JP2015007725A - Optical imaging device - Google Patents

Optical imaging device Download PDF

Info

Publication number
JP2015007725A
JP2015007725A JP2013133309A JP2013133309A JP2015007725A JP 2015007725 A JP2015007725 A JP 2015007725A JP 2013133309 A JP2013133309 A JP 2013133309A JP 2013133309 A JP2013133309 A JP 2013133309A JP 2015007725 A JP2015007725 A JP 2015007725A
Authority
JP
Japan
Prior art keywords
function
pupil
pupil filter
filter
plane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013133309A
Other languages
Japanese (ja)
Inventor
川上 彰二郎
Shojiro Kawakami
彰二郎 川上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Photonic Lattice Inc
Original Assignee
Photonic Lattice Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Photonic Lattice Inc filed Critical Photonic Lattice Inc
Priority to JP2013133309A priority Critical patent/JP2015007725A/en
Publication of JP2015007725A publication Critical patent/JP2015007725A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Microscoopes, Condenser (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an optical microscope that provides high contrast of images, suppresses the leakage of light, and enables observation of light from a minute area while the light being distinguished from light from the adjacent area.SOLUTION: There is provided an optical microscope having a pupil filter. In the pupil filter, complex transmittance of the pupil surface of the optical microscope is a function of a radius r; an amplitude part is represented by a function obtained by multiplying the SINC function by the Hanning window function; and a phase part is constant or represented by a function obtained by approximating its amplitude part by a step function or a smooth function, and has the maximum in a peripheral part.

Description

本発明は,光学的結像装置に関する。   The present invention relates to an optical imaging apparatus.

半導体微細加工用などのリソグラフィー露光装置や、工業やバイオテクノロジー分野での微細構造の観察において、顕微システムが広く利用されている。二つのシステムにおいて、同種の構造を反対向きに光が通る。はじめに顕微システムを例にとる。   Microscopic systems are widely used in lithography exposure apparatuses for semiconductor microfabrication and the like and in the observation of microstructures in the industrial and biotechnology fields. In the two systems, light passes through the same type of structure in the opposite direction. First, take a microscopic system as an example.

図1は、通常の顕微システムや液浸の顕微システムを示す。焦点面から出た光は、空気または水などの液体を通って顕微鏡の対物レンズに向かう。顕微鏡内では、焦点面の光の2次元的分布がその上に2次元フーリエ変換関数となって写像される「瞳面」が存在する。さらにその瞳面における像は、接眼レンズを介して人が観察する、あるいは写真装置を通して感光面に写像される。焦点面の像は焦点面と共役であるといわれ、像の拡大縮小を除き共役面は互いに同等である。   FIG. 1 shows a normal microscope system or an immersion microscope system. Light emerging from the focal plane travels through a liquid such as air or water to the microscope objective. In the microscope, there is a “pupil plane” onto which the two-dimensional distribution of light on the focal plane is mapped as a two-dimensional Fourier transform function. Further, the image on the pupil plane is observed by a person through an eyepiece lens or mapped onto a photosensitive surface through a photographic apparatus. The image on the focal plane is said to be conjugate with the focal plane, and the conjugate planes are equivalent to each other except for the enlargement / reduction of the image.

薄肉レンズでは射出瞳面はレンズから焦点距離だけ後方に存在する。図2に一例を示す高倍率対物レンズでは、射出瞳面は組レンズの内部に位置することが多く、レンズのガラス内に位置することもある。顕微システム内では射出瞳面と共役な面が一つ以上存在することが普通である。   In a thin lens, the exit pupil plane exists behind the lens by a focal length. In the high-magnification objective lens shown in FIG. 2 as an example, the exit pupil plane is often located inside the group lens and may be located in the glass of the lens. In the microscopic system, there are usually one or more planes conjugate to the exit pupil plane.

焦点から発する光のうち、顕微鏡の光軸となす角の小さいものは集光が容易であるが、解像度を高めるには極力大きな角度のものまで利用する。最大角をθ、焦点面と対物レンズの間の媒質の屈折率をn、使用する光の波長をλとする。いっぽう、顕微鏡と対をなす露光装置では露光装置では光路は反対向きとなる。通常、レーザからの出力光が露光の光源に用いられる。その波長をλとする。対物レンズを逆向きに光は進行し、瞳面を通り、焦点面に向かう。単レンズまたは貼り合わせレンズを複数個組み合わせて構成される対物レンズにおいて、焦点に最も近い面は通常は平面をなす。その面と焦点面の間には液体を満たすものとそうでないドライ形とがある。
顕微鏡における分解能、露光装置における最小スポット径はいずれもλ=λ/nsinθと表わされる量λの数倍程度である。λが小さいほど、nが大きいほど、θが大きいほど分解能を高めるのに有利である。
Of the light emitted from the focal point, light having a small angle with the optical axis of the microscope can be easily collected, but in order to increase the resolution, light having a maximum angle is used. The maximum angle is θ, the refractive index of the medium between the focal plane and the objective lens is n, and the wavelength of the light to be used is λ. On the other hand, in an exposure apparatus that is paired with a microscope, the optical path is opposite in the exposure apparatus. Usually, output light from a laser is used as a light source for exposure. Let that wavelength be λ. Light travels in the opposite direction through the objective lens, passes through the pupil plane, and travels toward the focal plane. In an objective lens configured by combining a single lens or a plurality of bonded lenses, the surface closest to the focal point is usually a flat surface. Between that plane and the focal plane, there is a liquid-filled one and a dry one that is not.
The resolution in the microscope and the minimum spot diameter in the exposure apparatus are both several times the quantity λ m expressed as λ m = λ / nsin θ. The smaller λ, the larger n, and the larger θ are advantageous for increasing the resolution.

顕微システムにおいて一点から空間の全方向に等しく放射される光が対物レンズに入り、瞳面を通り、接眼レンズなどを通して結像される。その結像は瞳面における電磁界の2次元フーリエ変換で与えられる。角度方向に一様な光の電磁界ではハンケル変換に簡易化される。今の場合瞳面には均一振幅、一様位相の電磁界が誘起され、一様分布の2次元フーリエ変換またはハンケル変換像が結像される。その像を対物レンズの焦点面に等価射影すると図3のようになる。中心で振幅が最大で、λの半分から1倍程度離れた半径で零となりその後さざ波(リップル)をもって遠方まで続く。像が高解像、かつ他の光点との漏話が少ないことが望ましいが、それは最初の零点までの距離(光ビームの半径と定義する)が小さく、最大リップルの主ビームに対する振幅比(リップル率)が小さいこととして理解される。上の意味で、瞳面における一様な励振により誘起される結像の質は図4の小円印の一点で表される。 In the microscope system, light emitted equally from one point in all directions of the space enters the objective lens, passes through the pupil plane, and forms an image through an eyepiece lens or the like. The image is given by the two-dimensional Fourier transform of the electromagnetic field on the pupil plane. The electromagnetic field of light uniform in the angular direction is simplified to the Hankel transformation. In this case, an electromagnetic field having a uniform amplitude and a uniform phase is induced on the pupil plane, and a two-dimensional Fourier transform or Hankel transform image having a uniform distribution is formed. FIG. 3 shows an equivalent projection of the image onto the focal plane of the objective lens. Centered in amplitude maximum, until far have then ripple becomes zero at a radius away about 1 times half of lambda m (ripple). It is desirable for the image to have high resolution and low crosstalk with other light spots, but it has a small distance to the first zero (defined as the radius of the light beam) and the amplitude ratio of the maximum ripple to the main beam (ripple Rate) is understood to be small. In the above sense, the image quality induced by the uniform excitation in the pupil plane is represented by a small circle in FIG.

次に露光装置における結像を説明する。対物レンズの焦点面に鋭い像を結ばせることが目的である。レーザ光源からの光が瞳面に導かれ、対物レンズによって焦点面に像が結ばれる。瞳面における電磁界分布が焦点面における結像の質を定める。種々の瞳面励振法のなかで基準となるのは上と同じく一様励振であり、ビームの焦点面における分布は図3の曲線で表される。   Next, image formation in the exposure apparatus will be described. The purpose is to form a sharp image on the focal plane of the objective lens. Light from the laser light source is guided to the pupil plane, and an image is formed on the focal plane by the objective lens. The electromagnetic field distribution at the pupil plane determines the quality of the imaging at the focal plane. Among the various pupil plane excitation methods, the standard is the same uniform excitation as above, and the distribution of the beam in the focal plane is represented by the curve in FIG.

ガウス波による励振
瞳面励振の第一のカテゴリーはガウス波による励振である。光ビームは通常ビームウェストと呼ばれる面で最も細くなり、それから離れるに従い徐々にビーム直径が拡がる。レーザーポインターなどが典型的で、ビームウェストの直径が1mm内外、数mから数百m伝播しても直径はmmオーダーまたはcmオーダーである。露光装置で用いられるのはこれと対照的で、波長オーダーのビームウェストをもち、ビーム全体は頂角の開きの大きな鼓型をなす。どちらの場合もビームウェストにおける界の分布がガウス関数型、すなわち

Figure 2015007725
型である。ただし波はz方向に向かうものとし、x, yはそれと直交する座標である。 Excitation by Gaussian wave The first category of pupil plane excitation is excitation by Gaussian wave. The light beam is usually the thinnest at the plane called the beam waist, and the beam diameter gradually increases as it moves away from it. A laser pointer or the like is typical, and the diameter of the beam waist is on the order of mm or cm even if the diameter of the beam waist propagates from several meters to several hundred meters. In contrast to this, the exposure apparatus uses a beam waist with a wavelength order, and the entire beam forms a drum shape with a large apex angle. In both cases, the field distribution at the beam waist is Gaussian, ie
Figure 2015007725
It is a type. However, the wave goes in the z direction, and x and y are coordinates orthogonal to it.

(物理的な)瞳面半径と上式のwの大小関係により、w>>瞳面の物理的半径の場合:瞳面でほぼ一様な励振となる。焦点面のビームは鋭くなるが、レーザ光の利用効率は低い。
Wがそれより小さくなるにつれ、利用効率は高まるが焦点面のビーム半径は大きくなる。同時にリップル率は改善される。その様子を図4の破線で示した曲線に示す。このことは次の考察により了解される。
Due to the magnitude relationship between the (physical) pupil plane radius and w in the above equation, when w >> physical radius: substantially uniform excitation on the pupil plane. The focal plane beam is sharp, but the utilization efficiency of laser light is low.
As W becomes smaller, utilization efficiency increases, but the focal plane beam radius increases. At the same time, the ripple rate is improved. This is shown by the curve shown by the broken line in FIG. This is understood by the following consideration.

瞳面における界分布(簡単のため瞳面関数と書く)と焦点面における界分布(焦点面関数)とは互いに2次元フーリエ変換で結ばれている;即ち瞳面関数を2次元フーリエ変換すれば焦点面関数が得られ、焦点面関数を2次元フーリエ変換すれば瞳面関数が得られる。また2次元ガウス関数のフーリエ変換は同様に2次元ガウス関数である。フーリエ変換の特性として、もとの関数を空間的にK倍(K>1なら拡大、K<1なら縮小)すれば、変換後の関数は空間的に1/K倍になる。ガウス形の光ビームにおいて焦点面のビーム径を小さくするには瞳面においてガウス関数を拡げる必要がある。瞳面の幾何学的な最大半径は光学系の最大受光角と屈折率で
nsinθと表される量と等価である。焦点面のガウス関数に鋭いピークを持たせるためには瞳面のガウス関数の裾部分が瞳面の最大半径で遮られる事態が不可避となる。
The field distribution on the pupil plane (written as pupil plane function for simplicity) and the field distribution on the focal plane (focal plane function) are connected to each other by two-dimensional Fourier transform; that is, if the pupil plane function is two-dimensional Fourier transformed A focal plane function is obtained, and a pupil plane function can be obtained by two-dimensional Fourier transform of the focal plane function. Similarly, the Fourier transform of a two-dimensional Gaussian function is a two-dimensional Gaussian function. As a characteristic of the Fourier transform, if the original function is spatially K times (expanded if K> 1 and reduced if K <1), the transformed function will be spatially 1 / K times. In order to reduce the beam diameter of the focal plane in a Gaussian light beam, it is necessary to expand the Gaussian function in the pupil plane. The geometric maximum radius of the pupil plane is equivalent to an amount expressed as n sin θ in terms of the maximum light receiving angle and refractive index of the optical system. In order to have a sharp peak in the Gaussian function on the focal plane, it is inevitable that the bottom of the Gaussian function on the pupil plane is blocked by the maximum radius of the pupil plane.

瞳フィルタを通した励振
微細加工を目的とするシステムでは主ビームの半径を小さくすることが重要である。そのため、瞳面の中心部分を暗く、周辺部分を明るくすることが有効であることが近年見いだされた(特許文献1)。自由度は領域の分け方、内側の透過率のふたつがある。図5−1に示すように瞳面を内側・外側に半径比α:(1−α)に、外側の透過率=1,内側の透過率をbとして、bを半固定パラメータ、aを可変パラメータとして焦点面のビーム半径、リップル率を解析すると図5-2の結果が得られる。瞳面の励振を2次元変数に対しくぼみ形にすると主ビームの半径は小さくでき、代償としてリップル率が劣化(増大)する。
なお、瞳フィルタは露光系用に開発されているが、リップル率が高いため顕微鏡用には用いられない。
Excitation through pupil filter It is important to reduce the radius of the main beam in a system intended for microfabrication. For this reason, it has recently been found that it is effective to darken the central part of the pupil surface and brighten the peripheral part (Patent Document 1). There are two degrees of freedom: area division and inner transmittance. As shown in FIG. 5-1, the pupil plane is set to the inside / outside radius ratio α: (1-α), the outside transmittance = 1, the inside transmittance is b, b is a semi-fixed parameter, and a is variable. If the focal plane beam radius and ripple rate are analyzed as parameters, the result in Fig. 5-2 is obtained. If the pupil plane excitation is indented with respect to a two-dimensional variable, the radius of the main beam can be reduced, and the ripple rate is degraded (increased) as a price.
The pupil filter has been developed for an exposure system, but is not used for a microscope because of a high ripple rate.

特開2009−290206JP 2009-290206 A

Shinya Inoue, Kenneth R. Spring; ビデオ 顕微鏡 その基礎と活用法 SECOND EDITION, 寺川 進, 市江 更治, 渡辺 昭 訳, 共立出版株式会社,2001年, 2.2Shinya Inoue, Kenneth R .; Spring; Video microscope, its basics and usage SECOND EDITION, Susumu Terakawa, Seiji Ichie, Akira Watanabe, Kyoritsu Publishing Co., Ltd., 2001, 2.2 Max Born, Emil Wolf; Principles of Optics 7th(expanded) edition,CAMBRIDGE UNIVERSITY PRESS, 1999, 4.8.2, 8.10.2Max Born, Emil Wolf; Principles of Optics 7th (expanded) edition, CAMBRIDGE UNIVERSITY PRESS, 1999, 4.8.2, 8.2.2. H. Kogelnik、On the Propagation of Gaussian Beams of LightThrough Lenslike Media Including those with a Loss or Gain Variation、Applied Optics p.1562−1569、December 1965.H. Kogelnik, On the Propagation of Gaussian Beams of LightThrough Lenslike Media Inclusion this a Loss or Gain Op., Applied. 1562-1569, December 1965.

光学顕微鏡、リソグラフィーなどの産業技術分野では微細な領域からの光を隣接する領域からの光と区別して観察すること、あるいは他の光源からの光を微細な領域に集光することが本質的に重要である。ある波長(λで表す)の光はλの数倍程度の小領域に結像させることができることはよく知られている。顕微鏡、リソグラフィー装置の競争力は、
・一つには使用波長を小さく(短波長化)、入射許容角の増大、液浸媒質の高屈折率化・第二にはその「数倍程度」の比例係数を小さくすることにかかっている。
In industrial technology fields such as optical microscopes and lithography, it is essential to observe light from a minute area separately from light from an adjacent area, or to collect light from other light sources in a fine area. is important. It is well known that light of a certain wavelength (denoted by λ) can be imaged in a small region several times as long as λ. The competitiveness of microscopes and lithography equipment
・ One is to reduce the wavelength used (short wavelength), increase the allowable angle of incidence, increase the refractive index of the immersion medium, and the second is to reduce the proportional factor of “several times”. Yes.

なかでも、像のコントラストの高さ、漏れ光の小さいことが重要である。これは図4、図5-1に示す2次元マップで、動作点を左に、下に選べる光学設計を探索することと同じ内容である。   In particular, it is important that the contrast of the image is high and the leakage light is small. This is the same as searching for an optical design in which the operating point can be selected on the left and down on the two-dimensional map shown in FIGS.

本発明の第1の側面は,瞳フィルタを有する光学顕微鏡に関する。
この側面の瞳フィルタは,例えば、
光学顕微鏡の瞳面の複素透過率が半径rの関数であって,
その振幅部分が中央部分でrの単調減少関数であり,周辺部分に極大を持ち,その位相部分が一定とならしめる瞳フィルタである。
A first aspect of the present invention relates to an optical microscope having a pupil filter.
This side pupil filter is, for example,
The complex transmittance of the pupil plane of the optical microscope is a function of the radius r,
It is a pupil filter whose amplitude is a monotonically decreasing function of r in the central part, has a maximum in the peripheral part, and makes its phase part constant.

この側面の瞳フィルタは,
瞳面の複素透過率が,半径βの関数であって,
振幅部分は関数

Figure 2015007725
に幅が
Figure 2015007725
以上のHanning窓関数を乗じて得られる関数A(r)にHankel変換
Figure 2015007725
を行って得られる関数F(β)で表され,
位相部分は一定ならしめるである瞳フィルタであるか,又はその振幅部分を階段関数または滑らかな関数で近似した瞳フィルタであってもよい。 The pupil filter on this side is
The complex transmittance of the pupil plane is a function of the radius β,
The amplitude part is a function
Figure 2015007725
Width is
Figure 2015007725
Hankel transform into function A (r) obtained by multiplying the above Hanning window function
Figure 2015007725
Is expressed by a function F (β) obtained by performing
The phase portion may be a pupil filter that is constant, or may be a pupil filter that approximates its amplitude portion with a step function or a smooth function.

本発明の第2の側面は、瞳フィルタを有する露光装置に関する。   The second aspect of the present invention relates to an exposure apparatus having a pupil filter.

この側面の瞳フィルタは,例えば、
瞳面に入射する励起光が瞳フィルタを通過したのち
振幅部分が中央部分でrの単調減少関数であり,周辺部分に極大を持ち,
位相部分が一定ならしめる瞳フィルタである。
This side pupil filter is, for example,
After the excitation light incident on the pupil plane passes through the pupil filter, the amplitude part is a monotonically decreasing function of r in the central part, and has a maximum in the peripheral part.
This is a pupil filter that makes the phase portion constant.

この側面の瞳フィルタは, 瞳面の複素透過率が,半径βの関数であって,
振幅部分は関数

Figure 2015007725
に幅が
Figure 2015007725
以上のHanning窓関数を乗じて得られる関数A(r)にHankel変換
Figure 2015007725
を行って得られる関数F(β)で表され,
位相部分は一定ならしめる瞳フィルタ,あるいはその振幅部分を階段関数または滑らかな関数で近似した瞳フィルタであってもよい。 The pupil filter on this side has a complex transmittance of the pupil surface as a function of the radius β,
The amplitude part is a function
Figure 2015007725
Width is
Figure 2015007725
Hankel transform to function A (r) obtained by multiplying the above Hanning window function
Figure 2015007725
Is expressed by a function F (β) obtained by performing
The phase portion may be a pupil filter that makes the phase constant, or a pupil filter that approximates the amplitude portion with a step function or a smooth function.

上記により、主ビームが細く、リップルの小さい顕微鏡、光学結像装置、露光装置が得られた。   As described above, a microscope, an optical imaging apparatus, and an exposure apparatus with a narrow main beam and a small ripple were obtained.

図1は、通常の顕微システムや液浸の顕微システムを示す。FIG. 1 shows a normal microscope system or an immersion microscope system. 高倍率対物レンズHigh magnification objective lens 図3は,焦点面におけるパラメータを示す。FIG. 3 shows the parameters in the focal plane. ビーム径とリップル率の関係を示す。The relationship between beam diameter and ripple rate is shown. 瞳面の定義Definition of pupil plane 焦点面のビーム半径、リップル率Focal plane beam radius, ripple rate aの種々の値(λmを単位とする)に対して像面における界分布Field distribution in the image plane for various values of a (in units of λm) G(β)の意味を示すIndicates the meaning of G (β) 瞳関数Pupil function 2次元マップ2D map 瞳面の複素透過率の例Example of complex transmittance of pupil plane 瞳面の複素透過率の例Example of complex transmittance of pupil plane 光学顕微鏡Optical microscope 瞳フィルタの近似特性Approximate characteristics of pupil filter 露光装置Exposure equipment 瞳フィルタの近似特性Approximate characteristics of pupil filter

本発明の第1の側面は,瞳フィルタを有する光学顕微鏡に関する。
この側面の瞳フィルタは,例えば、
光学顕微鏡の瞳面の複素透過率が半径rの関数であって,
その振幅部分が中央部分でrの単調減少関数であり,周辺部分に極大を持ち,その位相部分が一定とならしめる瞳フィルタである。
A first aspect of the present invention relates to an optical microscope having a pupil filter.
This side pupil filter is, for example,
The complex transmittance of the pupil plane of the optical microscope is a function of the radius r,
It is a pupil filter whose amplitude is a monotonically decreasing function of r in the central part, has a maximum in the peripheral part, and makes its phase part constant.

この側面の瞳フィルタは,
瞳面の複素透過率が,半径βの関数であって,
振幅部分は関数

Figure 2015007725
に幅が
Figure 2015007725
以上のHanning窓関数を乗じて得られる関数A(r)にHankel変換
Figure 2015007725
を行って得られる関数F(β)で表され,
位相部分は一定ならしめるである瞳フィルタであるか,又はその振幅部分を階段関数または滑らかな関数で近似した瞳フィルタであってもよい。 The pupil filter on this side is
The complex transmittance of the pupil plane is a function of the radius β,
The amplitude part is a function
Figure 2015007725
Width is
Figure 2015007725
Hankel transform into function A (r) obtained by multiplying the above Hanning window function
Figure 2015007725
Is expressed by a function F (β) obtained by performing
The phase portion may be a pupil filter that is constant, or may be a pupil filter that approximates its amplitude portion with a step function or a smooth function.

本発明の第2の側面は、瞳フィルタを有する露光装置に関する。   The second aspect of the present invention relates to an exposure apparatus having a pupil filter.

この側面の瞳フィルタは,例えば、
瞳面に入射する励起光が瞳フィルタを通過したのち
振幅部分が中央部分でrの単調減少関数であり,周辺部分に極大を持ち,
位相部分が一定ならしめる瞳フィルタである。
This side pupil filter is, for example,
After the excitation light incident on the pupil plane passes through the pupil filter, the amplitude part is a monotonically decreasing function of r in the central part, and has a maximum in the peripheral part.
This is a pupil filter that makes the phase portion constant.

この側面の瞳フィルタは, 瞳面の複素透過率が,半径βの関数であって,
振幅部分は関数

Figure 2015007725
に幅が
Figure 2015007725
以上のHanning窓関数を乗じて得られる関数A(r)にHankel変換

Figure 2015007725
を行って得られる関数F(β)で表され,
位相部分は一定ならしめる瞳フィルタ,あるいはその振幅部分を階段関数または滑らかな関数で近似した瞳フィルタであってもよい。 The pupil filter on this side has a complex transmittance of the pupil surface as a function of the radius β,
The amplitude part is a function
Figure 2015007725
Width is
Figure 2015007725
Hankel transform to function A (r) obtained by multiplying the above Hanning window function

Figure 2015007725
Is expressed by a function F (β) obtained by performing
The phase portion may be a pupil filter that makes the phase constant, or a pupil filter that approximates the amplitude portion with a step function or a smooth function.

電磁界の任意の一つの直交座標成分の、ビームが最も強く集束された平面(ビームウェスト)において次の式で表される分布を考えるとき   When considering the distribution represented by the following equation in the plane where the beam is most strongly focused (beam waist) for any one orthogonal coordinate component of the electromagnetic field

Figure 2015007725
Figure 2015007725

k=2π/λ=2πnsinθ/λ k = 2π / λ m = 2π n sin θ / λ

この界は、フーリエ成分の横方向波数の最大値がkである、すなわちすべてのフーリエ成分が本願で考察している瞳面を通り抜けるという性質を持っている。   This field has the property that the maximum value of the transverse wave number of the Fourier component is k, that is, all the Fourier components pass through the pupil plane considered in the present application.

aの種々の値(λを単位とする)に対して像面における界分布を図6に示した。aが小さいと主ビームは狭い(有利),リップルは大きい(不利)。その様子を図8に実線で示した。 FIG. 6 shows the field distribution in the image plane for various values of a (in units of λ m ). When a is small, the main beam is narrow (advantageous) and the ripple is large (disadvantageous). This is shown by the solid line in FIG.

この関数で表される界は一つのピークを有する主ビームと、その周囲にそれより振幅が小さい半径方向に振動する円環状のリップルをもつ。αがλに対して大きいときは上の式は

Figure 2015007725
反対にaがλに対して無視できるときは
Figure 2015007725
に近づく。主ビームが細く、周囲の円環の相対的高さが小さいことが望ましい。種々のビーム、種々の集光方式において、「与えられたリップル率(最大のリップル高さの主ビーム高さに対する比)において主ビームの極小半径の小ささ」を比較したところ今回導かれた解析解が優れていることがわかった。 The field represented by this function has a main beam having one peak and an annular ripple around the main beam that oscillates in a radial direction with a smaller amplitude. When α is larger than λ m
Figure 2015007725
Conversely, when a is negligible for λ m
Figure 2015007725
Get closer to. It is desirable that the main beam is thin and the relative height of the surrounding annulus is small. Comparison of “smallness of the minimum radius of the main beam at a given ripple ratio (ratio of the maximum ripple height to the main beam height)” for various beams and various condensing methods It turns out that the solution is excellent.

また,その解析解の界の,ビーム径が最も細くなる断面,即ち焦点面に対応する瞳面の電磁界を解析すると,瞳面の最外周付近に鋭いピークをもつ極めて特徴的な分布を持つことを発見した。すなわち、βをx、y面内の半径方向波数として、βがkより小さいとき   In addition, when the electromagnetic field of the pupil plane corresponding to the cross section where the beam diameter is the thinnest in the field of the analytical solution, that is, the focal plane is analyzed, there is a very characteristic distribution with a sharp peak near the outermost periphery of the pupil plane I discovered that. That is, when β is smaller than k, where β is the radial wavenumber in the x, y plane

Figure 2015007725
と表される。
Figure 2015007725
It is expressed.

図7に上の式の意味を示す。Aの大小によらず瞳面の最外周に鋭いピークを持つ。Aの値が小さい(0.3λ以下)では中央部でほぼ平坦、0.35λないし0.4λより大の時は中央部に滑らかなピークを持つ。瞳面において上式を高い近似度で実現する手段は実施例で説明する。 FIG. 7 shows the meaning of the above formula. Regardless of the size of A, it has a sharp peak on the outermost periphery of the pupil plane. The value of A is less (less 0.3λ m) In substantially flat at the center, to no 0.35Ramuda m when more 0.4Ramuda m large has a smooth peaks in the central portion. Means for realizing the above expression with a high degree of approximation on the pupil plane will be described in an embodiment.

顕微鏡
光学顕微鏡において、液浸形(水、屈折率1.33)、最大受光角70度、NA=1.25
の対物レンズを用いる。図11に示すごとく、対物射出瞳と共役な瞳面に瞳フィルタを挿入する。瞳フィルタの瞳面各半径における透過率は次のように定める
In the optical microscope, immersion type (water, refractive index 1.33), maximum acceptance angle 70 degrees, NA = 1.25
This objective lens is used. As shown in FIG. 11, a pupil filter is inserted into the pupil plane conjugate with the objective exit pupil. The transmittance at each radius of the pupil surface of the pupil filter is determined as follows:

主ビームの細さとリップルの小ささから、虚数シフトαを0.35λに選ぶ。式(5)の鋭い瞳関数と同等の効果を高い近似度で得るため、次の設計を行った。 The imaginary shift α is selected to be 0.35λ m from the thinness of the main beam and the small ripple. In order to obtain an effect equivalent to the sharp pupil function of Equation (5) with a high degree of approximation, the following design was performed.

焦点面関数(1)を中心軸(z軸)付近で良く近似するため、Hanning窓関数
H(r)=(1+cosπr/W)/2 (r<W)
= 0 (r>W)
Hanning window function H (r) = (1 + cosπr / W) / 2 (r <W) in order to approximate the focal plane function (1) well in the vicinity of the central axis (z-axis).
= 0 (r> W)

を(1)に掛けたものをハンケル変換し、それを瞳関数の近似関数とする。図8にはそのようにして得られた瞳関数を図示する(鋭く変化する実線、一点鎖線、破線、緩やかに変化する実線の順に、2nW=200,100,40,20,10である。これら近似関数を使うと焦点面関数が理想的な(1)式から僅かに変化する:図9の2次元マップにおいて理想曲線(実線)から移行する様子を小円(やや角張った円)の列で示した。
このように、鋭い瞳関数をより緩やかな瞳関数で置き換えても、焦点面関数の変化は十分小さいことがわかる。
Is multiplied by (1) to make a Hankel transform, which is used as an approximate function of the pupil function. FIG. 8 illustrates the pupil function thus obtained (2nW = 200, 100, 40, 20, 10 in the order of a solid line that changes sharply, an alternate long and short dash line, a broken line, and a solid line that changes gently. Using the approximate function, the focal plane function slightly changes from the ideal formula (1): The transition from the ideal curve (solid line) in the two-dimensional map in Fig. 9 is a series of small circles (slightly square circles). Indicated.
Thus, it can be seen that even if the sharp pupil function is replaced with a more gentle pupil function, the change in the focal plane function is sufficiently small.

更に緩やかな瞳関数を区分的一様な瞳関数に置き換えると瞳フィルタの公知の方法による作成が容易になる。図10−1及び図10−2はその一例である。この瞳フィルタによる像関数は、図9の丸印(左から3番目)と図上では一致する。   Further, if a gentle pupil function is replaced with a piecewise uniform pupil function, a pupil filter can be easily created by a known method. FIGS. 10-1 and 10-2 are examples. The image function by this pupil filter matches the circle in FIG. 9 (third from the left) on the drawing.

そのような瞳フィルタは、ガラス面上に微細な黒点の、密度が場所ごとに制御された2次元列によって作成する。また、計算機ホログラムによって作成する。   Such a pupil filter is created by a two-dimensional array of fine black spots on the glass surface with density controlled for each location. It is also created by a computer generated hologram.

これによって主ビームが細く、リップルの低い高解像の顕微鏡が実現できる。
瞳フィルタは対物レンズの瞳面に設置することができるが、接眼レンズの瞳面など、より容易かつ安価に設置できるところを選んで実装することが有利である。
As a result, a high resolution microscope with a narrow main beam and low ripple can be realized.
Although the pupil filter can be installed on the pupil plane of the objective lens, it is advantageous to select and mount a place that can be installed more easily and inexpensively, such as the pupil plane of an eyepiece.

露光装置
顕微鏡とほぼ同等の設計方針を採用する。ただし、より細いビームを用いるため虚数シフトαを0.31λに選んだ。瞳フィルタを設計しやすくするため例1と同様にHanning
窓関数を用いる(2nW=200,100,40,20,10)とした。焦点面関数の変化は図9の2次元マップに示すとおりであって、40以上に対しては変化は十分小さい。図13に示す露光装置において、対物瞳面と共役な位置に瞳フィルタを挿入する。作成の便を考慮し、2nW=100に対する曲線を図14の折れ線(区分的に一様な関数)で近似した瞳フィルタを用いる。像関数の性質は図9の三角点左から3番目と図上で一致する。
そのような瞳フィルタはよく知られている計算機ホログラムの方法によって作成する。
Exposure system The design policy is almost the same as that of a microscope. However, in order to use a thinner beam, the imaginary shift α was selected to be 0.31λ m . Hanning as in Example 1 to make it easier to design pupil filters
A window function was used (2nW = 200, 100, 40, 20, 10). The change of the focal plane function is as shown in the two-dimensional map of FIG. 9, and the change is sufficiently small for 40 or more. In the exposure apparatus shown in FIG. 13, a pupil filter is inserted at a position conjugate with the objective pupil plane. Considering the convenience of creation, a pupil filter is used in which the curve for 2nW = 100 is approximated by the polygonal line (piecewise uniform function) in FIG. The nature of the image function matches the third on the left of the triangular point in FIG.
Such pupil filters are made by well-known computer hologram methods.

本発明は光学機器の分野で利用されうる。   The present invention can be used in the field of optical instruments.

Claims (4)

瞳フィルタを有する光学顕微鏡であって、
前記瞳フィルタは,
前記光学顕微鏡の瞳面の複素透過率が半径rの関数であって,
その振幅部分が中央部分でrの単調減少関数であり,周辺部分に極大を持ち,その位相部分が一定とならしめる
光学顕微鏡。
An optical microscope having a pupil filter,
The pupil filter is
The complex transmittance of the pupil plane of the optical microscope is a function of the radius r,
An optical microscope whose amplitude part is a monotonically decreasing function of r in the central part, has a maximum in the peripheral part, and makes its phase part constant.
瞳フィルタを有する光学顕微鏡であって、
前記瞳フィルタは、
瞳面の複素透過率が,半径βの関数であって,
振幅部分は関数
Figure 2015007725
に幅が
Figure 2015007725
以上のHanning窓関数を乗じて得られる関数A(r)にHankel変換

Figure 2015007725
を行って得られる関数F(β)で表され,
位相部分は一定ならしめるである瞳フィルタであるか,又はその振幅部分を階段関数または滑らかな関数で近似した瞳フィルタを有する
光学顕微鏡。
An optical microscope having a pupil filter,
The pupil filter is
The complex transmittance of the pupil plane is a function of the radius β,
The amplitude part is a function
Figure 2015007725
Width is
Figure 2015007725
Hankel transform into function A (r) obtained by multiplying the above Hanning window function

Figure 2015007725
Is expressed by a function F (β) obtained by performing
An optical microscope having a pupil filter whose phase portion is constant or whose amplitude portion is approximated by a step function or a smooth function.
瞳フィルタを有する露光装置であって、
前記瞳フィルタは、
瞳面に入射する励起光が瞳フィルタを通過したのち
振幅部分が中央部分でrの単調減少関数であり,周辺部分に極大を持ち,
位相部分が一定ならしめる瞳フィルタである、
露光装置。
An exposure apparatus having a pupil filter,
The pupil filter is
After the excitation light incident on the pupil plane passes through the pupil filter, the amplitude part is a monotonically decreasing function of r in the central part, and has a maximum in the peripheral part.
It is a pupil filter that makes the phase part constant,
Exposure device.
瞳フィルタを有する露光装置であって、
前記瞳フィルタは、
瞳面の複素透過率が,半径βの関数であって,
振幅部分は関数

Figure 2015007725
に幅が
Figure 2015007725
以上のHanning窓関数を乗じて得られる関数A(r)にHankel変換
Figure 2015007725
を行って得られる関数F(β)で表され,
位相部分は一定ならしめる瞳フィルタ,あるいはその振幅部分を階段関数または滑らかな関数で近似した瞳フィルタである、
露光装置。
An exposure apparatus having a pupil filter,
The pupil filter is
The complex transmittance of the pupil plane is a function of the radius β,
The amplitude part is a function

Figure 2015007725
Width is
Figure 2015007725
Hankel transform to function A (r) obtained by multiplying the above Hanning window function
Figure 2015007725
Is expressed by a function F (β) obtained by performing
The phase filter is a pupil filter that makes the phase constant, or the pupil filter that approximates the amplitude part with a step function or a smooth function.
Exposure device.
JP2013133309A 2013-06-26 2013-06-26 Optical imaging device Pending JP2015007725A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013133309A JP2015007725A (en) 2013-06-26 2013-06-26 Optical imaging device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013133309A JP2015007725A (en) 2013-06-26 2013-06-26 Optical imaging device

Publications (1)

Publication Number Publication Date
JP2015007725A true JP2015007725A (en) 2015-01-15

Family

ID=52338033

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013133309A Pending JP2015007725A (en) 2013-06-26 2013-06-26 Optical imaging device

Country Status (1)

Country Link
JP (1) JP2015007725A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116880064A (en) * 2023-09-07 2023-10-13 中国科学院西安光学精密机械研究所 Non-iterative reverse design method of composite pupil filter

Citations (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52116257A (en) * 1976-03-25 1977-09-29 Olympus Optical Co Ltd Microscope of high focal depth
JPH0466943A (en) * 1990-07-04 1992-03-03 Hamamatsu Photonics Kk Device for inspecting fault of translucent plate
JPH04348017A (en) * 1990-10-24 1992-12-03 Hitachi Ltd Pattern formation and projection exposure device
JPH05160002A (en) * 1991-03-05 1993-06-25 Hitachi Ltd Exposing method and device, exposing system and mask circuit pattern inspection system
JPH05198474A (en) * 1992-01-20 1993-08-06 Toshiba Corp Projection aligner
JPH05315226A (en) * 1992-05-11 1993-11-26 Sony Corp Projection aligner
JPH05341199A (en) * 1992-06-10 1993-12-24 Olympus Optical Co Ltd Optical microscope
JPH06177006A (en) * 1992-12-01 1994-06-24 Nippon Telegr & Teleph Corp <Ntt> Projection aligner
JPH07147223A (en) * 1993-11-26 1995-06-06 Hitachi Ltd Pattern forming method
JPH07273005A (en) * 1994-03-29 1995-10-20 Nikon Corp Projection aligner
JPH10170831A (en) * 1996-12-06 1998-06-26 Asahi Optical Co Ltd Pattern reading device
JPH10221509A (en) * 1997-02-03 1998-08-21 Nikon Corp Image-forming optical system and photographic measuring method
JPH11212028A (en) * 1998-01-26 1999-08-06 Nikon Corp Optical device provided with contrast improving function and contrast improving method
JP2003121749A (en) * 2001-08-09 2003-04-23 Olympus Optical Co Ltd Microscope
JP2005316019A (en) * 2004-04-27 2005-11-10 Nippon Telegr & Teleph Corp <Ntt> Wavelength filter
JP2009290206A (en) * 2008-05-01 2009-12-10 Dainippon Printing Co Ltd Pupil filter for aligner, diffractive optical element and aligner provided therewith
JP2011002514A (en) * 2009-06-16 2011-01-06 National Institute Of Advanced Industrial Science & Technology Phase contrast microscope

Patent Citations (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52116257A (en) * 1976-03-25 1977-09-29 Olympus Optical Co Ltd Microscope of high focal depth
JPH0466943A (en) * 1990-07-04 1992-03-03 Hamamatsu Photonics Kk Device for inspecting fault of translucent plate
JPH04348017A (en) * 1990-10-24 1992-12-03 Hitachi Ltd Pattern formation and projection exposure device
JPH05160002A (en) * 1991-03-05 1993-06-25 Hitachi Ltd Exposing method and device, exposing system and mask circuit pattern inspection system
JPH05198474A (en) * 1992-01-20 1993-08-06 Toshiba Corp Projection aligner
JPH05315226A (en) * 1992-05-11 1993-11-26 Sony Corp Projection aligner
JPH05341199A (en) * 1992-06-10 1993-12-24 Olympus Optical Co Ltd Optical microscope
JPH06177006A (en) * 1992-12-01 1994-06-24 Nippon Telegr & Teleph Corp <Ntt> Projection aligner
JPH07147223A (en) * 1993-11-26 1995-06-06 Hitachi Ltd Pattern forming method
JPH07273005A (en) * 1994-03-29 1995-10-20 Nikon Corp Projection aligner
JPH10170831A (en) * 1996-12-06 1998-06-26 Asahi Optical Co Ltd Pattern reading device
JPH10221509A (en) * 1997-02-03 1998-08-21 Nikon Corp Image-forming optical system and photographic measuring method
JPH11212028A (en) * 1998-01-26 1999-08-06 Nikon Corp Optical device provided with contrast improving function and contrast improving method
JP2003121749A (en) * 2001-08-09 2003-04-23 Olympus Optical Co Ltd Microscope
JP2005316019A (en) * 2004-04-27 2005-11-10 Nippon Telegr & Teleph Corp <Ntt> Wavelength filter
JP2009290206A (en) * 2008-05-01 2009-12-10 Dainippon Printing Co Ltd Pupil filter for aligner, diffractive optical element and aligner provided therewith
JP2011002514A (en) * 2009-06-16 2011-01-06 National Institute Of Advanced Industrial Science & Technology Phase contrast microscope

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116880064A (en) * 2023-09-07 2023-10-13 中国科学院西安光学精密机械研究所 Non-iterative reverse design method of composite pupil filter
CN116880064B (en) * 2023-09-07 2023-12-08 中国科学院西安光学精密机械研究所 Non-iterative reverse design method of composite pupil filter

Similar Documents

Publication Publication Date Title
Chen et al. Superoscillation: from physics to optical applications
Mahmood et al. Twisted non-diffracting beams through all dielectric meta-axicons
Gu Advanced optical imaging theory
US20100135547A1 (en) Optical sectioning microscopy
JP2018055082A (en) Converter, illuminator, and light sheet fluorescence microscope
Ojeda-Castaneda et al. Tuning field depth at high resolution by pupil engineering
JP2004537749A (en) Method and apparatus for generating a focused light beam
CN105929560A (en) Broadband far field super-resolution imaging apparatus
CN107850765B (en) Method and assembly for beam shaping and optical layer microscopy
JP6485847B2 (en) Measuring apparatus, microscope, and measuring method
US20210231909A1 (en) Simultaneous focal length control and achromatic computational imaging with quartic metasurfaces
Reddy et al. Apodization for improving the two-point resolution of coherent optical systems with defect of focus
JP2012252037A (en) Zoom imaging optical system and microscope including the same
Khonina et al. Fractional axicon as a new type of diffractive optical element with conical focal region
JP2008102294A (en) Method for visualizing phase object and microscopic system therefor
WO2015098242A1 (en) Sample observation device and sample observation method
JP2011085432A (en) Axial chromatic aberration optical system and three-dimensional shape measuring device
JP2015079222A (en) Liquid immersion microscope objective lens and microscope having the same
JP2015007725A (en) Optical imaging device
JP2015082002A (en) Diffraction grating lens, method of designing optical system having the same, image computation program, and manufacturing method for diffraction grating lens
WO2020099538A1 (en) Diffractive optical element, confocal microscope and method for designing a diffractive optical element
US8520191B2 (en) Slit aperture for diffraction range finding system
WO2021230745A1 (en) Methods for designing and fabricating a pupil intensity mask
Chen et al. Fast 3D super-resolution imaging using a digital micromirror device and binary holography
Sieracki et al. Leaky annular pupil for improved lateral resolution in confocal fluorescence microscopy

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20151010

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20151229

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160624

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20160701

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170323

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170502

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20180213