JPH06176793A - Nonaqueous electrolyte secondary battery - Google Patents

Nonaqueous electrolyte secondary battery

Info

Publication number
JPH06176793A
JPH06176793A JP4323507A JP32350792A JPH06176793A JP H06176793 A JPH06176793 A JP H06176793A JP 4323507 A JP4323507 A JP 4323507A JP 32350792 A JP32350792 A JP 32350792A JP H06176793 A JPH06176793 A JP H06176793A
Authority
JP
Japan
Prior art keywords
electrolyte secondary
secondary battery
aqueous electrolyte
lithium
positive electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4323507A
Other languages
Japanese (ja)
Inventor
Sukeyuki Murai
祐之 村井
Masaki Hasegawa
正樹 長谷川
Shuji Ito
修二 伊藤
Yasuhiko Mifuji
靖彦 美藤
Yoshinori Toyoguchi
吉徳 豊口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP4323507A priority Critical patent/JPH06176793A/en
Publication of JPH06176793A publication Critical patent/JPH06176793A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PURPOSE:To provide a 4V-class nonaqueous electrolyte secondary battery excellent in high temperature reservation. CONSTITUTION:A positive electrode 1 uses at least one composite oxide selected of LiMn2O4, LiC0O2, LiNiO2 and LiFeO2 groups as positive electrode active material and a negative electrode 4 uses metal lithium or reversibly occluded and discharged lithium. Nonaqueous electrolyte is such that lithium fluoride or phosphatic lithium hexafluoride as solute is solved in mixed solvent of ethylene carbonate, 1, 2-dimethoxyethane and propylene carbonate. In this way, combined nonaqueous electrolyte as above-mentioned has almost no capacity decrease in reservation at a high temperature of 60 deg.C, compared with others, and is free from freeze at -20 deg.C, thus to provide a nonaqueous electrolyte secondary battery excellent in high temperature reservation property and low temperature property.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は非水電解液を用いる二次
電池に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a secondary battery using a non-aqueous electrolyte.

【0002】[0002]

【従来の技術】リチウムまたはリチウム化合物を負極と
する非水電解液二次電池は高電圧で高エネルギー密度が
期待され、盛んに研究がなされている。
2. Description of the Related Art Non-aqueous electrolyte secondary batteries using lithium or a lithium compound as a negative electrode are expected to have a high voltage and a high energy density, and have been actively studied.

【0003】これまでに、非水電解液二次電池の正極活
物質としてV2 5 、Cr2 5 、MnO2 、TiS2
などが知られている。近年、より高エネルギー密度を有
する4ボルト級の非水電解液二次電池の正極活物質とし
てLiMn2 4 、LiC02 、LiNiO2 、Li
FeO2 などが注目されている。特に、LiMn
2 4 、LiNiO2 やLiFeO2 は低コストである
ことや、原料供給が安定しており、大容量の非水電解液
二次電池の活物質として活発な研究が行われている。
Until now, the positive electrode activity of non-aqueous electrolyte secondary batteries has been improved.
V as a substance2OFive, Cr2OFive, MnO2, TiS2
Are known. In recent years, having higher energy density
As a positive electrode active material for a 4-volt class non-aqueous electrolyte secondary battery
LiMn2OFour, LiC0O2, LiNiO2, Li
FeO2Has been attracting attention. In particular, LiMn
2O Four, LiNiO2And LiFeO2Is low cost
In addition, the raw material supply is stable, and a large capacity of non-aqueous electrolyte
Active research is being conducted as an active material for secondary batteries.

【0004】[0004]

【発明が解決しようとする課題】ところで正極活物質と
してLiMn2 4 、LiC0 2 、LiNiO2 ある
いはLiFeO2 を用いることにより、高エネルギー密
度の非水電解液二次電池を実現できるが、充電電圧が4
ボルトを越えるため、充電状態での高温保存特性が不十
分であるという問題があった。非水電解液二次電池の高
温保存については電池内部の微量水分や電解液溶媒の分
解が原因となり、電池の内部抵抗の増大や充放電容量の
低下という問題を引き起こす。特に電池電圧が高くなる
ほど、これらの現象は顕著になる。
The use of LiMn 2 O 4, LiC 0 O 2, LiNiO 2 or LiFeO 2 as a way positive electrode active material [0008], can be realized a non-aqueous electrolyte secondary battery of high energy density, Charge voltage is 4
Since the voltage exceeds the voltage, there is a problem that the high temperature storage characteristics in a charged state are insufficient. High temperature storage of a non-aqueous electrolyte secondary battery is caused by decomposition of a trace amount of water and an electrolyte solvent in the battery, which causes problems such as an increase in internal resistance of the battery and a decrease in charge / discharge capacity. These phenomena become more remarkable as the battery voltage becomes higher.

【0005】上記問題を解決する手段として、出願人は
電解液にエチレンカーボネートと1.2−ジメトキシエ
タンの混合溶媒にホウフッ化リチウムあるいは六フッ化
リン酸リチウムを溶解したものを用いることを提案し
た。しかし、この電解液は−20℃において凍結すると
いう問題があった。
As a means for solving the above problems, the applicant has proposed to use, as an electrolytic solution, a solution obtained by dissolving lithium borofluoride or lithium hexafluorophosphate in a mixed solvent of ethylene carbonate and 1.2-dimethoxyethane. . However, this electrolyte has a problem that it freezes at -20 ° C.

【0006】本発明は前記従来の問題に留意し、高温保
存特性と低温保存特性に優れた非水電解二次電池を提供
することを目的とする。
It is an object of the present invention to provide a non-aqueous electrolytic secondary battery which is excellent in high temperature storage characteristics and low temperature storage characteristics in view of the above conventional problems.

【0007】[0007]

【課題を解決するための手段】本発明は、前記目的を達
成するために、リチウム金属あるいはリチウムを可逆的
に吸蔵放出する負極と、LiMn2 4 、LiC
0 2 、LiNiO2 およびLiFeO2 の群より選ば
れる少なくとも1つの複合酸化物を活物質とする正極お
よび非水電解液を有する非水電解液二次電池において、
前記非水電解液として、エチレンカーボネートと1,2
−ジメトキシエタンとプロピレンカーボネートとの混合
液にホウフッ化リチウムあるいは六フッ化リン酸リチウ
ムを溶解したものを用いる構成とする。なお、プロピレ
ンカーボネートの添加量はエチレンカーボネートに対し
て5〜20体積%であることが望ましい。
In order to achieve the above object, the present invention provides a negative electrode that reversibly absorbs and releases lithium metal or lithium, LiMn 2 O 4 , and LiC.
In a non-aqueous electrolyte secondary battery having a positive electrode and a non-aqueous electrolyte, the positive electrode having at least one composite oxide selected from the group of O 2 , LiNiO 2 and LiFeO 2 as an active material,
As the non-aqueous electrolyte, ethylene carbonate and 1,2
-A configuration in which lithium borofluoride or lithium hexafluorophosphate is dissolved in a mixed liquid of dimethoxyethane and propylene carbonate is used. The amount of propylene carbonate added is preferably 5 to 20% by volume with respect to ethylene carbonate.

【0008】[0008]

【作用】前記のように4V級の非水電解液二次電池の電
解液にエチレンカーボネートと1,2−ジメトキシエタ
ンとプロピレンカーボネートとの混合液にホウフッ化リ
チウムあるいは六フッ化リン酸リチウムを溶解したもの
を用いると、電池を充電状態で高い温度で長期間保存し
ても、電解液溶媒の分解などを抑制することができ、高
温保存特性の改善がはかられる。さらに、−20℃でも
凍結することがなく、低温特性の改善も行える。
As described above, lithium borofluoride or lithium hexafluorophosphate is dissolved in the mixed solution of ethylene carbonate, 1,2-dimethoxyethane and propylene carbonate in the electrolyte of the 4V class non-aqueous electrolyte secondary battery. If the above-mentioned one is used, even if the battery is stored in a charged state at a high temperature for a long period of time, the decomposition of the electrolytic solution solvent can be suppressed, and the high temperature storage characteristics can be improved. Further, it does not freeze even at -20 ° C, and the low temperature characteristics can be improved.

【0009】[0009]

【実施例】以下本発明の実施例の非水電解液二次電池お
よびその製造法について図面に基づいて説明する。 (実施例1)LiMn2 4 はLi2 CO3 とMn3
4 を3:4のモル比でよく混合した後、この混合物を大
気中で900℃で10時間加熱することにより合成し
た。LiC0 2 はLi2 CO3 とC0 CO3 を1:2
のモル比で混合し、大気中で900℃で加熱することに
より合成した。また、LiNiO2 はLiOHとNi
(NO3 2 を1:1のモル比で混合し、大気中で80
0℃で加熱することによって得た。LiFeO2 はLi
2 CO3 とFe(OH)3 を1:2のモル比で混合し、
650℃で加熱することにより得た。
Embodiments A non-aqueous electrolyte secondary battery and a method of manufacturing the same according to embodiments of the present invention will be described below with reference to the drawings. (Example 1) LiMn 2 O 4 is Li 2 CO 3 and Mn 3 O.
4 was mixed well at a molar ratio of 3: 4, and then this mixture was heated in the atmosphere at 900 ° C. for 10 hours to synthesize. LiC 0 O 2 is a mixture of Li 2 CO 3 and C 0 CO 3 1: 2.
Was mixed at a molar ratio of and the mixture was heated at 900 ° C. in the atmosphere to synthesize. LiNiO 2 is LiOH and Ni.
(NO 3 ) 2 was mixed at a molar ratio of 1: 1 and the mixture was mixed with 80
Obtained by heating at 0 ° C. LiFeO 2 is Li
2 CO 3 and Fe (OH) 3 were mixed in a molar ratio of 1: 2,
Obtained by heating at 650 ° C.

【0010】次に、上記のようにして得られたLiMn
2 4 、LiC0 2 、LiNiO 2 およびLiFeO
2 の活物質として用い正極を作成した。正極の作製はま
ず、これらの活物質と導電剤であるアセチレンブラック
と結着剤としてのポリフッ化エチレン樹脂を重量比で
7:2:1となるように混合し、十分に乾燥したものを
正極合剤とした。この正極合剤0.1グラムを直径1
7.5mmに1トン/cm 2 でペレット状に加圧成型し
て正極を形成した。
Next, the LiMn obtained as described above
2OFour, LiC0O2, LiNiO 2And LiFeO
2A positive electrode was prepared by using it as an active material. Preparation of positive electrode
First, these active materials and acetylene black which is a conductive agent
And polyfluorinated ethylene resin as a binder in weight ratio
Mix to a ratio of 7: 2: 1 and dry thoroughly.
It was used as a positive electrode mixture. 0.1 gram of this positive electrode mixture
1 ton / cm per 7.5 mm 2Pressed into pellets with
To form a positive electrode.

【0011】負極の作製は負極活物質である炭素材料と
結着剤であるポリフッ化エチレン樹脂を重量比で10:
1となるように混合し、十分に乾燥したものを負極合剤
とした。この負極合剤0.1gを直径17.5mmに1
トン/cm2 でペレット状に加圧成型して負極を形成し
た。
The negative electrode is manufactured by using a carbon material as a negative electrode active material and a polyfluorinated ethylene resin as a binder in a weight ratio of 10:
The mixture was mixed so as to be 1 and sufficiently dried to obtain a negative electrode mixture. 0.1 g of this negative electrode mixture was added to 17.5 mm in diameter.
A negative electrode was formed by pressure-molding into a pellet shape at ton / cm 2 .

【0012】ECとDMEとPCを体積比で50:5
0:20の割合で混合した溶媒にホウフッ化リチウムを
1モル/1溶解したものを電解液Aとし、上記溶媒に六
フッ化リン酸リチウムを1モル/1溶解したものを電解
液B、さらにECとDMEの等比体積混合溶媒にホウフ
ッ化リチウムあるいは六フッ化リン酸リチウムを1モル
/1溶解したものをそれぞれ電解液C,Dとする。
Volume ratio of EC, DME and PC is 50: 5.
Electrolyte solution A was prepared by dissolving 1 mol / 1 of lithium borofluoride in a solvent mixed at a ratio of 0:20, and electrolyte solution B was prepared by dissolving 1 mol / 1 of lithium hexafluorophosphate in the above solvent. Electrolyte solutions C and D are prepared by dissolving 1 mol / 1 of lithium borofluoride or lithium hexafluorophosphate in a solvent mixture of EC and DME having an equal volume.

【0013】以上のように作成した正極と負極を用いて
製造した非水電解液二次電池の断面図を(図1)に示
す。正極1をケース2に置き、正極1上にセパレータ3
としての多孔性ポリプロピレンフィルムを置いた。負極
4をポリプロピレン製ガスケット5を付けた封口板6に
圧着した。つぎに、電解液をセパレータ3上、正極1お
よび負極4上に加えた後、電池を封口板6で封口した。
電解液Aを用い、正極活物質としてLiMn 2 4 を用
いて、上記の方法で作製した非水電解液二次電池をそれ
ぞれ(A1 )、(A2 )、(A3 )、(A4 )とする。
Using the positive electrode and the negative electrode prepared as described above
A cross-sectional view of the manufactured non-aqueous electrolyte secondary battery is shown in (Fig. 1).
You The positive electrode 1 is placed in the case 2, and the separator 3 is placed on the positive electrode 1.
As a porous polypropylene film. Negative electrode
4 to the sealing plate 6 with the polypropylene gasket 5
Crimped. Next, the electrolytic solution is placed on the separator 3 and the positive electrode 1
And the negative electrode 4, the battery was sealed with a sealing plate 6.
LiMn was used as the positive electrode active material using the electrolytic solution A. 2OFourFor
The non-aqueous electrolyte secondary battery prepared by the above method.
Each (A1), (A2), (A3), (AFour).

【0014】電解液Bを用い、正極活物質としてLiM
2 4 、LiC0 2 、LiNiO2 、LiFeO2
を用いて、上記と同様の方法で作製した非水電解液二次
電池をそれぞれ(B1 )、(B2 )、(B3 )、
(B4 )とする。
LiM was used as the positive electrode active material using the electrolytic solution B.
n 2 O 4 , LiC 0 O 2 , LiNiO 2 , LiFeO 2
Non-aqueous electrolyte secondary batteries produced by the same method as above using (B 1 ), (B 2 ), (B 3 ),
(B 4 ).

【0015】比較例として、電解液C,Dを用い、正極
活物質としてLiMn2 4 、LiC0 2 、LiNi
2 を用いて、上記と同様の方法で作製した非水電解液
二次電池をそれぞれ(C1 )、(C2 )、(C3 )、
(C4 )および(D1 )、(D 2 )、(D3 )、
(D4 )とする。
As a comparative example, using electrolytes C and D,
LiMn as active material2OFour, LiC0O2, LiNi
O2Non-aqueous electrolyte solution prepared in the same manner as above using
Each secondary battery (C1), (C2), (C3),
(CFour) And (D1), (D 2), (D3),
(DFour).

【0016】(表1)にEC−DMEの混合溶媒とEC
−DME−PC混合溶媒の−20℃で凍結するかどうか
を確認した結果を示す。さらに(表2)にEC−DME
−PC混合溶媒の−20℃で凍結するかどうかを確認し
た結果を示す。このようにPCを添加した電解液系は−
20℃においても凍結することがない。
Table 1 shows EC-DME mixed solvent and EC.
-The result of having confirmed whether it freezes at -20 degreeC of a DME-PC mixed solvent is shown. Furthermore (Table 2) shows EC-DME
-The result of having confirmed whether it freezes at -20 degreeC of PC mixed solvent is shown. In this way, the electrolyte system containing PC is-
It does not freeze even at 20 ° C.

【0017】[0017]

【表1】 [Table 1]

【0018】[0018]

【表2】 [Table 2]

【0019】非水電解液二次電池の低温試験を以下の方
法で行う。20℃で充放電電流0.5mA、電圧範囲
3.0V〜4.5Vの条件で非水電解液二次電池の充放
電を行い、非水電解液二次電池の容量を確認する。この
非水電解液二次電池を20℃で充電し、−20℃の温度
雰囲気に移し、10時間放置する。そして非水電解液二
次電池を0.5mAの電流で3Vまで放電する。評価は
20℃の容量に対する−20℃の容量比を比較すること
によって行う。
A low temperature test of the non-aqueous electrolyte secondary battery is performed by the following method. The capacity of the non-aqueous electrolyte secondary battery is confirmed by charging / discharging the non-aqueous electrolyte secondary battery under the conditions of a charge / discharge current of 0.5 mA at 20 ° C. and a voltage range of 3.0 V to 4.5 V. The non-aqueous electrolyte secondary battery is charged at 20 ° C., transferred to an atmosphere of −20 ° C., and left for 10 hours. Then, the non-aqueous electrolyte secondary battery is discharged to 3 V with a current of 0.5 mA. The evaluation is performed by comparing the capacity ratio of −20 ° C. to the capacity of 20 ° C.

【0020】低温容量維持率(%)=−20℃の放電容
量/20℃の放電容量×100 低温試験の結果を(表3)に示す。
Low temperature capacity retention rate (%) = − 20 ° C. discharge capacity / 20 ° C. discharge capacity × 100 The results of the low temperature test are shown in Table 3.

【0021】[0021]

【表3】 [Table 3]

【0022】比較例である非水電解液二次電池C1は、
−20℃での容量は20℃の1%であり、ほとんど放電
できない。同様に比較例の非水電解液二次電池はすべて
容量維持率が1%以下であった。これに対して、本実施
例の非水電解液二次電池A1は−20℃においても放電
することができ、その放電容量は20℃の83%であ
る。同様に本実施例の非水電解液二次電池A2,B1,
B2,C1,C2,D1,D2も同様に、−20℃の放
電容量は20℃の温度雰囲気の場合の8割強の容量を有
することがわかった。
A non-aqueous electrolyte secondary battery C1 which is a comparative example is
The capacity at −20 ° C. is 1% of 20 ° C., and almost no discharge is possible. Similarly, the nonaqueous electrolyte secondary batteries of Comparative Examples all had a capacity retention rate of 1% or less. On the other hand, the non-aqueous electrolyte secondary battery A1 of this example can be discharged even at −20 ° C., and its discharge capacity is 83% of 20 ° C. Similarly, the non-aqueous electrolyte secondary batteries A2, B1, and
Similarly, it was found that B2, C1, C2, D1 and D2 have a discharge capacity of -20 ° C which is more than 80% of that in the case of a temperature atmosphere of 20 ° C.

【0023】次に非水電解液二次電池の高温保存試験を
以下の方法で行った。まず、上記の方法で作製した非水
電解液二次電池について、20℃において0.5mAの
定電流で4.3Vまで充電し、3Vまで放電する充電・
放電を5サイクル行った。その後6サイクル目の充電が
終わったところで非水電解液二次電池を60℃の恒温槽
で4週間保存した。保存後、非水電解液二次電池を再び
20℃に戻し、同じ条件で放電した。非水電解液二次電
池の評価としては、次に示す容量維持率と容量回復率の
値を用いて行った。
Next, a high temperature storage test of the non-aqueous electrolyte secondary battery was conducted by the following method. First, regarding the non-aqueous electrolyte secondary battery manufactured by the above method, charging at 20 ° C. with a constant current of 0.5 mA to 4.3 V and discharging to 3 V
The discharge was performed for 5 cycles. Then, when the charge of the 6th cycle was completed, the non-aqueous electrolyte secondary battery was stored in a constant temperature bath at 60 ° C. for 4 weeks. After storage, the non-aqueous electrolyte secondary battery was returned to 20 ° C. again and discharged under the same conditions. The evaluation of the non-aqueous electrolyte secondary battery was performed using the following values of the capacity retention rate and the capacity recovery rate.

【0024】容量維持率(%)=(6サイクル目の放電
容量/5サイクル目の放電容量)×100 容量回復率(%)=(7サイクル目の放電容量/5サイ
クル目の放電容量)×100 また、表4には、各非水電解液二次電池の4週間後の容
量維持率と容量回復率を示す。
Capacity maintenance rate (%) = (6th cycle discharge capacity / 5th cycle discharge capacity) × 100 Capacity recovery rate (%) = (7th cycle discharge capacity / 5th cycle discharge capacity) × 100 Table 4 also shows the capacity retention rate and capacity recovery rate of each non-aqueous electrolyte secondary battery after 4 weeks.

【0025】[0025]

【表4】 [Table 4]

【0026】比較例である非水電解液二次電池
(C1 )、(D1 )は保存後の容量維持率がそれぞれ8
5%、82%であり、保存前の放電容量の半分以下の容
量を有しているのみである。さらに、これらの非水電解
液二次電池の容量回復率(保存後、非水電解液二次電池
を充電し、再度放電した時に得られる放電容量を保存前
の放電容量で除した値)はそれぞれ99%、99%であ
り、60℃、4週間保存後の非水電解液二次電池の容量
20%程度自己放電し、充電することにより保存前と同
等の容量となる。
The non-aqueous electrolyte secondary batteries (C 1 ) and (D 1 ) which are comparative examples each have a capacity retention rate of 8 after storage.
They are 5% and 82%, respectively, and only have a capacity less than half of the discharge capacity before storage. Furthermore, the capacity recovery rate of these non-aqueous electrolyte secondary batteries (the value obtained by dividing the discharge capacity obtained when the non-aqueous electrolyte secondary battery was charged after storage and discharged again by the discharge capacity before storage) was They are 99% and 99%, respectively, and the capacity of the non-aqueous electrolyte secondary battery after storage at 60 ° C. for 4 weeks is about 20% by self-discharge, and the capacity becomes the same as that before storage.

【0027】これに対して本実施例である非水電解液二
次電池(A1 )は保存後の容量維持率は83%と保存前
の放電容量に比べると17%ほど低下するが、容量回復
率は98%とほぼ保存前の容量にまで回復している。非
水電解液二次電池(B1 )についても、容量維持率は8
4%であったが、容量回復率は100%であり、保存前
の放電容量まで回復する。同様に、正極活物質としてL
iC0 2 、LiNiO2 あるいはLiFeO2 を用い
た非水電解液二次電池(A2 )、(B2 )、(A3 )、
(B3 )、(A4 )、(B4 )の保存後の容量回復率は
97〜100%であり、60℃、4週間の保存後でも充
電を行えば、ほぼ完全に容量は回復する。
On the other hand, in the non-aqueous electrolyte secondary battery (A 1 ) of this example, the capacity retention rate after storage was 83%, which was about 17% lower than the discharge capacity before storage, but the capacity was The recovery rate is 98%, which is almost the capacity before storage. The capacity retention rate of the non-aqueous electrolyte secondary battery (B 1 ) is also 8
Although it was 4%, the capacity recovery rate was 100%, and the discharge capacity before storage was recovered. Similarly, as the positive electrode active material, L
Non-aqueous electrolyte secondary batteries (A 2 ), (B 2 ), (A 3 ), which use iC 0 O 2 , LiNiO 2 or LiFeO 2 .
The capacity recovery rate of (B 3 ), (A 4 ), and (B 4 ) after storage is 97 to 100%, and the capacity is almost completely recovered by charging even after storage at 60 ° C. for 4 weeks. .

【0028】このように電解液の溶媒としてECとDM
EとPCの混合液を用い、溶質としてホウフッ化リチウ
ムあるいは六フッ化リン酸リチウムを用いた非水電解液
二次電池は低温特性と高温保存特性に優れていることが
わかる。 (実施例2)次に、EC−DME混合溶媒対するにPC
の添加量について検討した。正極活物質としてはLiM
2 4 を用い、負極活物質として炭素材料を用いた。
正極、負極の作製は実施例1と同様の方法で行った。ま
た、試験に使用した非水電解液二次電池も実施例1と同
様の方法で作製した。ECとDMEの混合比は体積比で
に1とし、PCの添加量をECに対して体積比で0、3
0、35、40、60、65、80、100%の場合に
ついて検討した。これらの電解液を用いて作製した非水
電解液二次電池を(a1)、(a2)、(a3)、(a
4)、(a5)、(a6)、(a7)、(a8)とす
る。
As described above, EC and DM are used as the solvent of the electrolytic solution.
It can be seen that the non-aqueous electrolyte secondary battery using the mixed solution of E and PC and using lithium borofluoride or lithium hexafluorophosphate as the solute has excellent low temperature characteristics and high temperature storage characteristics. (Example 2) Next, PC was added to the EC-DME mixed solvent.
The amount added was investigated. LiM as the positive electrode active material
n 2 O 4 was used, and a carbon material was used as the negative electrode active material.
The positive electrode and the negative electrode were manufactured in the same manner as in Example 1. The non-aqueous electrolyte secondary battery used in the test was also manufactured by the same method as in Example 1. The mixing ratio of EC and DME is 1 by volume, and the addition amount of PC is 0, 3 by volume with respect to EC.
The cases of 0, 35, 40, 60, 65, 80, and 100% were examined. Non-aqueous electrolyte secondary batteries produced using these electrolytes are (a1), (a2), (a3), (a
4), (a5), (a6), (a7), and (a8).

【0029】非水電解液二次電池の低温試験および高温
保存試験は実施例1と同様の方法で行った。低温試験の
結果を(図2)に示す。ECに対するPCの体積比が3
0%までは−20℃での放電容量はほとんど0mAhで
あるが、35%を越えると容量維持率は70%程度にな
り、それ以上の領域では85%弱であった。高温保存試
験の結果を(図3)に示す。60℃、4週間の保存試験
後、容量回復率はECに対するPCの体積比が65%程
度までは95%を越える値を示したが、これを越える領
域では低下傾向にある。これらのことより、ECに対す
るPCの添加量は体積比で35%〜65%の範囲が適し
ているといえる。
The low temperature test and the high temperature storage test of the non-aqueous electrolyte secondary battery were carried out in the same manner as in Example 1. The results of the low temperature test are shown in (Fig. 2). Volume ratio of PC to EC is 3
The discharge capacity at −20 ° C. was almost 0 mAh up to 0%, but the capacity retention rate became about 70% at more than 35%, and it was slightly less than 85% in the region beyond that. The results of the high temperature storage test are shown in (Fig. 3). After a storage test at 60 ° C. for 4 weeks, the capacity recovery rate showed a value exceeding 95% up to a volume ratio of PC to EC of about 65%, but tends to decrease in a region exceeding this. From these, it can be said that the amount of PC added to EC is preferably in the range of 35% to 65% by volume.

【0030】本実施例では正極活物質としてLiMn2
4 を用いて説明したが、実施例1で示した正極活物質
LiC0 2 、LiNiO2 、LiFeO2 についても
同様にDME濃度は20%から70%の範囲で良好な高
温保存特性を示した。また、電解液の溶質としてはホウ
フッ化リチウムのみについて説明したが、六フッ化りん
酸リチウムでも同様の結果となった。
In this example, LiMn 2 was used as the positive electrode active material.
O 4 The it has been described using, similarly DME concentration for the positive electrode active material LiC 0 O 2, LiNiO 2, LiFeO 2 shown in Example 1 showed good high temperature storage characteristics in the range of 70% to 20% It was Also, only lithium borofluoride was described as the solute of the electrolytic solution, but the same result was obtained with lithium hexafluorophosphate.

【0031】なお、実施例1および2では負極活物質と
して炭素材料を取り上げて説明したが、負極活物質とし
てはリチウム金属、アルミニウム合金、アルミニウムな
どを用いた場合についても検討を行った結果、同等の結
果を得た。
In Examples 1 and 2, the carbon material was taken up as the negative electrode active material for explanation, but the result of the examination when lithium metal, aluminum alloy, aluminum or the like was used as the negative electrode active material was found to be the same. Got the result.

【0032】[0032]

【発明の効果】以上の実施例の説明より明らかなように
4V級の非水電解液二次電池において非水電解液として
ECとDMEとPCの混合溶媒にホウフッ化リチウムあ
るいは六フッ化リン酸リチウムを溶解したものを用いる
ことにより高温保存特性と低温特性に優れた非水電解液
二次電池を得ることができ、産業上の意義は大きい。
As is apparent from the above description of the embodiments, lithium borofluoride or hexafluorophosphoric acid is used as a mixed solvent of EC, DME and PC in a non-aqueous electrolyte secondary battery of 4V class as a non-aqueous electrolyte. By using the one in which lithium is dissolved, a non-aqueous electrolyte secondary battery having excellent high temperature storage characteristics and low temperature characteristics can be obtained, which has great industrial significance.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例の非水電解液二次電池の縦断面
FIG. 1 is a vertical sectional view of a non-aqueous electrolyte secondary battery according to an embodiment of the present invention.

【図2】エチレンカーボネートに対するプロピレンカー
ボネートの濃度と低温容量維持率の関係を示した図
FIG. 2 is a diagram showing the relationship between the concentration of propylene carbonate with respect to ethylene carbonate and the low temperature capacity retention rate.

【図3】エチレンカーボネートに対するプロピレンカー
ボネートの濃度と60℃保存後の容量回復率の関係を示
した図
FIG. 3 is a diagram showing the relationship between the concentration of propylene carbonate relative to ethylene carbonate and the capacity recovery rate after storage at 60 ° C.

【符号の説明】[Explanation of symbols]

1 正極 2 ケース 3 セパレータ 4 負極 5 ガスケット 6 封口板 1 Positive electrode 2 Case 3 Separator 4 Negative electrode 5 Gasket 6 Sealing plate

───────────────────────────────────────────────────── フロントページの続き (72)発明者 美藤 靖彦 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 (72)発明者 豊口 吉徳 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Yasuhiko Mito 1006 Kadoma, Kadoma City, Osaka Prefecture Matsushita Electric Industrial Co., Ltd. (72) Inventor Yoshinori Toyokuchi 1006 Kadoma, Kadoma City, Osaka Matsushita Electric Industrial Co.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 リチウムまたはリチウムを可逆的に吸蔵
放出する負極と、LiMn2 4 、LiC0 2 、Li
NiO2 、LiFeO2 の群より選ばれる少なくとも1
つの複合酸化物を活物質とする正極および非水電解液を
備え、前記非水電解液として、エチレンカーボネートと
1,2−ジメトキシエタンとプロピレンカーボネートと
の混合液にホウフッ化リチウムあるいは六フッ化リン酸
リチウムを溶解したものを用いた非水電解液二次電池。
1. Lithium or a negative electrode that reversibly absorbs and releases lithium, and LiMn 2 O 4 , LiC 0 O 2 , and Li.
At least 1 selected from the group consisting of NiO 2 and LiFeO 2.
A positive electrode using two composite oxides as an active material and a non-aqueous electrolytic solution are used. As the non-aqueous electrolytic solution, a mixed solution of ethylene carbonate, 1,2-dimethoxyethane and propylene carbonate is added to lithium borofluoride or phosphorus hexafluoride. A non-aqueous electrolyte secondary battery using a solution of lithium oxide.
【請求項2】 プロピレンカーボネートの添加量がエチ
レンカーボネートに対して5〜20体積%である請求項
1記載の非水電解液二次電池。
2. The non-aqueous electrolyte secondary battery according to claim 1, wherein the addition amount of propylene carbonate is 5 to 20% by volume with respect to ethylene carbonate.
JP4323507A 1992-12-03 1992-12-03 Nonaqueous electrolyte secondary battery Pending JPH06176793A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4323507A JPH06176793A (en) 1992-12-03 1992-12-03 Nonaqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4323507A JPH06176793A (en) 1992-12-03 1992-12-03 Nonaqueous electrolyte secondary battery

Publications (1)

Publication Number Publication Date
JPH06176793A true JPH06176793A (en) 1994-06-24

Family

ID=18155466

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4323507A Pending JPH06176793A (en) 1992-12-03 1992-12-03 Nonaqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JPH06176793A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5789110A (en) * 1996-09-27 1998-08-04 Valence Technology, Inc. Cathode-active material blends comprising Lix Mn2 O4 (0<x≦2)
JP2009224282A (en) * 2008-03-18 2009-10-01 Sony Corp Nonaqueous electrolyte battery

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5789110A (en) * 1996-09-27 1998-08-04 Valence Technology, Inc. Cathode-active material blends comprising Lix Mn2 O4 (0<x≦2)
JP2009224282A (en) * 2008-03-18 2009-10-01 Sony Corp Nonaqueous electrolyte battery

Similar Documents

Publication Publication Date Title
JP3439082B2 (en) Non-aqueous electrolyte secondary battery
JPH06333594A (en) Nonaqueous electrolyte secondary battery
JPH1027626A (en) Lithium secondary battery
JP2000011996A (en) Nonaqueous electrolyte secondary battery
JPH07320784A (en) Nonaqeous electrolytic lithium secondary battery
JPH09147863A (en) Nonaqueous electrolyte battery
JP3197684B2 (en) Non-aqueous electrolyte secondary battery
JPH0536411A (en) Nonaqueous solvent secondary battery
JP2002270181A (en) Non-aqueous electrolyte battery
JPH0541251A (en) Nonaqueous electrolyte secondary battery
JP2924329B2 (en) Non-aqueous electrolyte secondary battery
CN112467218B (en) Lithium metal battery based on copper nitrate electrolyte additive
JP4042083B2 (en) Nonaqueous electrolyte and lithium secondary battery using the same
JP3268924B2 (en) Non-aqueous electrolyte battery
US6451482B1 (en) Non-aqueous electrolyte secondary batteries
JPH1027627A (en) Lithium secondary battery
JPH04171659A (en) Nonaqueous-electrolyte secondary battery
US6465131B1 (en) Lithium secondary cell with a stannous electrode material
JPH06176793A (en) Nonaqueous electrolyte secondary battery
JP3615416B2 (en) Lithium secondary battery
JPH1154122A (en) Lithium ion secondary battery
JPH04328258A (en) Nonaqueous electrolyte secondary battery
JP2845069B2 (en) Organic electrolyte secondary battery
JPH0212768A (en) Lithium secondary battery
JPH07296850A (en) Nonaqueous electrolyte lithium secondary battery