS. 7C and 7F, the shape of the portion having the transmittance T 1 is roughly or completely adjusted to the size of the multipoint image at the exit of the fly-eye lens. When the fly-eye lens exit has a multipoint shape, it has an annular transmittance adjusting film 23 that envelops a multipoint image formed at the aperture stop position (a), (c), (f). ) A pupil filter as shown may be used. The transmittance of the transmittance adjusting film 23 is arbitrary,
As a special case, T 1 = T 2 , T 2 = T 3 , T 1 = T
It is also possible to apply a pupil filter having conditions such as 3 , T 1 = T 2 = T 3 .

【0014】ところで、透過率調整膜23と開口の範囲
を決定する遮光膜24は、必ずしも平面板22に付けな
くてもよく、平面板22または平面板25の互いに接触
し合う何れかの面に付ければよい。さらに、透過率調整
膜23と遮光膜24を平面板22または25に分割して
付けてもよい。以上の(c)〜(h)図のように、透過
率が異なる透過率調整膜23を有する瞳フィルタ30に
おいては、1枚の平面板上に2つ以上の透過率が異なる
透過率調整膜23を付けることは、容易にはできない。
例えば、(e)の場合に多点状の透過率T1 の部分を付
けた後、透過率T1 の部分を保護してその周囲に透過率
2 の部分を付けることはかなり困難である。
By the way, the transmittance adjusting film 23 and the light-shielding film 24 for determining the range of the opening do not necessarily have to be attached to the flat plate 22, and may be provided on either of the flat plate 22 and the flat plate 25 which are in contact with each other. Just attach it. Further, the transmittance adjusting film 23 and the light shielding film 24 may be attached separately to the plane plate 22 or 25. As shown in (c) to (h) above, in the pupil filter 30 having the transmittance adjusting films 23 having different transmittances, two or more transmittance adjusting films having different transmittances are provided on one plane plate. It is not easy to attach 23.
For example, in the case of (e), it is quite difficult to attach a multipoint transmittance T 1 portion, and then protect the transmission T 1 portion and attach a transmittance T 2 portion around it. .

【0015】かかる2つ以上の透過率が異なる透過率調
整膜23を有する瞳フィルタが入用の場合に、本発明の
図1〜図3に示した2枚の平面板22,25を用いる瞳
フィルタを用いると、透過率調整膜23の付け方が従来
よりかなり容易になる。例えば、上記の(e)の場合、
先ず透過率T1 、透過率T2 の部分のうち、透過率の高
い方、例えば透過率T2 の透過率調整膜を平面板22の
最終的に透過率T1 、透過率T2 となる部分の全域に付
ける。次に、透過率(T1 /T2 )の透過率調整膜を平
面板25の最終的に透過率T1 となる部分に付ける。平
面板22と平面板25の透過率調整膜が付いて面同士を
内側にして密着させ、瞳フィルタとすれば、平面板22
に透過率T2 の透過率調整膜が付き、平面板25に透過
率(T1 /T2 )の透過率調整膜が付いて互いに重なる
部分は、透過率が、T2 ×(T1 /T2 )=T1 とな
る。また、平面板22に最初に透過率T2 の透過率調整
膜を付けた上記以外の部分の透過率がT2 となる。この
ように、透過率が異なる透過率調整膜は、平面板22、
25に膜付けを振り分けて形成することにより、容易に
製作できるようになる。
When the pupil filter having the two or more transmittance adjusting films 23 having different transmittances is required, the pupil using the two plane plates 22 and 25 shown in FIGS. 1 to 3 of the present invention is used. When a filter is used, the method of attaching the transmittance adjusting film 23 becomes much easier than in the past. For example, in the case of (e) above,
First, of the portions having the transmittance T 1 and the transmittance T 2 , the one having the higher transmittance, for example, the transmittance adjusting film having the transmittance T 2 is finally the transmittance T 1 and the transmittance T 2 of the flat plate 22. Attach to the whole area. Next, a transmittance adjusting film having a transmittance (T 1 / T 2 ) is attached to a portion of the flat plate 25 which finally becomes the transmittance T 1 . If a flat plate 22 and a flat plate 25 are provided with a transmittance adjusting film so that the surfaces are in contact with each other so that they are in close contact with each other to form a pupil filter, the flat plate 22
Is provided with a transmittance adjusting film having a transmittance of T 2 , and the flat plate 25 is provided with a transmittance adjusting film having a transmittance of (T 1 / T 2 ), and the overlapped portions have a transmittance of T 2 × (T 1 / T 2 ) = T 1 . Further, the first transmittance of the portions other than the carrying thereon an transmittance adjusting film transmittance T 2 is T 2 in the plane plate 22. As described above, the transmittance adjusting films having different transmittances are formed by the flat plate 22,
By forming the film attachments on 25, it becomes possible to easily manufacture.

【0016】図1〜図4の全ての場合において、平面板
22,25は露光光線に対して透光性を有するガラス材
料であればよく、任意である。また、透過率調整膜23
は露光光線に対して所定の透過率を付与できる材料であ
れば任意であり、例えば、クロムの薄膜、酸化クロムの
薄膜、フッ化マグネシウムと硫化亜鉛の多層薄膜等とす
る。遮光膜24も任意の材料でよいことは言うまでもな
い。
In all the cases of FIGS. 1 to 4, the flat plates 22 and 25 may be made of any glass material having a light-transmitting property with respect to exposure light rays, and are optional. In addition, the transmittance adjusting film 23
Is any material as long as it can impart a predetermined transmittance to the exposure light beam, and is, for example, a thin film of chromium, a thin film of chromium oxide, a multilayer thin film of magnesium fluoride and zinc sulfide, or the like. It goes without saying that the light shielding film 24 may be made of any material.

【0017】なお、平面板22,25の外形形状は、図
4では円形としたが、必ずしも円形である必要はなく、
正方形、長方形等任意の形状とすることができ、必要に
応じて両平面板の形状が異なってもよい。また、上記の
説明では、瞳フィルタ30の透過率調整膜23と開口の
範囲を決定する遮光膜24を、正確に開口絞りの位置に
置くとしていたが、透過率調整膜23の境界の段差が露
光光線の方向を変える等の悪影響を生じないように、透
過率調整膜23の投影レンズ光軸方向の位置を2次光源
の結像位置から少しずらし、透過率調整膜23の境界が
2次光源に対してぼけるようにした場合でも、本発明は
有効である。
Although the outer shape of the flat plates 22 and 25 is circular in FIG. 4, it need not be circular.
The shape may be any shape such as a square or a rectangle, and the shapes of the two flat plates may be different as required. Further, in the above description, the transmittance adjusting film 23 of the pupil filter 30 and the light shielding film 24 that determines the range of the opening are placed at the position of the aperture stop accurately. The position of the transmittance adjusting film 23 in the optical axis direction of the projection lens is slightly shifted from the image forming position of the secondary light source so that the adverse effect such as changing the direction of the exposure light beam does not occur. The present invention is effective even when the light source is blurred.

【0018】[0018]

【発明の効果】以上説明したように本発明に係る投影露
光装置によれば、原図基板を斜め入射照明して、かつ投
影レンズ開口絞り位置に透過率を調整した瞳フィルタを
有する投影露光装置において、透過率調整膜を2枚のガ
ラス材料からなる透光性の平面板で挟み込んでサンドウ
イッチ構造とした瞳フィルタを用いるように構成したの
で、露光の累計により透過率調整膜がたとえ劣化して
も、飛散したり、剥離したりするのを防止することがで
きる。したがって、原図基板を斜め入射照明し、投影露
光装置の投影レンズ開口絞り位置に瞳フィルタを置く、
高解像、大焦点深度の露光を連続して長時間行っても、
透過率調整膜が飛散した微粉末や剥離片が投影レンズ内
のレンズ部材に付着することがなくなり、局部的に光路
長が変わって解像度の悪い部分を生じたり、露光強度む
らを生じたりすることがない。また、投影レンズの透過
率の低下も生じ難くなる。さらに、投影レンズへの付着
物が原因の露光転写欠陥の発生も防止できる。さらに、
瞳フィルタが万一劣化して交換する場合にも、瞳フィル
タの透過率調整膜が投影レンズ内のレンズ部材に転移す
ることがなく、容易に瞳フィルタを交換できる。本発明
は、水銀ランプを光源とする投影露光装置のほか、エキ
シマレーザ等の任意の光源を露光光源とする投影露光装
置に適用可能である。エキシマレーザを光源とする場
合、パルス的に露光エネルギが印加されるため、瞳フィ
ルタには、一瞬に大エネルギが加わる動作が繰り返さ
れ、瞳フィルタ劣化が、水銀ランプを光源とする投影露
光装置の場合より早い。このため、本発明が特に有効で
ある。
As described above, according to the projection exposure apparatus of the present invention, the original exposure substrate is obliquely illuminated and the projection exposure apparatus has the pupil filter having the transmittance adjusted at the projection lens aperture stop position. Since the transmittance adjusting film is sandwiched between two light-transmitting flat plates made of glass material and a sandwich-type pupil filter is used, the transmittance adjusting film is deteriorated due to cumulative exposure. Also, it is possible to prevent scattering and peeling. Therefore, the original drawing substrate is obliquely illuminated and the pupil filter is placed at the projection lens aperture stop position of the projection exposure apparatus.
Even if you perform high resolution and large depth of focus exposure continuously for a long time,
The fine particles and peeled pieces from which the transmittance adjusting film is scattered do not adhere to the lens member in the projection lens, and the optical path length is locally changed to cause poor resolution or uneven exposure intensity. There is no. In addition, the transmittance of the projection lens is less likely to decrease. Further, it is possible to prevent the occurrence of an exposure transfer defect caused by a deposit on the projection lens. further,
Even when the pupil filter is deteriorated and is replaced, the transmittance adjusting film of the pupil filter is not transferred to the lens member in the projection lens, and the pupil filter can be easily replaced. INDUSTRIAL APPLICABILITY The present invention is applicable not only to a projection exposure apparatus that uses a mercury lamp as a light source, but also to a projection exposure apparatus that uses an arbitrary light source such as an excimer laser as an exposure light source. When the excimer laser is used as the light source, since the exposure energy is applied in a pulsed manner, the operation in which a large amount of energy is instantaneously applied to the pupil filter is repeated, and the deterioration of the pupil filter is caused in the projection exposure apparatus using the mercury lamp as the light source. Faster than if. Therefore, the present invention is particularly effective.

【図面の簡単な説明】[Brief description of drawings]

【図1】瞳フィルタの断面模式図である。FIG. 1 is a schematic sectional view of a pupil filter.

【図2】(a),(b)はそれぞれ瞳フィルタの他の実
施例を示す断面模式図である。
2A and 2B are schematic sectional views showing other embodiments of the pupil filter.

【図3】さらに瞳フィルタの他の実施例を示す断面模式
図である。
FIG. 3 is a schematic sectional view showing another embodiment of the pupil filter.

【図4】(a)〜(i)は透過率調整膜の分布形状の各
種の例を示す図である。
4A to 4I are views showing various examples of distribution shapes of a transmittance adjusting film.

【図5】従来の一般的な投影露光装置の光学系を示す図
である。
FIG. 5 is a diagram showing an optical system of a conventional general projection exposure apparatus.

【図6】斜め照明と瞳フィルタとを併用した従来装置の
光学系を示す図である。
FIG. 6 is a diagram showing an optical system of a conventional device that uses oblique illumination and a pupil filter together.

【図7】瞳フィルタの従来例を示す断面模式図である。FIG. 7 is a schematic cross-sectional view showing a conventional example of a pupil filter.

【符号の説明】[Explanation of symbols]

1 水銀ランプ 9 レチクル 11 投影レンズ 12 ウエハ 13 開口絞り 22 平面板 23 透過率調整膜 24 遮光膜 25 平面板 30 瞳フィルタ 1 Mercury Lamp 9 Reticle 11 Projection Lens 12 Wafer 13 Aperture Stop 22 Plane Plate 23 Transmittance Adjustment Film 24 Light-Shielding Film 25 Plane Plate 30 Pupil Filter

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 G03F 7/20 521 9122−2H ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 5 Identification code Office reference number FI technical display location G03F 7/20 521 9122-2H

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 原図基板上のパターンを投影レンズを介
して被露光基板上に投影露光、転写する投影露光装置に
おいて、前記投影レンズの開口絞り位置に、前記原図基
板を照明する2次光源の形状に対応させた瞳フィルタを
配置してなり、この瞳フィルタは任意の透過率分布を有
する透過率調整膜を透光性を有する2枚の平面板で挟ん
で形成されていることを特徴とする投影露光装置。
1. A projection exposure apparatus for projecting and transferring a pattern on an original drawing substrate onto an exposed substrate via a projection lens, wherein a secondary light source for illuminating the original drawing substrate is located at an aperture stop position of the projection lens. A pupil filter corresponding to the shape is arranged, and the pupil filter is formed by sandwiching a transmittance adjusting film having an arbitrary transmittance distribution between two transparent flat plates. Projection exposure system.
JP34353992A 1992-12-01 1992-12-01 Projection exposure equipment Expired - Fee Related JP3180133B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP34353992A JP3180133B2 (en) 1992-12-01 1992-12-01 Projection exposure equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP34353992A JP3180133B2 (en) 1992-12-01 1992-12-01 Projection exposure equipment

Publications (2)

Publication Number Publication Date
JPH06177006A true JPH06177006A (en) 1994-06-24
JP3180133B2 JP3180133B2 (en) 2001-06-25

Family

ID=18362306

Family Applications (1)

Application Number Title Priority Date Filing Date
JP34353992A Expired - Fee Related JP3180133B2 (en) 1992-12-01 1992-12-01 Projection exposure equipment

Country Status (1)

Country Link
JP (1) JP3180133B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002025889A (en) * 2000-07-05 2002-01-25 Nec Corp Pupil filter, pattern formation method and projection aligner
KR100897676B1 (en) * 2007-06-08 2009-05-14 삼성전기주식회사 Lens Sheet For Camera Module
US20130271945A1 (en) 2004-02-06 2013-10-17 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
JP2015007725A (en) * 2013-06-26 2015-01-15 株式会社フォトニックラティス Optical imaging device
EP3229077A1 (en) * 2003-04-09 2017-10-11 Nikon Corporation Exposure method and apparatus, and method for fabricating device
US9885872B2 (en) 2003-11-20 2018-02-06 Nikon Corporation Illumination optical apparatus, exposure apparatus, and exposure method with optical integrator and polarization member that changes polarization state of light
JP2019124823A (en) * 2018-01-17 2019-07-25 キヤノン株式会社 Optical system and image capturing device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112269268B (en) * 2020-10-12 2022-07-15 中国科学院福建物质结构研究所 Soft edge diaphragm and coated baffle used in preparation

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002025889A (en) * 2000-07-05 2002-01-25 Nec Corp Pupil filter, pattern formation method and projection aligner
US9885959B2 (en) 2003-04-09 2018-02-06 Nikon Corporation Illumination optical apparatus having deflecting member, lens, polarization member to set polarization in circumference direction, and optical integrator
EP3229077A1 (en) * 2003-04-09 2017-10-11 Nikon Corporation Exposure method and apparatus, and method for fabricating device
US9885872B2 (en) 2003-11-20 2018-02-06 Nikon Corporation Illumination optical apparatus, exposure apparatus, and exposure method with optical integrator and polarization member that changes polarization state of light
US10281632B2 (en) 2003-11-20 2019-05-07 Nikon Corporation Illumination optical apparatus, exposure apparatus, and exposure method with optical member with optical rotatory power to rotate linear polarization direction
US10241417B2 (en) 2004-02-06 2019-03-26 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
US10007194B2 (en) 2004-02-06 2018-06-26 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
US10234770B2 (en) 2004-02-06 2019-03-19 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
US20130271945A1 (en) 2004-02-06 2013-10-17 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
KR100897676B1 (en) * 2007-06-08 2009-05-14 삼성전기주식회사 Lens Sheet For Camera Module
JP2015007725A (en) * 2013-06-26 2015-01-15 株式会社フォトニックラティス Optical imaging device
JP2019124823A (en) * 2018-01-17 2019-07-25 キヤノン株式会社 Optical system and image capturing device
US11221459B2 (en) 2018-01-17 2022-01-11 Canon Kabushiki Kaisha Imaging optical system and imaging apparatus

Also Published As

Publication number Publication date
JP3180133B2 (en) 2001-06-25

Similar Documents

Publication Publication Date Title
US4131363A (en) Pellicle cover for projection printing system
US3748975A (en) Apparatus for and method of correcting a defective photomask
US20070019165A1 (en) TIR PRISM for a projection display apparatus having a partially masked surface
US4063812A (en) Projection printing system with an improved mask configuration
US6967796B2 (en) Optical element and optical system
US5055871A (en) Method and apparatus for enhancing illumination uniformity in wafer steppers using photochromic glass in the optical path
US4231657A (en) Light-reflection type pattern forming system
JPH06177006A (en) Projection aligner
JPH06177007A (en) Projection aligner
JPH07307268A (en) Optical device for illumination
KR940000904B1 (en) Mask alignment system
JP4496782B2 (en) Reflective optical system and exposure apparatus
JP2004349648A (en) Self-cleaning method and transparent board for self-cleaning of semiconductor exposure meter
US7271950B1 (en) Apparatus and method for optimizing a pellicle for off-axis transmission of light
JPH06250378A (en) Exposure method and photomask used in the same
JP2785757B2 (en) Photo mask
JP3008744B2 (en) Projection exposure apparatus and semiconductor device manufacturing method using the same
US4666292A (en) Projection optical apparatus and a photographic mask therefor
JPH10294273A (en) Exposure device/method
JPS636540A (en) Integrator
JPH0652704B2 (en) Projection exposure method and apparatus
JP3427210B2 (en) Projection exposure apparatus, projection exposure method, device manufacturing method using the projection exposure method, and device manufactured by the device manufacturing method
JPH08148415A (en) Illuminator and exposure apparatus
JPS6083019A (en) Projection exposure method of pattern reflection type
JP4122579B2 (en) Illumination area setting apparatus, exposure apparatus and exposure method

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees