JPH0617495B2 - Dephosphorizing agent for hot metal - Google Patents

Dephosphorizing agent for hot metal

Info

Publication number
JPH0617495B2
JPH0617495B2 JP61047383A JP4738386A JPH0617495B2 JP H0617495 B2 JPH0617495 B2 JP H0617495B2 JP 61047383 A JP61047383 A JP 61047383A JP 4738386 A JP4738386 A JP 4738386A JP H0617495 B2 JPH0617495 B2 JP H0617495B2
Authority
JP
Japan
Prior art keywords
cao
hot metal
dephosphorization
dephosphorizing agent
agent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61047383A
Other languages
Japanese (ja)
Other versions
JPS62207810A (en
Inventor
志郎 萬谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP61047383A priority Critical patent/JPH0617495B2/en
Publication of JPS62207810A publication Critical patent/JPS62207810A/en
Publication of JPH0617495B2 publication Critical patent/JPH0617495B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Treatment Of Steel In Its Molten State (AREA)
  • Refinement Of Pig-Iron, Manufacture Of Cast Iron, And Steel Manufacture Other Than In Revolving Furnaces (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は実用的で然も安価な溶銑用脱燐剤に関し、特
に、転炉精錬に先立ってトーピードカーや取鍋等の容器
内で行なわれる溶銑の予備脱燐処理に適した脱燐特性の
優れた然も実用的で安価な溶銑用脱燐剤に関する。
DETAILED DESCRIPTION OF THE INVENTION (Industrial field of application) The present invention relates to a practical and yet inexpensive dephosphorizing agent for hot metal, and particularly, it is carried out in a container such as a torpedo car or a ladle prior to converter refining. The present invention relates to a dephosphorizing agent for hot metal, which is suitable for preliminary dephosphorizing treatment of hot metal and has excellent dephosphorizing properties, but is practical and inexpensive.

(従来の技術) 周知の如く、高炉で製造された溶銑には不純物として多
量の燐が含まれているので、製鋼工程において効率のよ
い脱燐処理を行ない、鋼材の機械的性質を改善すること
が益々強く要求されている。
(Prior Art) As is well known, since hot metal produced in a blast furnace contains a large amount of phosphorus as an impurity, it is necessary to perform an efficient dephosphorization treatment in the steelmaking process to improve the mechanical properties of steel products. Are being increasingly demanded.

通常この脱燐処理は脱炭処理と共に転炉等の酸化精錬中
に生石灰系の造滓剤を用いて行なわれる他、最近では転
炉における脱炭精錬に先立つ溶銑の予備処理で硫黄と同
様、燐も除去する技術が実用化されてきている。
Usually, this dephosphorization process is performed by using a quicklime-based slag-forming agent during oxidation refining such as in a converter together with decarburization, and recently, in the pretreatment of hot metal prior to decarburization and refining in a converter, similar to sulfur, Techniques for removing phosphorus have also been put into practical use.

従来、溶銑予備処理用の脱燐剤としては、例えば特開昭
55−62112号公報で知られているように、CaOとC
aCl2又はKClと酸素含有物質(Oガス又は酸化鉄)を
併用するもの、あるいは例えば特開昭52−127420号公
報で知られているように、Na2CO3系のものが一般的であ
る。また、他の成分系の脱燐剤として、CaO-Al2O3系の
ものとして例えば特開昭56-108813号公報、特開昭59-17
0214号公報、特公昭56-27569号公報記載のものが知られ
ている。
Conventionally, as a dephosphorizing agent for pretreatment of hot metal, for example, as known from JP-A-55-62112, CaO and C
In general, aCl 2 or KCl and an oxygen-containing substance (O 2 gas or iron oxide) are used in combination, or a Na 2 CO 3 -based substance is generally used, as known from JP-A-52-127420. is there. In addition, as a dephosphorizing agent of another component type, a CaO—Al 2 O 3 type dephosphorizing agent is disclosed, for example, in JP-A-56-108813 and JP-A-59-17.
Those described in Japanese Patent Publication No. 0214 and Japanese Patent Publication No. 56-27569 are known.

(発明が解決しようとしている問題点) 上述の公知の脱燐剤は次のような問題がある。(Problems to be Solved by the Invention) The above-mentioned known dephosphorizing agents have the following problems.

先ず、CaO-CaCl2(又はKCl)系、CaO-CaF2系Na2CO3系の
ものは、処理容器の耐火ライニングの侵食を助長し、使
用時に有害な蒸発物や悪臭のガスを発生し、作業環境の
悪化をもたらし、生成スラグの処理にも多大の経費を要
する。
First, CaO-CaCl 2 (or KCl) -based and CaO-CaF 2 -based Na 2 CO 3 -based materials promote the erosion of the refractory lining of the processing container and generate harmful evaporative substances and odorous gases during use. However, the work environment is deteriorated, and the processing of the generated slag requires a large amount of cost.

一方CaO-Al2O3系として例示の特開昭56−108813号公
報記載のものは、高炉滓を活用するものである。高炉滓
には多量のSiO2成分が含まれており此のSiO2が溶銑脱燐
スラグの発生量を増大させスラグ処理経費を高めるのみ
ならず、スラグ塩基度を低下せしめスラグ・メタル間の
脱燐反応を低下せしめる。更に高炉滓には多量の硫黄が
含まれているので、該特開昭56-108813号公報に記載の
如く処理剤として活用するには高炉滓の脱S処理を必要
とし、工業的に実用でない。
On the other hand, the CaO-Al 2 O 3 system disclosed in Japanese Patent Application Laid-Open No. 56-108813 utilizes a blast furnace slag. The blast furnace slag contains a large amount of SiO 2 component, and this SiO 2 not only increases the amount of hot metal dephosphorization slag and increases the slag treatment cost, but also lowers the slag basicity and removes slag between metal and metal. Decrease the phosphorus reaction. Further, since a large amount of sulfur is contained in the blast furnace slag, it is not industrially practical to use the blast furnace slag for de-S treatment in order to utilize it as a treating agent as described in JP-A-56-108813. .

また、特開昭59-170214号公報記載のものは、同時に脱
Sをも意図した処理剤であり、市販のアルミン酸カルシ
ウムの如きnCaO・mAl2O3の鉱物組成を有するものを対象
とし、原料の入手に制約があると共に価格面で難点があ
る。
Further, the one described in JP-A-59-170214 is a treating agent which is also intended to remove S at the same time, and is intended for those having a mineral composition of nCaO.mAl 2 O 3 such as commercially available calcium aluminate, There are restrictions on the availability of raw materials and there are difficulties in terms of price.

更にまた、特公昭56-27569号公報記載のものは転炉製鋼
に使用することを目的とするもので、脱炭を極力抑制し
て脱燐を優先的に行なう溶銑の脱燐機構とは異なり、両
者を同一レベルで論ずることは出来ない。
Furthermore, the one described in Japanese Examined Patent Publication No. 56-27569 is intended for use in converter steelmaking, and is different from the hot metal dephosphorization mechanism in which decarburization is suppressed and dephosphorization is preferentially performed. , You can't discuss both at the same level.

即ち、特公昭56-27569号公報記載のものは、転炉製鋼に
おける吹錬初期の滓化促進剤である螢石(CaF2)の代替
品とする自溶性造滓剤であって、その使用目的が初めか
ら全く異なる。また、これを溶銑脱燐剤とした場合、そ
の化学組成より明らかな如く、脱炭に消費されるFe2O3
分を考慮していないため、Fe2O3分が低く過ぎ、最終ス
ラグの融点が高くなり、溶銑脱燐剤としては十分な効果
が期待できない。
That is, the one described in Japanese Examined Patent Publication No. 56-27569 is a self-dissolving slag forming agent which is a substitute for fluorite (CaF 2 ) which is a slag forming accelerator in the early stage of blowing in converter steelmaking, and its use The purpose is completely different from the beginning. When this is used as a hot metal dephosphorization agent, as is clear from its chemical composition, Fe 2 O 3 consumed for decarburization
Since the content is not taken into consideration, the Fe 2 O 3 content is too low, the melting point of the final slag becomes high, and a sufficient effect as a hot metal dephosphorizing agent cannot be expected.

(問題点を解決するための手段作用) 本発明は上記、従来の問題点を有利に解決した溶銑用脱
燐剤であり、特に、使用に当って、処理容器の耐火ライ
ニングの侵食もそれほど大きくなく、有害なガスも発生
しないので作業環境を害さないばかりか生成スラグの肥
料などへの有効利用範囲を大巾に拡大でき、溶銑中の燐
分を優先的に除去し得る実用的で然も安価な脱燐剤の提
供を目的とするものである。
(Means and Actions for Solving Problems) The present invention is a dephosphorizing agent for hot metal that advantageously solves the above-mentioned conventional problems, and in particular, during use, the erosion of the refractory lining of the processing container is so great. In addition, since it does not generate harmful gas, it not only harms the working environment, but it also greatly expands the effective use range of the generated slag for fertilizers, etc., and it is practical and naturally possible to remove phosphorus in hot metal preferentially. The purpose is to provide an inexpensive dephosphorizing agent.

本発明の基本は、溶銑温度の如き比較的低温度に於いて
もAl2O3はCaOの融点を低下させることを確認すると共
に、CaOとAl2O3との比率を適切に選定すると、脱炭に比
して脱燐が優先的に行なわれるという知見に基づいてい
る。即ち本発明の要旨とするところは、溶銑の脱燐反応
を進行させるに必要な量な酸化鉄と、脱燐生成物を安定
化させる石灰と、生成スラグの融点を下げて脱燐反応を
促進せしめる含水アルミナ鉱物を必須としたCaO-Al2O3-
FeXOY系を主成分とする混合物であって、該混合物中のC
aOとAl2O3の含有割合を重量でCaO:Al2O3を(2.5〜2
0):1とし、酸化鉄の含有割合は混合物の25〜65
(重量)%とし、不純物であるSiO2の含有割合は混合物
の10%(重量)以下とした溶銑用脱燐剤である。
The basis of the present invention is to confirm that Al 2 O 3 lowers the melting point of CaO even at a relatively low temperature such as the hot metal temperature, and appropriately selects the ratio of CaO and Al 2 O 3 . It is based on the finding that dephosphorization takes precedence over decarburization. That is, the gist of the present invention is to promote the dephosphorization reaction by lowering the melting point of the produced slag and the amount of iron oxide required for advancing the dephosphorization reaction of hot metal, lime that stabilizes the dephosphorization product. CaO-Al 2 O 3 -containing essential hydrous alumina minerals
A mixture containing Fe X O Y as a main component, wherein C in the mixture is
The content ratio of aO and Al 2 O 3 is CaO: Al 2 O 3 (2.5 to 2 by weight).
0): 1 and the iron oxide content is 25 to 65 of the mixture.
(Wt%), and the content ratio of SiO 2 as an impurity was 10% (wt) or less of the mixture.

以下本発明を更に詳細に説明する。The present invention will be described in more detail below.

本発明者はCaOの融点降下剤としての CaF2,CaCl2,KClの前記欠点を解決するために、既に同様
の作用があるとして知られているAl2O3を選定し、CaOに
添加するAl2O3の量を順次増加したところ、第1図に示
す如くAl2O3はCaF2やFeOと同等以上のCaOの融点降下作
用が、溶銑温度近傍まであることが確認出来た。
In order to solve the above-mentioned drawbacks of CaF 2 , CaCl 2 and KCl as the melting point depressant of CaO, the present inventor selects Al 2 O 3 already known to have a similar action and adds it to CaO. When the amount of Al 2 O 3 was gradually increased, it was confirmed that Al 2 O 3 had a melting point lowering effect of CaO equal to or higher than CaF 2 and FeO as shown in FIG. 1 up to near the hot metal temperature.

次に此の確認に基づいて、Al2O3が溶銑の脱燐反応に於
いてもCaOの融点降下剤として有効かどうかの実験をし
た。即ち、C:4.2%,P:0.14%,S:0.05%,M
nとSiは痕跡の成分を有する溶銑500grを20kHzの高
周波溶解炉を用いてMgO坩堝中で溶解し、溶銑温度を1
350℃に保ちながら、(CaO+Al2O3):Fe2O3=5
0:50(重量比)のCaO-Al2O3-Fe2O3三元系の試薬を
用い2分毎に2grの割合で10回、計20grを投入し、
しかも、CaOに対するAl2O3の割合を種々に変えて、脱燐
及び脱炭の状況を調査した。
Next, based on these confirmations, an experiment was conducted as to whether Al 2 O 3 is effective as a melting point depressant for CaO even in the dephosphorization reaction of hot metal. That is, C: 4.2%, P: 0.14%, S: 0.05%, M
n and Si were melted in the MgO crucible using a 20kHz high-frequency melting furnace to melt 500gr of hot metal having trace components, and set the hot metal temperature to 1
(CaO + Al 2 O 3 ): Fe 2 O 3 = 5 while maintaining at 350 ℃
Using a 0:50 (weight ratio) CaO-Al 2 O 3 -Fe 2 O 3 ternary system reagent, every 2 minutes, at a rate of 2 gr, 10 times, 20 gr in total,
Moreover, the state of dephosphorization and decarburization was investigated by changing the ratio of Al 2 O 3 to CaO.

第2図,第3図はそれぞれ縦軸に溶銑中の燐及び炭素の
含有割合を、横軸に経過時間を表わし、経時的脱燐、脱
炭の変化を示した。尚、図中、横軸方向の↓は試薬の投
入時点を示し、 は夫々図面に説明の如き、CaOとAl2O3の重量割合を変え
た試薬の種類を示す。これら第2図,第3図から明らか
なように脱炭に比らべ脱燐が著しく進行していることが
判り、本発明者は、CaO-Al2O3-FeXOY三元系フラックス
は溶銑の脱燐に非常に有効であるという新しい知見を得
た。
2 and 3, the vertical axis represents the content ratio of phosphorus and carbon in the hot metal, and the horizontal axis represents the elapsed time, showing changes over time in dephosphorization and decarburization. In the figure, ↓ on the horizontal axis indicates the time when the reagent is added, Indicate the types of reagents in which the weight ratio of CaO and Al 2 O 3 is changed, as described in the drawings. It is clear from FIGS. 2 and 3 that dephosphorization is significantly progressing in comparison with decarburization, and the present inventor has found that CaO-Al 2 O 3 -Fe X O Y ternary system. We have obtained a new finding that flux is very effective in dephosphorizing hot metal.

このフラックスの 比即ちCaO/Al2O3(重量)比と脱燐率との関係を第4図
に示す。第4図より、CaO/Al2O3=2.5〜20.0 特に3.
0〜9.0の範囲に最適組成のあることが判る。生成ス
ラグ組成をCaO-Al2O3-FeXOY三元系状態図で示すと第5
図の如くなる。この状態図から高脱燐能を示したCaO:Al
2O3=(3.0〜9.0):1のフラックスの生成スラ
グはCaOが析出する飽和線近傍に位置していること判
る。即ち、CaO-Al2O3-FeXOY三元系において高脱燐能を
得るフラックス組成は低融点領域で極力P分配比の高い
組成(低Al2O3側)に配合し、反応進行に伴うFeXOYの低
下によりCaO飽和組成(CaO活量=1)となる範囲を選ぶ
ことが必要である。
Of this flux The relationship between the ratio, that is, the CaO / Al 2 O 3 (weight) ratio and the dephosphorization rate is shown in FIG. From FIG. 4, CaO / Al 2 O 3 = 2.5 to 20.0, especially 3.
It can be seen that the optimum composition is in the range of 0 to 9.0. The composition of the generated slag is CaO-Al 2 O 3 -Fe X O Y
As shown in the figure. From this phase diagram, CaO: Al showing high dephosphorization ability
It can be seen that the slag generated by the flux of 2 O 3 = (3.0 to 9.0): 1 is located near the saturation line where CaO precipitates. That is, in the CaO-Al 2 O 3 -Fe X O Y ternary system, the flux composition that obtains high dephosphorization ability is blended with the composition having the highest P distribution ratio (low Al 2 O 3 side) in the low melting point region to react. It is necessary to select a range where the CaO saturation composition (CaO activity = 1) is obtained due to the decrease of Fe X O Y with the progress.

この条件を満たす組成はCaO:Al2O3=2.5〜20.0:1
(重量)特に3.0〜9.0:1(重量)でありFeXOY
は25〜65%、特に30〜60%の範囲である。
The composition satisfying this condition is CaO: Al 2 O 3 = 2.5 to 20.0: 1.
(Weight) Especially 3.0-9.0: 1 (weight), Fe X O Y
Is in the range of 25 to 65%, especially 30 to 60%.

更に本発明者は前記知見に基づき、工業的に実用し得る
安価なAl2O3源として天然のボーキサイト,アルミニウ
ム工業の廃物である赤泥等に着目し、生石灰,ボーキサ
イトおよび/または赤泥,酸化鉄の粉末混合物をフラッ
クスとし、第1図,第2図の場合と同じ条件で、実験し
併せて、従来のフラックスの代表例としてCaO-CaF2-Fe2
O3系及びCaO-CaF2-CaCl2-Fe2O3系のものを比較実験し、
夫々、脱燐、脱炭の状況を調査した。第6図,第7図は
夫々各種フラックスを用いたときの脱燐、脱炭の経時変
化を示す。図中 は本発明対象の混合物で生石灰,酸化鉄,及びAl2O3
として夫々、ボーキサイト,赤泥,ボーキサイト+赤泥
を、 はCaO-Al2O3-Fe2O3三元系の試薬を、○,◇印は夫々、
従来のCaO-CaF2-Fe2O3系及びCaO-CaF2-CaCl2-Fe2O3系フ
ラックを示し、それらの成分割合は第6図,第7図に示
す通りである。
Furthermore, the present inventor, based on the above findings, pays attention to natural bauxite, red mud which is a waste product of the aluminum industry, etc. as an inexpensive Al 2 O 3 source that can be industrially used, and quick lime, bauxite and / or red mud, As a typical example of conventional flux, CaO-CaF 2 -Fe 2 was used as a typical example of conventional flux by using a powder mixture of iron oxide as a flux and conducting the experiment under the same conditions as in FIGS. 1 and 2.
Comparative experiments of O 3 system and CaO-CaF 2 -CaCl 2 -Fe 2 O 3 system,
Each surveyed the status of dephosphorization and decarburization. FIGS. 6 and 7 show changes with time in dephosphorization and decarburization when various fluxes were used. In the figure Is a mixture of the present invention, containing bauxite, red mud, and bauxite + red mud as quick lime, iron oxide, and Al 2 O 3 sources, respectively. Is a CaO-Al 2 O 3 -Fe 2 O 3 ternary reagent, and ○ and ◇ are respectively
Shows a conventional CaO-CaF 2 -Fe 2 O 3 system and CaO-CaF 2 -CaCl 2 -Fe 2 O 3 based flux, the components ratio is as shown FIG. 6, in Figure 7.

第6図,第7図より明らかなように、純粋な試薬を用い
たCaO-Al2O3-FeXOY系に比較し、ボーキサイトと赤泥を
使用した場合(CaO/Al2O3=3/1)では脱燐率が低下
している。これはボーキサイトや赤泥中のSiO2とTiO2
影響によるもので、これを打ち消すだけCaO量を増大す
れば CaO/Al2O3=5/1),純粋な試薬を用いたCaO-Al2O3-F
eXOY(CaO/Al2O3=3/1)系と同等の効果が得られ
る。また従来より溶銑脱燐剤として使用されてきたCaO-
CaF2-Fe2O3系や、CaO-CaF2-CaCl2-Fe2O3系脱燐剤と比較
しても全く同等である。従って天然のボーキサイトやア
ルミニウム工業の廃物である赤泥を使用した混合物も有
用であることが確認された。
As is clear from FIGS. 6 and 7, when bauxite and red mud were used (CaO / Al 2 O 3 compared to the CaO-Al 2 O 3 -Fe X O Y system using pure reagents). = 3/1), the dephosphorization rate is lowered. This is due to the effects of SiO 2 and TiO 2 in bauxite and red mud, and if the amount of CaO is increased to cancel this, CaO / Al 2 O 3 = 5/1), CaO-Al 2 O 3 -F using pure reagent
An effect equivalent to that of the e X O Y (CaO / Al 2 O 3 = 3/1) system can be obtained. In addition, CaO- which has been used as a hot metal dephosphorization agent
Compared with CaF 2 -Fe 2 O 3 -based and CaO-CaF 2 -CaCl 2 -Fe 2 O 3 -based dephosphorization agents, they are completely equivalent. Therefore, it was confirmed that a mixture using natural bauxite and red mud which is a waste product of the aluminum industry is also useful.

本発明の脱燐剤の限定理由について以下述べる。The reasons for limiting the dephosphorizing agent of the present invention will be described below.

本発明の脱燐剤はCaO-Al2O3-FeXOYの三元系であって、
此れらの成分を工業的実用レベルで選択すると、脱燐反
応を進行させるに必要な量の酸化鉄、脱燐して生成され
たP2O5等の生成物と安定させる石灰、そして石灰の融点
を降下させる含水アルミナ鉱物が必須である。そして、
75〜80%という優れた脱燐率を得るには第1図から
も明らかなようにCaOとAl2O3の両成分の比率を適切に選
択することが必須である。即ち前述の如く脱燐率80%
前後という高い結果を得るにはCaO:Al2O3=(3.0〜
9.0):1(重量)であることが必要である。脱燐率
を若干犠牲にすればCaO:Al2O3=(2.5〜20.
0):1(重量)で良い。この点が本発明の第二の特徴
である。
The dephosphorizing agent of the present invention is a ternary system of CaO-Al 2 O 3 -Fe X O Y ,
When these components are selected on an industrially practical level, the amount of iron oxide necessary for proceeding the dephosphorization reaction, lime that stabilizes the products such as P 2 O 5 produced by dephosphorization, and lime. A hydrated alumina mineral that lowers the melting point of is essential. And
In order to obtain an excellent dephosphorization rate of 75 to 80%, it is essential to appropriately select the ratio of both CaO and Al 2 O 3 components, as is clear from FIG. That is, as mentioned above, the dephosphorization rate is 80%.
CaO: Al 2 O 3 = (3.0-
9.0): 1 (by weight) is required. If the dephosphorization rate is slightly sacrificed, CaO: Al 2 O 3 = (2.5-20.
0): 1 (weight) is sufficient. This is the second feature of the present invention.

更に第6図から示唆されるようにAl2O3源の含水アルミ
ナ鉱物(ボーキサイト,赤泥等)から付随して入って来
るSiO2,TiO2は極力少ない方が良い。
Further, as suggested from FIG. 6, it is better that the incidental amounts of SiO 2 and TiO 2 coming from the hydrated alumina mineral (bauxite, red mud, etc.) as the source of Al 2 O 3 are as small as possible.

アルミナ源として、天然の含水アルミナ鉱物(ボーキサ
イト,ダイアスポア)とアルミニウム工業の廃物である
赤泥を使用する場合、含水アルミナ鉱物としてのボーキ
サイト,ダイアスポアにはSiO2<5%,Al2O3=50〜
70%,Fe2O3=15〜20%,TiO2=1〜2%,化合
水が15〜25%程度の鉱石が広く豊富に存在し安価で
ある。また赤泥はSiO2=10〜20%,Al2O3=20〜
25%,Fe2O3=30〜40%,TiO2=5〜8%,Na2O
=8〜15%程度の組成を有し、従来、全く利用されて
いないアルミニウム工業の廃物資源である。そして第6
図から明らかなようにSiO2を多く含有する赤泥をフラッ
ク中に添加したときの方が脱燐率が悪るい点、更によく
知られているように特にSiO2は溶銑脱燐中の溶融スラグ
の塩基度を低下させ脱燐効率を低下させると共に生成ス
ラグ量を多くするので、この生成スラグの後処理の経費
を増大させることを考慮して、SiO2は少ない方がよく、
その上限として本発明の脱燐剤混合物中の成分に占める
割合を重量で10%、好ましくは7%とした。この点が
第三の特徴である。
When using natural hydrous alumina minerals (bauxite, diaspore) and red mud, which is a waste product of the aluminum industry, as alumina sources, SiO 2 <5%, Al 2 O 3 = 50 for bauxite and diaspore as hydrous alumina minerals. ~
70%, Fe 2 O 3 = 15 to 20%, TiO 2 = 1 to 2%, and compounded water of about 15 to 25% is abundant in a wide variety and is inexpensive. Red mud has SiO 2 = 10-20%, Al 2 O 3 = 20-
25%, Fe 2 O 3 = 30-40%, TiO 2 = 5-8%, Na 2 O
It has a composition of about 8 to 15%, and is a waste resource of the aluminum industry which has never been used. And the sixth
As is clear from the figure, the dephosphorization rate is worse when red mud containing a large amount of SiO 2 is added to the flakes.As is well known, especially SiO 2 is a melt during hot metal dephosphorization. Since the basicity of the slag is reduced, the dephosphorization efficiency is reduced, and the amount of produced slag is increased, in consideration of increasing the cost of post-treatment of the produced slag, it is better that the amount of SiO 2 is less,
As its upper limit, the proportion of the components in the dephosphorizing agent mixture of the present invention is 10% by weight, preferably 7%. This is the third feature.

酸化鉄は脱燐を進行させるに充分な量は必要で脱燐剤中
に占める割合は重量で少くとも25%、特に30%は必
要であり余り多くて、CaOの相対的割合が減ると脱燐生
成物を安定的に固定出来なくなるのでその上限は65
%、好ましくは60%とした。そして実用し得る酸化鉄
としては、鉄鉱石,ミルスケール,精錬ダスト(製鋼
炉,高炉ダスト等)、酸化鉄粉等が挙げられる。
Iron oxide is necessary in an amount sufficient to promote dephosphorization, and its proportion in the dephosphorization agent is at least 25% by weight, and especially 30% is necessary and too much. When the relative proportion of CaO decreases, Since the phosphorus product cannot be fixed stably, its upper limit is 65.
%, Preferably 60%. Examples of iron oxide that can be used include iron ore, mill scale, smelting dust (steel making furnace, blast furnace dust, etc.), iron oxide powder, and the like.

石灰としては石灰石,生石灰いずれを用いても良いが、
石灰石の場合は溶銑中で吸熱反応の分解をするので溶銑
温度を下げることになり、この点から生石灰の方が好ま
しい。
Either limestone or quicklime may be used as lime,
In the case of limestone, since the endothermic reaction is decomposed in the hot metal, the hot metal temperature is lowered. From this point, quicklime is preferable.

含水アルミナ鉱物としては前述の如く資源的に入手容易
で実用的なものでよくAl2O3が50〜70%含有されて
いる天然のボーキサイト,ダイアスポア,アルミニウム
工業の廃物資源の赤泥の他精製アルミナ等が使用され得
る。
As mentioned above, hydrous alumina minerals that are readily available and practical as resources, as described above, contain 50 to 70% of Al 2 O 3, natural bauxite, diaspore, and red mud, which is a waste resource of the aluminum industry. Alumina or the like can be used.

通常これらの含水アルミナ鉱石には15〜25%の化合
水が含まれているので、そのまま使用すると溶銑温度の
低下を来たし、また、ヒュームの発生の原因にもなり作
業環境を害するので、事前に550〜600℃に仮焼す
れば、水分の除去と共に、Zn,Pb,等の微量含有揮発性
成分の除去にも有効である。
Since these hydrous alumina ores usually contain 15 to 25% of compound water, if they are used as they are, the hot metal temperature will drop, and it will also cause fume generation, which will harm the working environment. Calcination at 550 to 600 ° C. is effective not only for removing water but also for removing trace volatile components such as Zn, Pb and the like.

本発明の脱燐剤の使用に当っては処理容器の上方から添
加してスラグ−メタル反応によ脱燐にも有効であるが特
にN2等のキャリヤーガスにより処理容器の上方から溶
銑中に浸漬されたランスを通して、あるいは容器底部に
設けたノズルを通して溶銑中に噴出添加して使用すると
優先脱燐の効果が高かまる。更に処理中に溶銑温度が低
下したとき、あるいはより高い溶銑温度を必要とすると
きは気体酸素中に懸濁させて吹込む等、気体酸素と併用
可能である。キャリヤーガスを用いて吹込む際は他の知
られている処理剤と同様、本発明の脱燐剤も、その使用
法により形状、粒度を適切に調整することが好ましい。
In the use of the dephosphorizing agent of the present invention, it is effective for dephosphorization by adding it from the upper side of the processing vessel by the slag-metal reaction, but especially by using a carrier gas such as N 2 from the upper side of the processing vessel to the hot metal. The effect of preferential dephosphorization is enhanced when the lance is soaked or is sprayed and added into the hot metal through a nozzle provided at the bottom of the container. Further, when the hot metal temperature is lowered during the treatment, or when a higher hot metal temperature is required, it can be used in combination with gaseous oxygen by suspending it in gaseous oxygen and blowing it. When blowing with a carrier gas, like the other known treating agents, it is preferable that the dephosphorizing agent of the present invention has its shape and particle size appropriately adjusted depending on its usage.

(実施例) 実施例1 35kwの高周波炉を用いて、内径46mmφ,高さ100
mmφのMgO坩堝で銑鉄500grを溶解し、溶銑温度を1
350±10℃に維持した。
(Example) Example 1 An inner diameter of 46 mmφ and a height of 100 using a high-frequency furnace of 35 kw.
Melt pig iron 500gr in a MgO crucible of mmφ and set the hot metal temperature to 1
Maintained at 350 ± 10 ° C.

脱燐剤の組成をCaO+Al2O3:Fe2O3=50:50(重量)
で且つCaO:Al2O3=3:1(重量)になるように生石灰
6.95gr,ボーキサイト4.55gr,ミルスケール
8.5grを混合した。尚、その混合脱燐剤に占めるSiO2
=0.58%(重量)であった。此の脱燐剤をC:4.
2%,P:0.14%,S:0.05%Si,Mn痕跡の溶
銑500grに分割添加し、添加終了の10分後に溶銑の
サンプルを分析したところC:3.3%,P:0.05
4%,S:0.042%であり、約61%の脱燐率であ
った。
The composition of the dephosphorizing agent is CaO + Al 2 O 3 : Fe 2 O 3 = 50: 50 (weight)
In addition, 6.95 gr of quick lime, 4.55 gr of bauxite, and 8.5 gr of mill scale were mixed so that CaO: Al 2 O 3 = 3: 1 (weight). Incidentally, SiO 2 in the mixed dephosphorizing agent
= 0.58% (weight). This dephosphorizing agent was used as C: 4.
2%, P: 0.14%, S: 0.05% Added to 500gr of hot metal with traces of Si and Mn traces, and 10 minutes after the addition was completed, a sample of hot metal was analyzed. C: 3.3%, P: 0.05
The dephosphorization rate was 4%, S: 0.042%, and about 61%.

実施例2 実施例1と同じ実験設備と溶銑の条件を用い、脱燐剤の
組成を(CaO+Al2O3):Fe2O3=60:40(重量)で且つ
CaO:Al2O3=9:1(重量)になるように生石灰10.
17gr,ボーキサイト1.54gr,赤泥1.54gr,ミルス
ケール6.75grを混合した。尚、その混合脱燐剤に占
めるSiO2=1.5%であった。此の脱燐剤を添加終了の
10分間に溶銑のサンプルを分析したところC:3.4
%,P:0.028%,S:0.039%であり約80
%の脱燐率であった。
Example 2 Using the same experimental equipment and hot metal conditions as in Example 1, the composition of the dephosphorizing agent was (CaO + Al 2 O 3 ): Fe 2 O 3 = 60: 40 (weight) and
CaO: Al 2 O 3 = 9: 1 (by weight) quicklime 10.
17 gr, bauxite 1.54 gr, red mud 1.54 gr, and mill scale 6.75 gr were mixed. Incidentally, SiO 2 = 1.5% in the mixed dephosphorizing agent. When a sample of hot metal was analyzed 10 minutes after the addition of the dephosphorizing agent, C: 3.4.
%, P: 0.028%, S: 0.039%, about 80
The dephosphorization rate was%.

実施例3 実施1と同じ実験設備と溶銑の条件を用い脱燐剤の組成
を(CaO+Al2O3):Fe2O3=40:60(重量)で且つCaO:
Al2O3=5:1(重量)になるように、生石灰6.24g
r,ボーキサイト1.70gr,赤泥1.70gr,ミルス
ケール10.36grを混合した。尚、その混合脱燐剤に
占めるSiO2は1.68%であった。此の脱燐剤を添加終
了の10分後に溶銑のサンプルを分析したところC:
3.27%,P:0.033%,S:0.04%であり
76%の脱燐であった。
Example 3 Using the same experimental equipment and hot metal conditions as in Example 1, the composition of the dephosphorizing agent was (CaO + Al 2 O 3 ): Fe 2 O 3 = 40: 60 (weight) and CaO:
6.24 g of quick lime so that Al 2 O 3 = 5: 1 (weight)
r, 1.70 gr of bauxite, 1.70 gr of red mud, and 10.36 gr of mill scale were mixed. The SiO 2 content in the mixed dephosphorization agent was 1.68%. When a sample of hot metal was analyzed 10 minutes after the addition of the dephosphorizing agent, C:
The amount was 3.27%, P: 0.033%, S: 0.04%, and the dephosphorization was 76%.

実施例4〜6 本発明の脱燐剤を実機規模の処理に適用した実施例を第
1表に示す。
Examples 4 to 6 Table 1 shows examples in which the dephosphorizing agent of the present invention was applied to the treatment on an actual scale.

(本発明の効果) 以上説明したように本発明の脱燐剤は溶銑の脱炭を抑制
した優先的な脱燐を促進し、従来の CaO-CaF2-Fe2O3系又はCaO-CaF2-CaCl2-Fe2O3系又はNa2C
O3系の脱燐剤とそれほど遜色のない脱燐率が達成出来
る。更に、使用に際しては、これら従来の脱燐剤の欠点
である処理容器の耐火ライニングを侵食したり発生する
有害ガスによる作業環境の汚染がないので此れらの対策
に要する経費が節約出来るばかりか、本発明の脱燐剤の
融点降下剤の原料であるボーキサイト,赤泥等は資源的
に豊富で安価である。また、本発明の脱燐剤で処理した
生成スラグは従来のスラグに比し有害成分が少ないの
で、セメント原料,肥料,路盤材などへの利用範囲が大
巾に拡大できる可能性がある。従って本発明の溶銑用脱
燐剤は工業的規模で実用的であり極めて有用である。
(Effects of the present invention) As described above, the dephosphorizing agent of the present invention promotes preferential dephosphorization while suppressing decarburization of hot metal, and thus the conventional CaO-CaF 2 -Fe 2 O 3 system or CaO-CaF is used. 2- CaCl 2 -Fe 2 O 3 system or Na 2 C
A dephosphorization rate comparable to that of O 3 type dephosphorizers can be achieved. Further, in use, since the work environment is not contaminated by the harmful gas generated by eroding the refractory lining of the processing container, which is a drawback of these conventional dephosphorization agents, not only the cost required for these measures can be saved. The bauxite, red mud, etc., which are the raw materials of the melting point depressant of the dephosphorizing agent of the present invention, are resource-rich and inexpensive. Further, since the produced slag treated with the dephosphorizing agent of the present invention has less harmful components than the conventional slag, there is a possibility that the application range to cement raw materials, fertilizers, roadbed materials, etc. can be greatly expanded. Therefore, the dephosphorizing agent for hot metal of the present invention is practical and extremely useful on an industrial scale.

【図面の簡単な説明】[Brief description of drawings]

第1図はCaOに添加すべき各種CaOの融点降下剤の添加量
と溶融温度の関係を示す図、第2図は本発明のCaO-Al2O
3-Fe2O3系脱燐剤による溶銑の脱燐状況を示す図、第3
図は同じく溶銑の脱炭状況を示す図、第4図は本発明の
脱燐剤中のCaO/(CaO+Al2O3)と脱燐率の関係を示す
図、第5図はCaO-Al2O3-FeXOYフラックスの三元状態
図、第6図は本発明の脱燐剤と従来の脱燐剤との溶銑の
脱燐状況の比較を示す図、第7図は同じく溶銑の脱炭状
況の比較を示す図である。
FIG. 1 is a diagram showing the relationship between the melting temperature and the addition amount of various CaO melting point depressants to be added to CaO, and FIG. 2 is the CaO-Al 2 O of the present invention.
Diagram showing dephosphorization status of hot metal by 3- Fe 2 O 3 -based dephosphorizer, No. 3
The figure is also a diagram showing the decarburization state of hot metal, FIG. 4 is a diagram showing the relationship between CaO / (CaO + Al 2 O 3 ) in the dephosphorizing agent of the present invention and the dephosphorization rate, and FIG. 5 is CaO-Al 2 The ternary phase diagram of the O 3 -Fe X O Y flux, FIG. 6 is a diagram showing the comparison of the dephosphorization state of the hot metal between the dephosphorizing agent of the present invention and the conventional dephosphorizing agent, and FIG. 7 is also the same. It is a figure which shows the comparison of the decarburization situation.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】溶銑の脱燐反応を進行させるに必要な量の
酸化鉄と、脱燐生成物を安定化させる石灰と、生成スラ
グの融点を下げて脱燐反応を促進せしめる含水アルミナ
鉱物を配合したCaO-Al2O3-FeXOY系を主成分とする混合
物であって、該混合物中のCaOとAl2O3の含有割合は重量
比でCaO:Al2O3=(2.5〜20):1とし、酸化鉄の
含有割合は該混合物の25〜65(重量)%とし、不純
物であるSiO2の含有割合は該混合物の10(重量)%以
下とした溶銑用脱燐剤。
1. An amount of iron oxide necessary for promoting a dephosphorization reaction of hot metal, lime for stabilizing a dephosphorization product, and hydrous alumina mineral for lowering the melting point of the produced slag to accelerate the dephosphorization reaction. A mixture containing CaO-Al 2 O 3 -Fe X O Y system as a main component, and the content ratio of CaO and Al 2 O 3 in the mixture is CaO: Al 2 O 3 = (2 0.5 to 20): 1, the iron oxide content is 25 to 65% by weight of the mixture, and the content of SiO 2 as an impurity is 10% by weight or less of the mixture. Phosphorus.
【請求項2】特許請求の範囲第1項の溶銑用脱燐剤に於
いて、石灰として生石灰、含水アルミナ鉱物として天然
のボーキサイト、ダイアスポア、赤泥および精製アルミ
ナのうち1種以上を用いた溶銑用脱燐剤。
2. The hot metal dephosphorization agent according to claim 1, wherein at least one of quicklime as lime and natural bauxite, diaspore, red mud and purified alumina as hydrated alumina mineral is used. Dephosphorizing agent.
【請求項3】特許請求の範囲第1項又は第2項の溶銑用
脱燐剤であって、含水アルミナ鉱物を仮焼した溶銑用脱
燐剤。
3. A dephosphorizing agent for hot metal according to claim 1 or 2, which is a dephosphorizing agent for hot metal obtained by calcining a hydrated alumina mineral.
JP61047383A 1986-03-06 1986-03-06 Dephosphorizing agent for hot metal Expired - Lifetime JPH0617495B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61047383A JPH0617495B2 (en) 1986-03-06 1986-03-06 Dephosphorizing agent for hot metal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61047383A JPH0617495B2 (en) 1986-03-06 1986-03-06 Dephosphorizing agent for hot metal

Publications (2)

Publication Number Publication Date
JPS62207810A JPS62207810A (en) 1987-09-12
JPH0617495B2 true JPH0617495B2 (en) 1994-03-09

Family

ID=12773577

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61047383A Expired - Lifetime JPH0617495B2 (en) 1986-03-06 1986-03-06 Dephosphorizing agent for hot metal

Country Status (1)

Country Link
JP (1) JPH0617495B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021132891A1 (en) * 2019-12-23 2021-07-01 한양대학교 에리카산학협력단 Calcium-aluminate-based flux utilizing industrial byproduct, method for manufacturing same, and method for desulfurizing molten steel by using same
WO2021221455A1 (en) * 2020-04-28 2021-11-04 한양대학교 에리카산학협력단 Method for removing phosphorus by using flux alternative to fluorite

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115572792B (en) * 2022-10-21 2023-12-19 河南少林特材有限公司 Dephosphorization method and application

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021132891A1 (en) * 2019-12-23 2021-07-01 한양대학교 에리카산학협력단 Calcium-aluminate-based flux utilizing industrial byproduct, method for manufacturing same, and method for desulfurizing molten steel by using same
WO2021221455A1 (en) * 2020-04-28 2021-11-04 한양대학교 에리카산학협력단 Method for removing phosphorus by using flux alternative to fluorite

Also Published As

Publication number Publication date
JPS62207810A (en) 1987-09-12

Similar Documents

Publication Publication Date Title
CA2118646C (en) Process and additives for the ladle refining of steel
JP3503176B2 (en) Hot metal dephosphorizer for injection
JP3687433B2 (en) How to remove hot metal
WO2017119392A1 (en) Molten iron dephosphorizing agent, refining agent, and dephosphorization method
JPH0617495B2 (en) Dephosphorizing agent for hot metal
CA1102555A (en) Process and agent for the desulphurization of iron based melts
JPS587691B2 (en) Steel manufacturing method
JP3525766B2 (en) Hot metal dephosphorization method
JPH10265816A (en) Method for desulfurizing molten iron
JP3297801B2 (en) Hot metal removal method
JP3769875B2 (en) Desulfurization method and desulfurization agent for iron-based molten alloy
JPS61177314A (en) Sintered ore for dephosphorizing and desulfurizing molten pig iron or molten steel
JPH09143529A (en) Method for dephosphorizing molten iron
JP3733819B2 (en) How to remove hot metal
JP5481899B2 (en) Hot metal desulfurization agent and desulfurization treatment method
KR101280941B1 (en) Desulfurization material and its manufacturing method
JP3728870B2 (en) Desulfurization method and desulfurization agent for iron-based molten alloy
JP2002285217A (en) Dephosphorizing agent and desulfurizing agent for molten iron and molten steel
JP2002275521A (en) Method for dephosphorizing molten high carbon steel
JP3297997B2 (en) Hot metal removal method
JPS636606B2 (en)
JPH04317445A (en) Production of raw material for superrapid hardening cement improved steel slag
JP3704912B2 (en) Hot metal desiliconization and desulfurization methods
JP2856106B2 (en) Hot metal desulfurization method
JP3740894B2 (en) How to remove hot metal

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term