JPH06250378A - Exposure method and photomask used in the same - Google Patents

Exposure method and photomask used in the same

Info

Publication number
JPH06250378A
JPH06250378A JP3525093A JP3525093A JPH06250378A JP H06250378 A JPH06250378 A JP H06250378A JP 3525093 A JP3525093 A JP 3525093A JP 3525093 A JP3525093 A JP 3525093A JP H06250378 A JPH06250378 A JP H06250378A
Authority
JP
Japan
Prior art keywords
photomask
light
opening
transparent substrate
transparent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP3525093A
Other languages
Japanese (ja)
Inventor
Koichi Matsumoto
宏一 松本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP3525093A priority Critical patent/JPH06250378A/en
Publication of JPH06250378A publication Critical patent/JPH06250378A/en
Withdrawn legal-status Critical Current

Links

Abstract

PURPOSE:To expose a bright isolated pattern such as a contact hole with sufficient depth of focus. CONSTITUTION:The surface 21 of an opening in a photomask is made convex or concave within the height of the edge of the light shielding film 12 of the photomask and the photomask is illuminated with an illuminating optical system whose numerical aperture NA almost satisfies the relation of NA= W.n.(n-1)/(2¦R¦) [where (n) is the refractive index of the transparent substrate 11 of the photomask, W is the width of the opening on the substrate 11 and R is the radius of curvature of the convex or concave surface 21 of the opening].

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、例えば半導体素子又は
液晶表示素子等をフォトリソグラフィ技術を用いて製造
する際に、原版としてのフォトマスクのパターンを感光
基板上に焼き付けるための露光方法及びこの露光方法で
使用されるフォトマスクに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an exposure method for printing a pattern of a photomask as an original plate on a photosensitive substrate when, for example, manufacturing a semiconductor device or a liquid crystal display device by using a photolithography technique, and an exposure method therefor. The present invention relates to a photomask used in an exposure method.

【0002】[0002]

【従来の技術】例えば半導体素子又は液晶表示素子等を
フォトリソグラフィ技術を用いて製造する際に、フォト
マスク又はレチクル(以下、「フォトマスク」と総称す
る)のパターンを投影光学系を介して感光材が塗布され
た基板(ウエハ又はガラスプレート等)上に露光する投
影露光装置が使用されている。斯かる投影露光装置用の
フォトマスクとして、従来は一般に透明基板上に遮光膜
でパターンを形成してなるフォトマスクが使用されてい
た。
2. Description of the Related Art For example, when a semiconductor device or a liquid crystal display device is manufactured by using a photolithography technique, a pattern of a photomask or reticle (hereinafter referred to as "photomask") is exposed through a projection optical system. 2. Description of the Related Art A projection exposure apparatus that exposes a material coated substrate (wafer, glass plate, or the like) is used. As a photomask for such a projection exposure apparatus, conventionally, a photomask in which a pattern is formed on a transparent substrate with a light shielding film has been generally used.

【0003】図5(A)は従来の遮光膜からなるフォト
マスクを示し、この図5(A)において、ガラス基板等
の透明基板11上にクロム膜等の遮光膜12が形成さ
れ、遮光膜12内に形成された開口部12aが明パター
ンに対応している。最近は半導体素子等のパターンが微
細化するのに応じて、投影露光装置においては、解像力
の向上が求められている。解像力を高めるために、投影
光学系、照明光学系及びフォトマスクについてそれぞれ
改善が行われているが、解像力を高めるためのフォトマ
スクとして所謂位相シフトマスクが注目を集めている。
位相シフトマスクには、様々のバリエーションが提案さ
れている。いま、感光基板上に転写対象とするパターン
を孤立している明パターンとして、そのような孤立パタ
ーン用の位相シフトマスクの例を図5(B)及び(C)
に示す。
FIG. 5A shows a photomask made of a conventional light-shielding film. In FIG. 5A, a light-shielding film 12 such as a chromium film is formed on a transparent substrate 11 such as a glass substrate. The opening 12a formed in 12 corresponds to the bright pattern. Recently, as the pattern of semiconductor elements and the like becomes finer, the projection exposure apparatus is required to have improved resolution. The projection optical system, the illumination optical system, and the photomask have been improved in order to enhance the resolution, but a so-called phase shift mask has been attracting attention as a photomask for enhancing the resolution.
Various variations have been proposed for the phase shift mask. Now, assuming that the pattern to be transferred on the photosensitive substrate is an isolated bright pattern, an example of a phase shift mask for such an isolated pattern is shown in FIGS. 5B and 5C.
Shown in.

【0004】図5(B)は「補助パターン型」などと呼
ばれる位相シフトマスクを示し、この図5(B)におい
て、透明基板11上の遮光膜12の開口部12aの周囲
に開口部12bが形成され、この開口部12bの上に位
相部材13が形成されている。一方、図5(C)は「エ
ッジ強調型」等と呼ばれているフォトマスクを示し、こ
の図5(C)において、透明基板11上の遮光膜12の
開口部12aのエッジ部を覆うように、開口部を有する
位相部材14が形成されている。
FIG. 5B shows a phase shift mask called “auxiliary pattern type”. In FIG. 5B, an opening 12b is formed around the opening 12a of the light shielding film 12 on the transparent substrate 11. The phase member 13 is formed on the opening 12b. On the other hand, FIG. 5C shows a photomask called “edge-enhanced type” or the like. In FIG. 5C, the edge portion of the opening 12 a of the light shielding film 12 on the transparent substrate 11 is covered. The phase member 14 having an opening is formed in the.

【0005】図5(B)及び(C)の位相シフトマスク
は何れも、開口部12b又は12aよりなる透過部の一
部を位相部材13又は14が覆い、それら位相部材13
又は14を透過する光については、位相部材を介さずに
開口部を通過する光に比較して位相がπだけ変わる様に
なっている。つまり、位相部材13及び14の屈折率を
n、厚さをd、露光光の波長をλ、kを整数とすると
き、その厚さdは次式を満足するような厚さに設定され
ている。 (n−1)d=(k+1/2)λ この様な従来の位相シフトマスクを使用することによ
り、パターンの解像力が向上することが確かめられてい
る。
In both of the phase shift masks of FIGS. 5B and 5C, the phase member 13 or 14 covers a part of the transmissive portion formed of the opening 12b or 12a, and the phase member 13 is formed.
Alternatively, the phase of the light passing through 14 is changed by π as compared with the light passing through the opening without passing through the phase member. That is, when the refractive index of the phase members 13 and 14 is n, the thickness is d, the wavelength of the exposure light is λ, and k is an integer, the thickness d is set to satisfy the following equation. There is. (N-1) d = (k + 1/2)? It has been confirmed that the resolution of the pattern is improved by using such a conventional phase shift mask.

【0006】[0006]

【発明が解決しようとする課題】一般に、転写対象とす
るパターンが微細化すると、それに応じて投影光学系の
開口数は大きくなり、開口数が大きくなるのに従って、
良好に結像が行われる範囲である焦点深度が浅くなる。
これは位相シフトマスクを使用した場合でも同じであ
り、位相シフトマスクを使用して解像力が高まっても焦
点深度は必ずしも十分ではないという不都合があった。
また、露光装置としては、投影光学系を使用しないコン
タクト方式又はプロキシミティ方式の露光装置も使用さ
れているが、このような露光装置では特に転写対象とす
るパターンが微細化すると、パターンの転写が困難とな
る。
Generally, when the pattern to be transferred is miniaturized, the numerical aperture of the projection optical system increases accordingly, and as the numerical aperture increases,
The depth of focus, which is the range in which good image formation is performed, becomes shallow.
This is the same even when the phase shift mask is used, and there is a disadvantage that the depth of focus is not always sufficient even if the resolution is increased by using the phase shift mask.
Further, as the exposure apparatus, a contact type or proximity type exposure apparatus that does not use a projection optical system is also used. However, in such an exposure apparatus, especially when a pattern to be transferred is miniaturized, the transfer of the pattern may occur. It will be difficult.

【0007】但し、所定ピッチのライン・アンド・スペ
ースパターンのような周期的なパターンについては、所
謂変形光源法により解像力を向上しつつ焦点深度も確保
できることが分かっている。しかしながら、コンタクト
ホールのような孤立パターンについては、焦点深度を確
保できる有効な手法がないのが現状である。本発明は斯
かる点に鑑み、コンタクトホール等のような明るい孤立
したパターンを十分な焦点深度で露光できる露光方法を
提供することを目的とする。更に本発明は、そのような
露光方法で使用されるフォトマスクを提供することを目
的とする。
However, it has been found that for a periodic pattern such as a line-and-space pattern having a predetermined pitch, the so-called modified light source method can improve the resolution and secure the depth of focus. However, there is currently no effective method for ensuring the depth of focus for isolated patterns such as contact holes. In view of the above point, the present invention has an object to provide an exposure method capable of exposing a bright isolated pattern such as a contact hole with a sufficient depth of focus. Furthermore, the present invention aims to provide a photomask used in such an exposure method.

【0008】[0008]

【課題を解決するための手段】本発明による露光方法
は、例えば図3に示す如く、透明基板(11)上に所定
の透過部を囲むように遮光部材(12)を配置してなる
フォトマスクを照明光学系からの照明光で照明し、その
フォトマスク上のその所定の透過部のパターンの像を基
板上に露光する方法において、そのフォトマスク上のそ
の透過部の表面(21)を遮光部材(12)のエッジ部
を超えない範囲で凸又は凹の曲面状に形成し、透明基板
(11)の屈折率をn、透明基板(11)上のその透過
部の幅をW、その透過部の曲面状の表面(21)の曲率
半径をRとしたとき、その照明光学系の開口数NAが、
次の関係をほぼ満足する状態で、そのフォトマスクを照
明するものである。
In the exposure method according to the present invention, as shown in FIG. 3, for example, a photomask having a light shielding member (12) arranged on a transparent substrate (11) so as to surround a predetermined transparent portion. In the method of illuminating the substrate with the illumination light from the illumination optical system to expose the image of the pattern of the predetermined transmission portion on the photomask on the substrate, the surface (21) of the transmission portion on the photomask is shielded It is formed into a convex or concave curved surface within a range not exceeding the edge portion of the member (12), the refractive index of the transparent substrate (11) is n, the width of its transparent portion on the transparent substrate (11) is W, When the radius of curvature of the curved surface (21) of the portion is R, the numerical aperture NA of the illumination optical system is
The photomask is illuminated while the following relations are almost satisfied.

【0009】NA=W・n・(n−1)/(2|R|) また、本発明による第1のフォトマスクは、例えば図1
(A)に示すように、透明基板(11)上に所定の透過
部を囲むように遮光部材(12)を配置し、その透過部
の表面(21)を遮光部材(12)のエッジ部を超えな
い範囲で凸又は凹の曲面状に形成したものである。
NA = Wn (n-1) / (2│R│) Further, the first photomask according to the present invention is shown in FIG.
As shown in (A), a light shielding member (12) is arranged on a transparent substrate (11) so as to surround a predetermined transparent portion, and the surface (21) of the transparent portion is provided with an edge portion of the light shielding member (12). It is formed in a convex or concave curved surface shape within a range not exceeding.

【0010】また、本発明の第2のフォトマスクは、透
明基板(11)上に所定の透過部を囲むように遮光部材
(12)を配置し、その透過部の表面に遮光部材(1
2)のエッジ部を超えない範囲で凸の曲面状の位相部材
を形成したものである。
In the second photomask of the present invention, a light blocking member (12) is arranged on a transparent substrate (11) so as to surround a predetermined transparent portion, and the light blocking member (1) is provided on the surface of the transparent portion.
The phase member having a convex curved surface is formed within a range not exceeding the edge portion of 2).

【0011】[0011]

【作用】斯かる本発明の露光方法において使用されるフ
ォトマスクの構成は図1に示す如くである。図1(A)
では透明基板11の上(図1(A)では下側)にクロム
等の遮光膜12が配置されている。中央部は遮光膜12
が無く、光透過部となっている。その光透過部における
透明基板11の表面21は凸の曲面となっているもので
ある。また、図1(B)では同様の構成にて光透過部に
おける透明基板11の表面22が凹の曲面となっている
ものである。
The structure of the photomask used in the exposure method of the present invention is as shown in FIG. Figure 1 (A)
Then, the light shielding film 12 of chromium or the like is arranged on the transparent substrate 11 (lower side in FIG. 1A). Shading film 12 in the center
There is no light and it is a light transmission part. The surface 21 of the transparent substrate 11 in the light transmitting portion is a convex curved surface. Further, in FIG. 1B, the surface 22 of the transparent substrate 11 in the light transmitting portion has a concave curved surface in the same configuration.

【0012】さて、この様な構成のフォトマスクを使用
した場合の露光原理を図2を用いて説明する。図2は、
フォトマスクが所定の開口数を有する照明光により照明
された場合、光がどの様に進むかを幾何光学的に示した
ものである。ここでは簡単の為、透明基板11は省略し
て描いてある。図2(A)は、従来の通常のフォトマス
クの場合を示し、この図2(A)において、遮光膜12
の開口部12aを通る光は直進する。従って、図2
(A)に示してある全光束の包絡線を考えると、遮光膜
12の開口部12aで最も細い光束となっていて、そこ
から離れるにつれて太い光束となっている。これを投影
光学系を介して感光基板側に結像する場合、遮光膜12
の開口部12aのその投影光学系を介しての共役位置に
感光基板が在る場合はシャープな像が形成されるが、そ
の共役位置から感光基板が光軸方向にずれるとボケた像
になる。
Now, the principle of exposure when the photomask having such a structure is used will be described with reference to FIG. Figure 2
When the photomask is illuminated with illumination light having a predetermined numerical aperture, it is a geometrical optical representation of how the light travels. For simplicity, the transparent substrate 11 is omitted in the drawing. FIG. 2A shows the case of a conventional normal photomask, and in FIG. 2A, the light shielding film 12 is shown.
The light passing through the opening 12a of the light travels straight. Therefore, FIG.
Considering the envelope of all the light fluxes shown in (A), the light flux is the thinnest light flux at the opening 12a of the light-shielding film 12 and becomes thicker as it goes away from it. When this is imaged on the photosensitive substrate side via the projection optical system, the light-shielding film 12
A sharp image is formed when the photosensitive substrate is present at the conjugate position of the opening 12a of the optical system through the projection optical system, but when the photosensitive substrate is displaced from the conjugate position in the optical axis direction, a blurred image is formed. .

【0013】次に、図1(A)に対応する図2(B)の
フォトマスクは、遮光膜12の開口部12aに凸レンズ
23が在るのと等価である。この場合、フォトマスクを
上方から照明する光のうち、互いに平行な光の成分は凸
レンズ23の焦点距離Fだけ離れた位置に焦点を結び、
光束全体としては図2(B)に示す如く振る舞う。ここ
で、全光束の包絡線を考えると、遮光膜12の位置から
下方へ焦点距離Fの位置までの間、光束の太さがほぼ一
定に保たれている事が分かる。投影光学系の倍率をMと
するとこの光束の太さが一定部分は、感光基板側では高
さがF・M2 の範囲であり、この分だけ焦点深度が増大
する事が期待できる。
Next, the photomask of FIG. 2B corresponding to FIG. 1A is equivalent to having a convex lens 23 in the opening 12a of the light shielding film 12. In this case, of the light that illuminates the photomask from above, the mutually parallel light components are focused on the position separated by the focal length F of the convex lens 23,
The entire luminous flux behaves as shown in FIG. Here, considering the envelope of the total light flux, it can be seen that the thickness of the light flux is kept substantially constant from the position of the light shielding film 12 to the position of the focal length F downward. Assuming that the magnification of the projection optical system is M, the portion where the thickness of this light flux is constant is in the range of F · M 2 on the photosensitive substrate side, and it can be expected that the depth of focus increases by this amount.

【0014】次に、図1(B)に対応する図2(C)の
フォトマスクは、遮光膜12の開口部12aに凹レンズ
24が在るのと等価である。図2(B)の場合に対し
て、図2(C)の場合には、光束の太さが一定の部分が
虚像としてフォトマスクの上方側に出来る。虚像として
の光束の太さが一定の部分は、図2(B)中に破線で示
してある。また、簡単のため、図2(C)において入射
光線の一部を省略して描いてある。この状態を投影光学
側から見ると、あたかも図2(C)中で焦点距離Fの範
囲内において光束の太さが一定であるのと等価であるか
ら、図2(B)の場合と同様の理由で焦点深度が増大す
る。
Next, the photomask of FIG. 2C corresponding to FIG. 1B is equivalent to having a concave lens 24 in the opening 12a of the light shielding film 12. In the case of FIG. 2C, as compared with the case of FIG. 2B, a portion where the thickness of the light flux is constant can be formed as a virtual image on the upper side of the photomask. A portion where the thickness of the light flux as the virtual image is constant is shown by a broken line in FIG. Further, for simplicity, a part of the incident light beam is omitted in FIG. When this state is viewed from the projection optical side, it is equivalent to that the thickness of the light beam is constant within the range of the focal length F in FIG. 2C, and therefore, the same as in the case of FIG. 2B. The depth of focus increases for the reason.

【0015】本発明によるフォトマスクは、照明系との
最適化を図ることができる。これを図3を用いて考えて
みる。フォトマスクの開口部の表面21が凸の曲面であ
るとして、フォトマスクの下側に一定の光束が出来る為
の条件は、フォトマスクに対して垂直に入射する光線成
分が作る焦点位置Pと、最も大きな入射角でフォトマス
クに入射する光線成分が作る焦点位置Qとの間の距離h
が、開口部の幅Wの1/2であることである。即ち、次
式が成立している。
The photomask according to the present invention can be optimized with respect to the illumination system. Consider this with reference to FIG. Assuming that the surface 21 of the opening of the photomask is a convex curved surface, the conditions for forming a constant light beam on the lower side of the photomask are the focus position P formed by the light ray component incident perpendicularly to the photomask, The distance h between the focus position Q formed by the light ray component incident on the photomask at the largest incident angle
Is half the width W of the opening. That is, the following equation is established.

【0016】h=W/2 (1) また、照明光学系の開口数をNAとすると、図3の照明
光の最大の入射角をθとして、次式が成立する。 NA=sinθ (2) そして、透明基板11の屈折率をn、最大入射角の照明
光の遮光膜12への入射角をθ′とすると、スネルの法
則から次式が成立する。
H = W / 2 (1) Further, when the numerical aperture of the illumination optical system is NA, the following equation is established, where θ is the maximum incident angle of the illumination light. NA = sin θ (2) Then, assuming that the refractive index of the transparent substrate 11 is n and the incident angle of the maximum incident angle of the illumination light to the light shielding film 12 is θ ′, the following formula is established from Snell's law.

【0017】sinθ=n・sinθ´(3) また、凸の曲面である表面21の曲率半径をR、その凸
の曲面による焦点距離をfとすると、幾何光学の関係式
より次式が成り立つ。 1/f=(n−1)/R (4) h=f・tanθ´ (5) それら(1)式〜(5)式において、角度θ及び角度θ
´は充分小さい、即ちθ≒sinθ≒tanθとして、
照明光学系のNAを求めると次のようになる。
Sin θ = n · sin θ ′ (3) Further, when the radius of curvature of the surface 21 which is a convex curved surface is R and the focal length due to the convex curved surface is f, the following equation holds from the geometrical optics relational expression. 1 / f = (n−1) / R (4) h = f · tan θ ′ (5) In the expressions (1) to (5), the angle θ and the angle θ
′ Is sufficiently small, that is, θ≈sin θ≈tan θ,
The NA of the illumination optical system is calculated as follows.

【0018】 NA≒W・n・(n−1)/(2R) (6) ここでは幾何光学を用いて更に近似処理も行っているの
で、NAの最高値としては±20%程度の幅を持って考
えるべきであろう。また、(6)式は以下の様にも表現
できる。 R≒W・n・(n−1)/(2・NA) (7) この(7)式は、照明光学系のNAが与えれているとき
にフォトマスクの開口部の曲率半径を与える式となって
いる。また、ここまで図3は、開口部に凸の曲面を仮定
したが、凹曲面を仮定しても同様である。故に、(6)
式、(7)式中の曲率半径Rは絶対値として解釈しなけ
ればならない。
NA≈W · n · (n−1) / (2R) (6) Since the approximation process is further performed using geometrical optics, the maximum value of NA is about ± 20%. You should think about it. Further, the expression (6) can be expressed as follows. R≈W · n · (n−1) / (2 · NA) (7) This formula (7) is a formula that gives the radius of curvature of the opening of the photomask when the NA of the illumination optical system is given. Has become. Further, so far, FIG. 3 assumes a convex curved surface in the opening, but the same applies if a concave curved surface is assumed. Therefore, (6)
The radius of curvature R in equation (7) must be interpreted as an absolute value.

【0019】以上の説明は、幾何光学をベースにして進
めてきたが、更に詳しい解析を進めるには波動光学によ
りフォトマスクの開口部での光の回折を考慮しなければ
ならない。しかしながら、回折という現象は幾何光学に
て予見される光の進行方向のまわりに所定の角度分布を
持って広がるので、以上で説明した作用効果は波動光学
にて考えても定性的にはそのまま当てはまる。
The above description has been made on the basis of geometrical optics, but in order to carry out a more detailed analysis, it is necessary to consider the diffraction of light at the opening of the photomask by means of wave optics. However, since the phenomenon of diffraction spreads with a predetermined angular distribution around the traveling direction of light predicted by geometrical optics, the effects described above apply qualitatively as they are even when considered by wave optics. .

【0020】なお、例えば図1(A)のフォトマスクで
は、表面21が凸の曲面状となっているが、透明基板1
1の表面に凸の曲面状の位相部材を被着しても同様の作
用効果を奏することは明かである。
In the photomask of FIG. 1A, for example, the surface 21 has a convex curved surface, but the transparent substrate 1
It is clear that even if the surface member of No. 1 is coated with the convex phase member having a curved surface, the same operational effect can be obtained.

【0021】[0021]

【実施例】以下、本発明の一実施例につき図1〜図3を
参照して説明する。図1(A)及び(B)は本実施例の
フォトマスクの一部を示し、図1(A)のフォトマスク
では、ガラス基板等よりなる透明基板11の上にクロム
膜等の遮光膜12が設けられ、遮光膜12の一部に開口
部12aよりなる明パターンが形成されている。そし
て、その開口部12a内の透明基板11の表面21の形
状が凸の曲面となっている。一方、図1(B)のフォト
マスクでは、開口部12a内の透明基板11の表面22
の形状が凹の曲面となっている。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to FIGS. 1A and 1B show a part of the photomask of this embodiment. In the photomask of FIG. 1A, a light shielding film 12 such as a chromium film is provided on a transparent substrate 11 made of a glass substrate or the like. Is provided, and a light pattern including the opening 12 a is formed in a part of the light shielding film 12. The shape of the surface 21 of the transparent substrate 11 in the opening 12a is a convex curved surface. On the other hand, in the photomask of FIG. 1B, the surface 22 of the transparent substrate 11 in the opening 12a is formed.
Has a concave curved surface.

【0022】本実施例の動作につき図2(B)及び
(C)を参照して説明する。図2(B)及び(C)はそ
れぞれ凸の曲面及び凹の曲面を凸レンズ23及び凹レン
ズ24として表したものである。この場合、開口部のレ
ンズ効果によりその開口部の前(図2(C))、或いは
後ろ(図2(B))方向に光束幅がほぼ一定の領域が出
来るので、結果として投影光学系を介した焦点深度が増
大するという効果が得られる。
The operation of this embodiment will be described with reference to FIGS. 2 (B) and 2 (C). 2B and 2C show a convex curved surface and a concave curved surface as a convex lens 23 and a concave lens 24, respectively. In this case, due to the lens effect of the opening, a region having a substantially constant luminous flux width can be formed in the front (FIG. 2C) or the rear (FIG. 2B) direction of the opening. The effect is to increase the depth of focus through.

【0023】なお、図1及び図2においては一次元的な
断面形状にて図示してあるが、実際には2次元的な形状
のパターンを考えなければならない。先ず、1次元的な
孤立ラインパターンの場合は、図1(A)或いは図1
(B)の状態にて図1の紙面に垂直な方向に並進対称性
を持たせてやればよい。従って、図1(A)又は(B)
における表面21又は22の面形状はシリンドリカルな
面形状になる。
Although FIG. 1 and FIG. 2 show a one-dimensional cross-sectional shape, in reality, a two-dimensional pattern must be considered. First, in the case of a one-dimensional isolated line pattern, FIG.
In the state of (B), translational symmetry may be given in the direction perpendicular to the plane of FIG. Therefore, FIG. 1 (A) or (B)
The surface 21 or 22 has a cylindrical surface shape.

【0024】次に、コンタクトホールの様に図1
(A),(B)において図1の紙面内の左右方向、及び
図1の紙面に対して垂直な方向の両方向ともに孤立して
いると見なせる孤立パターンの場合は、表面21又は2
2の面形状はこれら両方向に曲率半径を有しているトー
リック面形状となる。次に、図3を参照して、曲面の形
状につき説明する。図3に示すように、開口部12a内
の透明基板11の表面21の図3の紙面に平行な方向の
面内の曲率半径をR、開口部12aの図3の紙面に平行
な方向の幅をWとすると、開口幅Wと曲率半径Rとの関
係は、(6)式にみられるように開口幅Wと曲率半径R
とが正比例する。従って、幅Wが小さくなると小さな曲
率半径Rが求められると云う事になる。この関係は図3
の紙面に垂直な方向の開口幅W′と曲率半径R′につい
ても成立する。特に、両方向の開口幅が互いに等しい場
合は、図1(A)及び(B)の表面21及び22の形状
は球面が望ましい。
Next, as shown in FIG.
In (A) and (B), in the case of an isolated pattern that can be regarded as being isolated in both the left-right direction within the plane of FIG. 1 and the direction perpendicular to the plane of FIG.
The surface shape of No. 2 is a toric surface shape having a radius of curvature in both directions. Next, the shape of the curved surface will be described with reference to FIG. As shown in FIG. 3, the in-plane radius of curvature of the surface 21 of the transparent substrate 11 in the opening 12a in the direction parallel to the paper surface of FIG. 3 is R, and the width of the opening 12a in the direction parallel to the paper surface of FIG. Is W, the relationship between the opening width W and the radius of curvature R is as shown in equation (6).
And are directly proportional. Therefore, it can be said that a smaller radius of curvature R is required when the width W becomes smaller. This relationship is shown in Figure 3.
Also holds for the opening width W ′ and the radius of curvature R ′ in the direction perpendicular to the plane of FIG. In particular, when the opening widths in both directions are equal to each other, the shapes of the surfaces 21 and 22 in FIGS. 1A and 1B are preferably spherical surfaces.

【0025】次に、上述の(7)式を用いて最適な曲率
半径Rを求める。図3のフォトマスクが使用される縮小
型投影露光装置の投影光学系の開口数NA0 を0.5
0、コヒーレンスファクターであるσを0.5、倍率M
を1/5とすると、照明光学系の開口数NA((7)式
中のNAと同じ〕は、次のようになる。 NA=NA0 ×M×σ=0.50×(1/5)×0.5 (8) また、パターン幅を感光基板側で0.3μmとすると、
フォトマスク上の幅Wは次のようになる。
Next, the optimum radius of curvature R is obtained using the above equation (7). The numerical aperture NA 0 of the projection optical system of the reduction projection exposure apparatus using the photomask of FIG. 3 is set to 0.5.
0, coherence factor σ of 0.5, magnification M
Is 1/5, the numerical aperture NA of the illumination optical system (same as NA in the expression (7)] is as follows: NA = NA 0 × M × σ = 0.50 × (1/5 ) × 0.5 (8) If the pattern width is 0.3 μm on the photosensitive substrate side,
The width W on the photomask is as follows.

【0026】 W=0.3×(1/M)=0.3×5=1.5[μm] (9) 更に、透明基板11の屈折率nを次のようにする。 n=1.5 (10) そして、(8)式、(9)式、(10)式をそれぞれ
(7)式に代入すると、最適曲率半径Rは次のようにな
る。
W = 0.3 × (1 / M) = 0.3 × 5 = 1.5 [μm] (9) Further, the refractive index n of the transparent substrate 11 is set as follows. n = 1.5 (10) Then, by substituting the equations (8), (9), and (10) into the equation (7), the optimum radius of curvature R is as follows.

【0027】R=11.25[μm] (11) また、光束幅が一定である距離は、焦点距離を示す
(4)式より (1/f)=(1.5−1)/11.25 従って、焦点距離fは22.5μmとなる。これ感光基
板側の量に直すと、22.5×(1/5)2 =0.9と
なり、約0.9μmだけ焦点深度が増大する。
R = 11.25 [μm] (11) Further, the distance at which the light flux width is constant is (1 / f) = (1.5-1) / 11. 25 Therefore, the focal length f is 22.5 μm. When converted into the amount on the photosensitive substrate side, it becomes 22.5 × (1/5) 2 = 0.9, and the depth of focus increases by about 0.9 μm.

【0028】なお、本実施例に於いては、図1(A)及
び(B)における透明基板11の表面が曲面形状をして
いるとしたが、実際には透明基板11の表面をエッチン
グにて所望の形状としてもよいし、或いは所望の形状の
透明物質を開口部に被着しても効果は等価である。但
し、ここで重要なのは光透過部である開口部12aを完
全に覆って、遮光膜12のエッジ部をも曲率を有してい
る透明物質で覆ってはいけないという事である。
In this embodiment, the surface of the transparent substrate 11 in FIGS. 1A and 1B has a curved shape, but the surface of the transparent substrate 11 is actually etched. The desired shape may be obtained, or a transparent material having a desired shape may be applied to the opening to achieve the same effect. However, what is important here is that the opening 12a, which is a light transmitting portion, should not be completely covered and the edge portion of the light shielding film 12 should not be covered with a transparent material having a curvature.

【0029】図4はそのような場合を示し、この図4に
おいて、遮光膜12の開口部12aは遮光膜12のエッ
ジ部も含めて凸の曲率半径を有する透明物質15にて覆
われている。この場合、本来のパターン幅Wと投影光学
系側から観測されるパターン幅W´とが異なってしまう
という問題が生じる。これは、投影光学系側から見る
と、パターン幅そのものをレンズ効果を有している透明
物質15を介して見る事になるので、そのパターンの虚
像が見えて、見掛け上そのパターン幅Wが変わってしま
うためである。それ故、本発明の適用に当たっては、フ
ォトマスクの光透過部である開口部12aの内部に曲面
を形成することが肝要となる。
FIG. 4 shows such a case. In FIG. 4, the opening 12a of the light shielding film 12 is covered with the transparent substance 15 having a convex radius of curvature including the edge portion of the light shielding film 12. . In this case, there arises a problem that the original pattern width W and the pattern width W ′ observed from the projection optical system side are different. This means that when viewed from the projection optical system side, the pattern width itself is viewed through the transparent substance 15 having a lens effect, so that a virtual image of the pattern can be seen and the pattern width W apparently changes. This is because it will end up. Therefore, in applying the present invention, it is important to form a curved surface inside the opening 12a which is the light transmitting portion of the photomask.

【0030】但し、図1(B)に示すように、開口部1
2aの表面22が凹面の場合は、その表面を表面22A
で示すように、遮光膜12のエッジを超えて広くしても
よい。凹面の場合は、投影光学系から見た開口部12a
の幅は変化しないからである。また、上述実施例では、
投影露光をするという前提で説明していたが、特に、開
口部の曲面が凸の場合はフォトマスクの下方に光束幅一
定の部分が形成されるので、プロキシミティ露光の際の
フォトマスク及びこのフォトマスクを用いた露光方法に
も本発明がそのまま適用される。
However, as shown in FIG. 1B, the opening 1
If the surface 22 of 2a is concave, the surface 22A
As shown by, it may be widened beyond the edge of the light shielding film 12. In the case of a concave surface, the opening 12a seen from the projection optical system
This is because the width of does not change. Also, in the above embodiment,
Although it has been described on the assumption that projection exposure is performed, in particular, when the curved surface of the opening is convex, a portion with a constant light flux width is formed below the photomask. The present invention is directly applied to the exposure method using the photomask.

【0031】なお、本発明は上述実施例に限定されず本
発明の要旨を逸脱しない範囲で種々の構成を取り得るこ
とは勿論である。
The present invention is not limited to the above-described embodiments, and it goes without saying that various configurations can be adopted without departing from the gist of the present invention.

【0032】[0032]

【発明の効果】本発明の露光方法によれば、フォトマス
ク上のパターンのうち、暗いバックグラウンドに孤立す
る明るいパターンに対しては、その明るいパターン(透
過部)の透明基板の表面が凸面あるいは凹面であるた
め、そのフォトマスクの下方或いは上方に光束幅がほぼ
一定の領域が形成される。従って、このパターンを投影
光学系を介して、基板側に結像すると焦点深度が増大す
るという利点がある。また、本発明により照明光学系の
開口数NA、パターン幅W、パターン開口部の曲率半径
R、透明基板の屈折率n等が最適化される。
According to the exposure method of the present invention, of the patterns on the photomask, for a bright pattern isolated on a dark background, the surface of the transparent substrate of the bright pattern (transmission part) is a convex surface or Since the surface is concave, a region having a substantially constant luminous flux width is formed below or above the photomask. Therefore, if this pattern is imaged on the substrate side via the projection optical system, there is an advantage that the depth of focus increases. Further, according to the present invention, the numerical aperture NA of the illumination optical system, the pattern width W, the radius of curvature R of the pattern opening, the refractive index n of the transparent substrate, etc. are optimized.

【0033】更に、本発明の副次的効果として、図2
(B)及び(C)に見られる様に、パターン開口部の曲
面を凸とするか凹とするかで光束幅が一定の領域がフォ
トマスクの下方又は上方に変わる。これは、プロセスに
より基板上に段差構造がある場合に、その段差構造に合
わせてフォトマスク側で焦点深度範囲を各パターンごと
に変えられる事を意味している。この様に、本発明によ
れば一つの孤立パターンに対する焦点深度を増大するの
みならず、基板上の段差構造に合わせて総合的な焦点深
度をも増大することができる。
Further, as a side effect of the present invention, FIG.
As seen in (B) and (C), depending on whether the curved surface of the pattern opening is convex or concave, the region where the light flux width is constant changes to the lower or upper part of the photomask. This means that if there is a step structure on the substrate due to the process, the depth of focus range can be changed for each pattern on the photomask side in accordance with the step structure. As described above, according to the present invention, not only the depth of focus for one isolated pattern can be increased, but also the total depth of focus can be increased in accordance with the step structure on the substrate.

【0034】また、本発明のフォトマスクを使用するこ
とにより、上述の露光方法が実施できる。
Further, the above-mentioned exposure method can be carried out by using the photomask of the present invention.

【図面の簡単な説明】[Brief description of drawings]

【図1】(A)は本発明の一実施例の開口部の表面が凸
のフォトマスクを示す断面に沿う端面図、(B)はその
実施例の開口部の表面が凹のフォトマスクを示す断面に
沿う端面図である。
FIG. 1A is an end view along a cross section showing a photomask having a convex opening surface according to an embodiment of the present invention, and FIG. 1B is a photomask having a concave opening surface according to the embodiment. It is an end view which follows the cross section shown.

【図2】本発明の効果を従来技術との比較にて説明する
為の説明図である。
FIG. 2 is an explanatory diagram for explaining an effect of the present invention in comparison with a conventional technique.

【図3】本発明によるフォトマスクと照明光学系との最
適化の説明に供する図である。
FIG. 3 is a diagram for explaining optimization of a photomask and an illumination optical system according to the present invention.

【図4】透明物質が不適切な範囲まで被着されたフォト
マスクを示す断面に沿う端面図である。
FIG. 4 is an end view along a cross section showing a photomask having a transparent material deposited to an inappropriate extent.

【図5】(A)は従来の通常のフォトマスクを示す断面
に沿う端面図、(B)及び(C)はそれぞれ従来の位相
シフトマスクを示す断面に沿う端面図である。
5A is an end view along a cross section showing a conventional ordinary photomask, and FIGS. 5B and 5C are end views along a cross section showing a conventional phase shift mask, respectively.

【符号の説明】[Explanation of symbols]

11 透明基板 12 遮光膜 12a 開口部 11 transparent substrate 12 light shielding film 12a opening

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 透明基板上に所定の透過部を囲むように
遮光部材を配置してなるフォトマスクを照明光学系から
の照明光で照明し、前記フォトマスク上の前記所定の透
過部のパターンの像を基板上に露光する方法において、 前記フォトマスク上の前記透過部の表面を前記遮光部材
のエッジ部を超えない範囲で凸又は凹の曲面状に形成
し、 前記透明基板の屈折率をn、前記透明基板上の前記透過
部の幅をW、前記透過部の曲面状の表面の曲率半径をR
としたとき、前記照明光学系の開口数NAが、 NA=W・n・(n−1)/(2|R|) の関係をほぼ満足する状態で、前記フォトマスクを照明
することを特徴とする露光方法。
1. A pattern of the predetermined transmission part on the photomask, which is obtained by illuminating a photomask having a light-shielding member arranged on a transparent substrate so as to surround the predetermined transmission part with illumination light from an illumination optical system. In the method of exposing the image on a substrate, the surface of the transparent portion on the photomask is formed into a convex or concave curved surface within a range not exceeding the edge portion of the light shielding member, and the refractive index of the transparent substrate is n, the width of the transparent portion on the transparent substrate is W, and the radius of curvature of the curved surface of the transparent portion is R.
Then, the photomask is illuminated in a state where the numerical aperture NA of the illumination optical system substantially satisfies the relationship of NA = Wn (n-1) / (2 | R |). Exposure method.
【請求項2】 透明基板上に所定の透過部を囲むように
遮光部材を配置し、前記透過部の表面を前記遮光部材の
エッジ部を超えない範囲で凸又は凹の曲面状に形成した
ことを特徴とするフォトマスク。
2. A light shielding member is arranged on a transparent substrate so as to surround a predetermined transparent portion, and the surface of the transparent portion is formed into a convex or concave curved surface within a range not exceeding an edge portion of the light shielding member. A photomask characterized by.
【請求項3】 透明基板上に所定の透過部を囲むように
遮光部材を配置し、前記透過部の表面に前記遮光部材の
エッジ部を超えない範囲で凸の曲面状の位相部材を形成
したことを特徴とするフォトマスク。
3. A light shielding member is arranged on a transparent substrate so as to surround a predetermined transparent portion, and a convex curved surface phase member is formed on a surface of the transparent portion within a range not exceeding an edge portion of the light shielding member. A photo mask characterized by that.
JP3525093A 1993-02-24 1993-02-24 Exposure method and photomask used in the same Withdrawn JPH06250378A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3525093A JPH06250378A (en) 1993-02-24 1993-02-24 Exposure method and photomask used in the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3525093A JPH06250378A (en) 1993-02-24 1993-02-24 Exposure method and photomask used in the same

Publications (1)

Publication Number Publication Date
JPH06250378A true JPH06250378A (en) 1994-09-09

Family

ID=12436584

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3525093A Withdrawn JPH06250378A (en) 1993-02-24 1993-02-24 Exposure method and photomask used in the same

Country Status (1)

Country Link
JP (1) JPH06250378A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0815848A (en) * 1994-06-27 1996-01-19 Nec Kyushu Ltd Photoreticle
KR100609227B1 (en) * 2005-08-12 2006-08-02 동부일렉트로닉스 주식회사 Contact hole photoresist pattern of semiconductor device and method for forming the same
JP2009116268A (en) * 2007-11-09 2009-05-28 V Technology Co Ltd Photomask and method for forming convex pattern using the same
JP2009277900A (en) * 2008-05-15 2009-11-26 V Technology Co Ltd Exposure device and photomask
CN103472689A (en) * 2013-09-24 2013-12-25 中国科学院光电技术研究所 Photoetching image device and method for realizing super-resolution imaging through enhancing illumination numerical aperture
JP2014174257A (en) * 2013-03-07 2014-09-22 Hoya Corp Photo mask having microlens
US9140366B2 (en) 2014-01-10 2015-09-22 Flowserve Management Company Bearing isolator seal for rotating shaft
US9958784B2 (en) 2013-09-24 2018-05-01 The Institute Of Optics And Electronics, Chinese Academy Of Sciences Super-resolution imaging photolithography
CN108351604A (en) * 2016-01-27 2018-07-31 株式会社Lg化学 Film mask, preparation method, the pattern forming method using film mask and the pattern that is formed by film mask
US10969677B2 (en) 2016-01-27 2021-04-06 Lg Chem, Ltd. Film mask, method for manufacturing same, and method for forming pattern using film mask
US11029596B2 (en) 2016-01-27 2021-06-08 Lg Chem, Ltd. Film mask, method for manufacturing same, and method for forming pattern using film mask and pattern formed thereby

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0815848A (en) * 1994-06-27 1996-01-19 Nec Kyushu Ltd Photoreticle
KR100609227B1 (en) * 2005-08-12 2006-08-02 동부일렉트로닉스 주식회사 Contact hole photoresist pattern of semiconductor device and method for forming the same
JP2009116268A (en) * 2007-11-09 2009-05-28 V Technology Co Ltd Photomask and method for forming convex pattern using the same
JP2009277900A (en) * 2008-05-15 2009-11-26 V Technology Co Ltd Exposure device and photomask
JP2014174257A (en) * 2013-03-07 2014-09-22 Hoya Corp Photo mask having microlens
US9958784B2 (en) 2013-09-24 2018-05-01 The Institute Of Optics And Electronics, Chinese Academy Of Sciences Super-resolution imaging photolithography
CN103472689A (en) * 2013-09-24 2013-12-25 中国科学院光电技术研究所 Photoetching image device and method for realizing super-resolution imaging through enhancing illumination numerical aperture
CN103472689B (en) * 2013-09-24 2016-03-30 中国科学院光电技术研究所 Strengthen illumination numerical aperture super resolution lithography imaging device and lithographic imaging method
US9140366B2 (en) 2014-01-10 2015-09-22 Flowserve Management Company Bearing isolator seal for rotating shaft
CN108351604A (en) * 2016-01-27 2018-07-31 株式会社Lg化学 Film mask, preparation method, the pattern forming method using film mask and the pattern that is formed by film mask
CN108351604B (en) * 2016-01-27 2020-10-30 株式会社Lg化学 Film mask, method for manufacturing the same, pattern forming method using the film mask, and pattern formed by the film mask
US10969686B2 (en) * 2016-01-27 2021-04-06 Lg Chem, Ltd. Film mask, method for manufacturing same, and method for forming pattern using film mask and pattern formed thereby
US10969677B2 (en) 2016-01-27 2021-04-06 Lg Chem, Ltd. Film mask, method for manufacturing same, and method for forming pattern using film mask
US11029596B2 (en) 2016-01-27 2021-06-08 Lg Chem, Ltd. Film mask, method for manufacturing same, and method for forming pattern using film mask and pattern formed thereby

Similar Documents

Publication Publication Date Title
US5863677A (en) Aligner and patterning method using phase shift mask
EP0713142A2 (en) Combined attenuated-alternating phase shifting mask structure and fabrication methods therefor
KR940007066B1 (en) Reflection type photomask and photolithography method thereby
JP3123548B2 (en) Exposure method and exposure apparatus
JPH09329889A (en) Overlay mark
JPH06250378A (en) Exposure method and photomask used in the same
TW480368B (en) Lithograph method and mask to its application
JP3499592B2 (en) Projection exposure apparatus and pattern transfer method
JPH05165194A (en) Photomask
JPH06337514A (en) Mask and pattern forming method
JPH04180612A (en) Projection aligner
JP2000349010A (en) Method and apparatus for exposure as well as manufacture of device
US5922497A (en) Lithographic imaging system
KR100659782B1 (en) Exposure Method and Attenuated Phase Shift Mask
JPH0519447A (en) Mask for stepper
JP2725899B2 (en) Photo mask
JP3214033B2 (en) Exposure method
JP3427210B2 (en) Projection exposure apparatus, projection exposure method, device manufacturing method using the projection exposure method, and device manufactured by the device manufacturing method
KR960032100A (en) Light source filter, projection exposure apparatus using the same, and projection exposure method
JPS6219723B2 (en)
JP3298501B2 (en) Method for manufacturing semiconductor device
JPH06250377A (en) Exposure method and photomask used in the same
JPH06132192A (en) Projection exposur device
JPH07142361A (en) Projection aligner
JP2984328B2 (en) Photomask and method of forming resist pattern

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20000509