JPS61177314A - Sintered ore for dephosphorizing and desulfurizing molten pig iron or molten steel - Google Patents

Sintered ore for dephosphorizing and desulfurizing molten pig iron or molten steel

Info

Publication number
JPS61177314A
JPS61177314A JP1902285A JP1902285A JPS61177314A JP S61177314 A JPS61177314 A JP S61177314A JP 1902285 A JP1902285 A JP 1902285A JP 1902285 A JP1902285 A JP 1902285A JP S61177314 A JPS61177314 A JP S61177314A
Authority
JP
Japan
Prior art keywords
dephosphorization
desulfurization
sintered ore
cao
ore
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1902285A
Other languages
Japanese (ja)
Inventor
Minoru Ishikawa
稔 石川
Takeshi Katogi
健 加藤木
Kazuhiro Yamamoto
一博 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP1902285A priority Critical patent/JPS61177314A/en
Publication of JPS61177314A publication Critical patent/JPS61177314A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C1/00Refining of pig-iron; Cast iron
    • C21C1/02Dephosphorising or desulfurising
    • C21C1/025Agents used for dephosphorising or desulfurising

Abstract

PURPOSE:To improve the slagging property and to accelerate dephosphorization and desulfurization by blending prescribed percentages of CaO, T.Fe, T.Mn, F and Cl and providing a prescribed basicity. CONSTITUTION:This sintered ore for dephosphorizing and desulfurizing molten pig iron or molten steel consists of, by weight, 20-40% CaO, 30-55% T.Fe, <=20% T.Mn, <=16% F and <=21% Cl and has >=4 basicity (CaO/SiO2). The sintered ore is formed by using calcium ferrite having a low m.p. as the principal component. When lumps of the sintered ore are added to molten pig iron, dephosphorization and desulfurization reactions proceed only by agitation.

Description

【発明の詳細な説明】 産業上の利用分野 この発明は溶銑、溶鋼の脱燐および脱硫処理技術に係り
、特に脱燐および脱硫処理における脱燐および脱硫反応
を効果的に進行させる脱燐および脱硫用焼結鉱に関する
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application This invention relates to dephosphorization and desulfurization treatment technology for hot metal and molten steel, and in particular to a dephosphorization and desulfurization process that effectively advances dephosphorization and desulfurization reactions in dephosphorization and desulfurization treatment. Regarding sintered ore.

従来技術とその問題点 溶銑の予備処理として脱燐脱硫処理を施す方法において
、その脱燐脱硫処理のために使用する脱燐脱硫剤として
は一般に鉄磁石等の酸化剤とホタル石等の融剤および生
石灰からなる混合物が用いられている。この場合、脱燐
および脱硫反応を効果的に進行させるためには溶銑温度
のような比較的低い温度においても脱燐脱硫剤を速やか
に滓化させて高塩基度のスラグを形成することが必要で
あるため、一般的には脱燐脱硫剤の融点が1300℃以
下になるようにその組成を決定する。しかし、単なる混
合脱燐脱硫剤の場合、単独では融点が1300℃以上と
高い生石灰、鉄鉱石等が局部的に偏在しているため、溶
銑脱燐脱硫処理時においてスラグの形成が遅れ、脱燐お
よび脱硫反応も遅滞するという問題があった。このよう
な問題を解決するため、生石灰、鉄鉱石、ホタル石等か
らなる混合物を焼結もしくは溶融処理した粉体組成物を
脱燐剤として用いる方法(特開昭57−140809 
)等が提案されているが、この方法は外部熱源を用いて
焼結または溶融処理を行なって脱燐剤を製造するため、
脱燐剤が非常に高価につく等の理由で実用化は困難であ
る。
Prior art and its problems In the method of performing dephosphorization and desulfurization treatment as a preliminary treatment of hot metal, the dephosphorization and desulfurization agents used for the dephosphorization and desulfurization treatment generally include an oxidizing agent such as an iron magnet and a fluxing agent such as fluorite. A mixture of lime and quicklime is used. In this case, in order for the dephosphorization and desulfurization reactions to proceed effectively, it is necessary to quickly slag the dephosphorization and desulfurization agent to form a highly basic slag even at relatively low temperatures such as the hot metal temperature. Therefore, the composition of the dephosphorization and desulfurization agent is generally determined so that its melting point is 1300° C. or lower. However, in the case of a simple mixed dephosphorization and desulfurization agent, quicklime, iron ore, etc., which have a high melting point of 1300°C or higher, are locally unevenly distributed when used alone, so slag formation is delayed during hot metal dephosphorization and desulfurization treatment, and dephosphorization is delayed. There was also the problem that the desulfurization reaction was also delayed. In order to solve this problem, a method has been proposed in which a powder composition obtained by sintering or melting a mixture of quicklime, iron ore, fluorite, etc. is used as a dephosphorizing agent (Japanese Patent Laid-Open No. 57-140809
) have been proposed, but this method involves sintering or melting using an external heat source to produce the dephosphorizing agent.
It is difficult to put it into practical use because the dephosphorizing agent is very expensive.

また、転炉での溶鋼脱燐に必要なCaO源に関しても石
灰石単体を外部熱源を用いて焼成した生石灰が主に用い
られてお夛、脱燐反応速度の上昇には限界があった。
In addition, as for the CaO source necessary for dephosphorizing molten steel in a converter, quicklime obtained by calcining a single limestone using an external heat source is mainly used, and there is a limit to the increase in the dephosphorization reaction rate.

発明の目的 この発明は、従来の前記問題点にかんがみなされたもの
であり、溶銑および溶鋼の脱燐および脱硫処理において
スラグの形成が容易で脱燐および脱硫反応が著しく促進
される低コスト、低融点の脱燐用および脱硫用焼結鉱を
提案することを目的とするものである。
Purpose of the Invention The present invention has been made in view of the above-mentioned conventional problems, and is a low-cost, low-cost method that facilitates the formation of slag in the dephosphorization and desulfurization treatment of hot metal and molten steel and significantly accelerates the dephosphorization and desulfurization reactions. The purpose is to propose sintered ore for dephosphorization and desulfurization at a melting point.

発明の構成 この発明に保る溶銑および溶鋼脱燐および脱硫用焼結鉱
は、石灰石等のCaC0,含有鉱物、 Ca(OH)z
*Ca s o4のうち一種以上をCaO換算で15〜
36%、鉄鉱石、ミルスケ−μ、高炉ダスト、マンガン
鉱石等の鉄およびマンガン酸化物のうち一種以上を38
〜75%、アルカリ土類金属のフッ化物および/または
塩化物を含んだホタル石等の組成物20%以下を含む配
合原料に、3〜10%のコークスおよび3〜lO%の水
分を添加したものを、前記コークスジよび/または高炉
ダスト中の炭素分の燃焼熱を主要熱源として焼結してな
ることを特徴とするものである。
Structure of the Invention The sintered ore for dephosphorizing and desulfurizing hot metal and molten steel according to the present invention is composed of CaCO, containing minerals such as limestone, and Ca(OH)z.
*More than 15 types of CaO4 in terms of CaO
36%, 38% or more of iron and manganese oxides such as iron ore, millscale μ, blast furnace dust, manganese ore, etc.
3-10% coke and 3-10% moisture were added to a blended feedstock containing up to 20% of a composition such as ~75% and fluorite containing alkaline earth metal fluorides and/or chlorides. It is characterized by being sintered using the heat of combustion of carbon in the coke stream and/or blast furnace dust as the main heat source.

上記のごとく焼結配合原料を限定することによシ得られ
る成品としての脱燐および脱硫用焼結鉱は、Ca020
〜40 wt%、 T、Fe ao〜55wt%、・T
、M、 20wt%以下、 F 15wt%以下、 C
l21wt%以下で、塩基度(CaO/5iOv )は
4.0以上のものとなる。
The sintered ore for dephosphorization and desulfurization as a product obtained by limiting the raw materials for sintering as described above is Ca020
~40 wt%, T, Fe ao ~55 wt%, ・T
, M, 20wt% or less, F 15wt% or less, C
At 121 wt% or less, the basicity (CaO/5iOv) becomes 4.0 or more.

以下、この発明について詳細に説明する。This invention will be explained in detail below.

この発明に係る脱燐および脱硫用焼結鉱は、前記のとお
り石灰石* Ca (OH)! e CaSO4等の安
価なCaO源、鉄鉱石、ミルスケール、マンガン鉱石等
の酸素源およびホタル石+ CaC4等の融剤からなる
混合物にコークスを添加して焼結したものである。この
ように混合物を焼結することによってコークスが熱源と
なって効率的に焼結度広が進行し、CaOp Fe1O
1t 2 CaO・FezO3、Ca0 ・2 Fe、
o。
As mentioned above, the sintered ore for dephosphorization and desulfurization according to the present invention is limestone* Ca (OH)! e It is sintered by adding coke to a mixture consisting of an inexpensive CaO source such as CaSO4, an oxygen source such as iron ore, mill scale, manganese ore, and a flux such as fluorspar + CaC4. By sintering the mixture in this way, the coke becomes a heat source and the degree of sintering progresses efficiently, resulting in CaOp Fe1O
1t2CaO・FezO3, Ca0・2Fe,
o.

等の低融点のカルシウム・フェライトが生成する。Calcium ferrite with a low melting point is produced.

ところで、溶銑脱燐および脱硫を有効に進行させるため
には塩基度確保、および低融点化の両面より脱燐脱硫剤
中のCaOを20〜40%にする必要があるが、この値
を得るためには原料として石灰石を使用した場合原料混
合物中の石灰石を30〜55%にする必要があるが、こ
の発明の脱燐脱硫剤の場合は高い効率で焼結が進むため
ほぼ完全に石灰石を力μシウム・フェライト化できる。
By the way, in order to effectively progress hot metal dephosphorization and desulfurization, it is necessary to increase the CaO content in the dephosphorization and desulfurization agent to 20 to 40% in order to ensure basicity and lower the melting point. When limestone is used as a raw material, it is necessary to reduce the limestone content to 30 to 55% in the raw material mixture, but in the case of the dephosphorization and desulfurization agent of this invention, sintering proceeds with high efficiency, so limestone is almost completely absorbed. Can be made into μsium ferrite.

この低融点化合物を脱燐脱硫剤として用いることによっ
て、低温度域における溶銑脱燐処理においてもスラグの
形成が著しく容易になり、脱燐度広が促進されるのであ
る。
By using this low melting point compound as a dephosphorization and desulfurization agent, slag formation becomes extremely easy even in hot metal dephosphorization treatment in a low temperature range, and the degree of dephosphorization is promoted.

次に、この発明において脱燐および脱硫用焼結鉱の配合
原料成分を限定した理由について説明する。
Next, the reason why the raw material components of the sintered ore for dephosphorization and desulfurization are limited in this invention will be explained.

石灰石、 Ca (OH)、 l caso、のうち一
種以上を25〜62%に限定したのは以下に示す理由に
よる。
The reason why one or more of limestone, Ca(OH), and lcaso was limited to 25 to 62% is as follows.

溶銑脱燐および脱硫を効果的に進行させるためにはスラ
グの塩基度を3.0以上とする必要がある。
In order to effectively progress hot metal dephosphorization and desulfurization, the basicity of the slag needs to be 3.0 or more.

標準的な溶銑脱燐条件(脱燐剤50神/T、処理前浴銑
中〔第5t)=o、xs)のもとてこの条件を確保する
ためには、脱燐脱硫剤中のCaOを20%以上とするこ
とが必要である。このために、原料混合物中の石灰石等
のCaGO,含有鉱物+ Cm (OH)! I Ca
5O。
In order to ensure this condition under standard hot metal dephosphorization conditions (dephosphorizing agent 50 kg/T, pre-treatment bath pig iron [5th t) = o, xs], CaO in the dephosphorizing and desulfurizing agent It is necessary to make it 20% or more. For this purpose, CaGO, containing minerals such as limestone in the raw material mixture + Cm (OH)! I Ca
5O.

の下限をC,O換算で1596とした。一方・脱燐脱硫
剤中のCaOが40%以上になると脱燐脱硫剤自体の融
点が高くなり反応が遅れるため上限はCaO換算で36
%とした。
The lower limit of is set as 1596 in terms of C and O. On the other hand, if the CaO in the dephosphorization and desulfurization agent exceeds 40%, the melting point of the dephosphorization and desulfurization agent itself becomes high and the reaction is delayed, so the upper limit is 36% in terms of CaO.
%.

鉄鉱石、ミルスケール、高炉ダスト、マンガン鉱石等の
酸素源を38〜75%に限定したのは、前記石灰石等の
CaC0,含有鉱物e Ca(OH)t s CaSO
4の配合量をCaO換算で15〜36%としたことによ
りその残部が38〜75%となることによる。ただし、
脱燐脱硫剤中のT、Mnが13%以上となると融点が上
昇するので、マンガン鉱石は50%以下の配合が好まし
い。
Oxygen sources such as iron ore, mill scale, blast furnace dust, and manganese ore are limited to 38 to 75% because of CaCO and minerals containing e Ca(OH) s CaSO such as limestone.
This is because by setting the blending amount of No. 4 to 15 to 36% in terms of CaO, the balance becomes 38 to 75%. however,
If T and Mn in the dephosphorization and desulfurization agent are 13% or more, the melting point will increase, so it is preferable that the content of manganese ore be 50% or less.

ホタル石は力μシウム・フェライトの脱燐および脱硫特
性をより向上させるために添加するが、その添加量が2
0%を超えるとホタル石の効果が飽和するとともにコス
ト高となるため、ホタル石の添加量は20%以下とした
Fluorite is added to further improve the dephosphorization and desulfurization properties of μsium ferrite, but the amount of addition is 2
If it exceeds 0%, the effect of fluorspar becomes saturated and the cost increases, so the amount of fluorspar added was set to 20% or less.

コークスの添加量を3〜10%としたのは、3%未満で
は焼結を進行させるための熱源として充分でなく、10
%を超えると熱源が過剰となると同時に酸化鉄、酸化マ
ンガンの還元が一部進行し、焼結鉱と焼結機の焼き付け
の危険が増すからである。また、コークス比が高すぎる
とコスト的にも不利となる。
The reason why the amount of coke added was set at 3 to 10% is that less than 3% is insufficient as a heat source to advance sintering.
%, the heat source becomes excessive and at the same time, part of the reduction of iron oxide and manganese oxide progresses, increasing the risk of sintering of the sintered ore and the sintering machine. Moreover, if the coke ratio is too high, it will be disadvantageous in terms of cost.

水分の添加量を3〜10%としたのは、3%未満では原
料の通気性が不良となり焼結機の生産性が低下し、10
%を超えると焼結開始前に水分の分布が不均一となり、
この場合も生産性の低下をもたらすからである。
The reason why the amount of water added is 3 to 10% is because if it is less than 3%, the permeability of the raw material will be poor and the productivity of the sintering machine will be reduced.
%, moisture distribution becomes uneven before sintering starts,
This is because this also results in a decrease in productivity.

上記のごとく限定した配合原料を焼結して得られる成品
としての脱燐および脱硫用焼結鉱の化学組成は、cao
 20〜40wt%、 T、Fe 30〜55ft%。
The chemical composition of the sintered ore for dephosphorization and desulfurization as a product obtained by sintering the raw materials limited as above is cao
20-40 wt%, T, Fe 30-55 ft%.

T−Mn 20wt%以下、F12wt%以下となるが
、脱燐剤中の〔%Sin、)が高いと脱燐に有効なC,
Oが減少し効率が悪化するため、塩基度(Cab/ S
i Ox )は4.0以上に限定するのが望ましい。
T-Mn is 20wt% or less, F is 12wt% or less, but if the [%Sin,) in the dephosphorizing agent is high, C, which is effective for dephosphorization,
As O decreases and efficiency deteriorates, basicity (Cab/S
i Ox ) is preferably limited to 4.0 or more.

第1表はこの発明に係る脱燐および脱硫用焼結鉱の原料
の化学組成代表例を示したものである。
Table 1 shows typical chemical compositions of raw materials for sintered ore for dephosphorization and desulfurization according to the present invention.

(以下余白) 第2表は同じくこの発明に係る脱燐および脱硫用焼結鉱
の配合条件例を示し、第3表は第2表に示す配合条件に
て焼結した脱燐および脱硫用焼結鉱の化学組成例を、既
存の高炉用焼結鉱と比較して示したものである。
(Leaving space below) Table 2 shows examples of blending conditions for sintered ore for dephosphorization and desulfurization according to the present invention, and Table 3 shows examples of sintered ore for dephosphorization and desulfurization sintered under the blending conditions shown in Table 2. An example of the chemical composition of concretion is shown in comparison with existing sintered ore for blast furnaces.

第2表 焼結鉱配合条件の−例 第3表 焼結鉱の化学組成の一例 上記第1表、第2表および第3表に示すとおり、この発
明の脱燐および脱硫用焼結鉱は、既存の高炉用焼結鉱に
比べ〔%CaO〕、塩基度(Cm O/S i Ot 
)共非常に高く、脱燐および脱硫に有利な組成となって
いる。また、脱燐および脱硫用焼結鉱と高炉用焼結鉱を
X線回折したところ、高炉用焼結鉱の鉱物相はFe!0
1t CaO−2Fe201が主体であるのに対し、脱
燐および脱硫用焼結鉱はCaO・Fe、O,,2Ca0
−ve、o、が主体であった。この結果よシ、この発明
の脱燐および脱硫用焼結鉱は低融点のカルシワム・フェ
ライトを主体として構成されておシ、良好な滓化性、脱
燐および脱硫特性が得られることがわかる。
Table 2 Examples of sinter blending conditions Table 3 Examples of chemical composition of sintered ores As shown in Tables 1, 2, and 3 above, the sintered ores for dephosphorization and desulfurization of the present invention are , compared to existing sintered ore for blast furnaces [%CaO], basicity (Cm O/S i Ot
) is very high, making the composition advantageous for dephosphorization and desulfurization. In addition, X-ray diffraction of the sintered ore for dephosphorization and desulfurization and the sintered ore for blast furnaces revealed that the mineral phase of the sintered ore for blast furnaces was Fe! 0
1t CaO-2Fe201 is the main component, whereas sintered ore for dephosphorization and desulfurization is composed of CaO・Fe, O,,2Ca0
-ve, o, were the main characters. The results show that the sintered ore for dephosphorization and desulfurization of the present invention is mainly composed of calcium ferrite having a low melting point, and has good slagability, dephosphorization, and desulfurization properties.

実施例1 第4表に示す溶銑脱燐および脱硫用焼結鉱と従来の混合
脱燐剤を、それぞれ145トン溶銑鍋中の溶銑に対しイ
ンジェクション法により添加した場合の脱燐量を第1図
に示す。
Example 1 Figure 1 shows the amount of dephosphorization when the sintered ore for hot metal dephosphorization and desulfurization shown in Table 4 and the conventional mixed dephosphorizing agent were each added to hot metal in a 145-ton hot metal ladle by injection method. Shown below.

第1図の結果よシ明らかなごとく、この発明の脱燐剤の
場合は低融点酸化物の生成によりCaOの滓化が速やか
であるため、同−脱燐量を得るためのCaO原単位を大
巾に減少させることができた。
As is clear from the results shown in Figure 1, in the case of the dephosphorizing agent of the present invention, CaO quickly turns into slag due to the formation of low melting point oxides, so the CaO basic unit to obtain the same amount of dephosphorization is I was able to reduce it to a large extent.

(以下余白) 第   4   表 実施例2 第5表に示す脱燐および脱硫用焼結鉱を145トン溶銑
鍋中の溶銑に対し塊状添加、粉体インジェクション法加
を併用して添加し脱燐処理した場合較して第2図に示す
(Leaving space below) Table 4 Example 2 The sintered ore for dephosphorization and desulfurization shown in Table 5 was added to the hot metal in a 145-ton hot metal pot using a combination of bulk addition and powder injection method to perform dephosphorization treatment. A comparison is shown in Figure 2.

第2図の結果より、塊状添加の併用により脱燐剤の添加
速度を大きくでき、脱燐がよシ速やかに進行することが
わかる。すなわち、この発明の脱燐および脱硫用焼結鉱
の場合は低融点であるため、塊状のものを溶銑に添加し
攪拌を行なうだけで脱燐を進行させることが可能である
ことがわかる。
From the results shown in FIG. 2, it can be seen that the addition rate of the dephosphorizing agent can be increased by the combination of bulk addition, and dephosphorization progresses more rapidly. That is, since the sintered ore for dephosphorization and desulfurization of the present invention has a low melting point, it is possible to proceed with dephosphorization simply by adding lumps to hot metal and stirring.

なお、従来の混合脱燐剤(CaO系)は融点が高いため
、粉体として溶銑に添加しなければ効果的な脱燐を進行
させることはできなかった。
In addition, since the conventional mixed dephosphorizing agent (CaO type) has a high melting point, effective dephosphorization cannot proceed unless it is added to hot metal in the form of powder.

第   5   表 実施例3 第6表に示す脱燐および脱硫用焼結鉱と高炉用焼結鉱を
、それぞれ35トン溶銑鍋中の溶銑に対しインジェクシ
ョン法により添加して脱燐および脱硫処理した場合の結
果を第6表に併せて示す。
Table 5 Example 3 When the dephosphorization and desulfurization sintered ore and the blast furnace sintered ore shown in Table 6 were added to hot metal in a 35-ton hot metal ladle by injection method to perform dephosphorization and desulfurization treatment. The results are also shown in Table 6.

第6表より明らかなごとく、この発明の脱燐および脱硫
用焼結鉱の場合は、スラグ塩基度が充分に確保されるの
で脱Si、脱P、脱Sが共に進行するが、高炉用焼結鉱
の場合は、脱Siのみが進行するにとどまっている。
As is clear from Table 6, in the case of the sintered ore for dephosphorization and desulfurization of the present invention, since the slag basicity is sufficiently ensured, deSi, deP, and deS proceed together. In the case of condensation, only Si removal progresses.

(以下余白) 発明の効果 上記の実施例からも明らかなごとく、この発明の脱燐お
よび脱硫用焼結鉱は低融点のカルシウム・フェライトを
主体として構成されているので、低温度域における溶銑
脱燐および脱硫処理において屯良好な滓化性が得られ、
脱燐および脱硫反応が促進される。また、従来のCaO
系脱燐剤の場合は融点が高いため粉体として溶銑に添加
しなければ効果的な脱燐を進行させることはできなかっ
たのに対し、この発明の脱燐および脱硫用焼結鉱は低融
点であるため塊状のものを溶銑に添加し攪拌を行なうだ
けで脱燐を進行させることが可能である。したがって、
脱燐脱硫剤の粉砕およびインジェクションに要する費用
が不要となる。さらに、この発明の脱燐および脱硫用焼
結鉱の場合、焼結に必要な外部熱源は配合原料中のコー
クスに点火するだけの熱源ですみ、その後はコークスの
燃焼熱により極めて高い効率にて焼結反応が進行するの
で、外部熱源を用いて焼結するのに比べはるかに製造コ
ストが安価につく。また、この発明の脱燐および脱硫用
焼結鉱の場合は、転炉内の溶鋼脱燐に対しても、吹錬初
期よりスラグ形成が促進されるので脱燐反応に有利とな
ることはいうまでもない。
(The following is a blank space) Effects of the Invention As is clear from the above examples, the sintered ore for dephosphorization and desulfurization of the present invention is mainly composed of calcium ferrite with a low melting point, so it is suitable for hot metal desorption in a low temperature range. Good slagability is obtained in phosphorus and desulfurization treatments,
Dephosphorization and desulfurization reactions are promoted. In addition, conventional CaO
In the case of dephosphorizing agents, effective dephosphorization could not proceed unless they were added to hot metal in the form of powder due to their high melting points.However, the sintered ore for dephosphorization and desulfurization of this invention Since it has a melting point, it is possible to proceed with dephosphorization simply by adding lumps to hot metal and stirring. therefore,
The cost required for crushing and injecting the dephosphorization and desulfurization agent becomes unnecessary. Furthermore, in the case of the sintered ore for dephosphorization and desulfurization of the present invention, the external heat source required for sintering is only a heat source for igniting the coke in the blended raw materials, and after that, the combustion heat of the coke is used to achieve extremely high efficiency. Since the sintering reaction proceeds, the manufacturing cost is much lower than sintering using an external heat source. Furthermore, in the case of the sintered ore for dephosphorization and desulfurization of the present invention, slag formation is promoted from the initial stage of blowing, which is advantageous for dephosphorization of molten steel in a converter. Not even.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の実施例1における脱燐量におよぼす
CaO原単位の影響を示す図表、第2図は同上の実施例
2における脱燐処理中の溶銑〔%P〕の推移を示す図表
である。
Fig. 1 is a chart showing the influence of CaO basic unit on the amount of dephosphorization in Example 1 of the present invention, and Fig. 2 is a chart showing the change in hot metal [%P] during dephosphorization treatment in Example 2 of the same. It is.

Claims (1)

【特許請求の範囲】 1 CaO20〜40wt%、T.Fe30〜55wt
%、T.Mn20wt%以下、F16wt%以下、Cl
21wt%以下で、塩基度(CaO/SiO_2)4.
0以上のものからなることを特徴とする溶銑、溶鋼脱燐
および脱硫用焼結鉱。 2 石灰石等のCaCO_3含有鉱物、Ca(OH)_
2、CaSO_4のうち一種以上をCaO換算で15〜
36%、鉄鉱石、ミルスケール、高炉ダスト、マンガン
鉱石等の鉄およびマンガン酸化物のうち一種以上を38
〜75%、アルカリ土類金属のフッ化物および/または
塩化物を含んだホタル石等の組成物20%以下を含む配
合原料に、3〜10%のコークスおよび3〜10%の水
分を添加混合したものを、前記コークスおよび/または
高炉ダスト中の炭素分の燃焼熱を主要熱源として焼結し
てなることを特徴とする溶銑、溶鋼脱燐および脱硫用焼
結鉱。
[Claims] 1 20 to 40 wt% of CaO, T.I. Fe30~55wt
%, T. Mn 20wt% or less, F16wt% or less, Cl
21 wt% or less, basicity (CaO/SiO_2)4.
A sintered ore for dephosphorization and desulfurization of hot metal and molten steel, characterized in that it consists of 0 or more. 2 CaCO_3-containing minerals such as limestone, Ca(OH)_
2. One or more of CaSO_4 in CaO conversion of 15~
36%, 38% or more of iron and manganese oxides such as iron ore, mill scale, blast furnace dust, manganese ore, etc.
Addition and mixing of 3 to 10% coke and 3 to 10% water to a blended raw material containing ~75% and 20% or less of a composition such as fluorite containing alkaline earth metal fluoride and/or chloride. A sintered ore for dephosphorization and desulfurization of hot metal and molten steel, characterized in that the sintered ore is sintered using the combustion heat of the carbon content in the coke and/or blast furnace dust as the main heat source.
JP1902285A 1985-02-01 1985-02-01 Sintered ore for dephosphorizing and desulfurizing molten pig iron or molten steel Pending JPS61177314A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1902285A JPS61177314A (en) 1985-02-01 1985-02-01 Sintered ore for dephosphorizing and desulfurizing molten pig iron or molten steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1902285A JPS61177314A (en) 1985-02-01 1985-02-01 Sintered ore for dephosphorizing and desulfurizing molten pig iron or molten steel

Publications (1)

Publication Number Publication Date
JPS61177314A true JPS61177314A (en) 1986-08-09

Family

ID=11987845

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1902285A Pending JPS61177314A (en) 1985-02-01 1985-02-01 Sintered ore for dephosphorizing and desulfurizing molten pig iron or molten steel

Country Status (1)

Country Link
JP (1) JPS61177314A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004315278A (en) * 2003-04-15 2004-11-11 Nippon Steel Corp Method for manufacturing highly functional calcium ferrite using waste gypsum plaster board
JP2004315277A (en) * 2003-04-15 2004-11-11 Nippon Steel Corp Method of manufacturing high functional calcium ferrite using waste plaster board
CN103525979A (en) * 2013-10-23 2014-01-22 攀钢集团攀枝花钢铁研究院有限公司 Semisteel dephosphorizing agent, semisteel dephosphorizing method and steel smelting method thereof
JP2014031562A (en) * 2012-08-06 2014-02-20 Nippon Steel & Sumitomo Metal Dephosphorization processing method of hot pig iron
CN104263875A (en) * 2014-09-15 2015-01-07 首钢总公司 Dephosphorizing method for producing alloy weld line steel from high-phosphorus molten iron by top-blown converter
CN106268254A (en) * 2016-08-26 2017-01-04 合肥合意环保科技工程有限公司 A kind of sintering machine stirring-type wet type flue gas desulfurization equipment

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004315278A (en) * 2003-04-15 2004-11-11 Nippon Steel Corp Method for manufacturing highly functional calcium ferrite using waste gypsum plaster board
JP2004315277A (en) * 2003-04-15 2004-11-11 Nippon Steel Corp Method of manufacturing high functional calcium ferrite using waste plaster board
JP2014031562A (en) * 2012-08-06 2014-02-20 Nippon Steel & Sumitomo Metal Dephosphorization processing method of hot pig iron
CN103525979A (en) * 2013-10-23 2014-01-22 攀钢集团攀枝花钢铁研究院有限公司 Semisteel dephosphorizing agent, semisteel dephosphorizing method and steel smelting method thereof
CN104263875A (en) * 2014-09-15 2015-01-07 首钢总公司 Dephosphorizing method for producing alloy weld line steel from high-phosphorus molten iron by top-blown converter
CN106268254A (en) * 2016-08-26 2017-01-04 合肥合意环保科技工程有限公司 A kind of sintering machine stirring-type wet type flue gas desulfurization equipment

Similar Documents

Publication Publication Date Title
US3964899A (en) Additives to improve slag formation in steelmaking furnaces
JP4683427B2 (en) Lime-based refining flux
US3726665A (en) Slagging in basic steel-making process
US4014684A (en) Manufacture of steel
JPS59133316A (en) Molten steel treating agent and treatment
JPS61177314A (en) Sintered ore for dephosphorizing and desulfurizing molten pig iron or molten steel
JPS60152611A (en) Method for modifying slag
CN107858476B (en) Composite slag modifier for converter steelmaking
JPS587691B2 (en) Steel manufacturing method
WO2003029497A1 (en) Method for dephsophorization of molten irona
JPS61217513A (en) Dephosphorizing method for molten iron
CN1040338C (en) Technology for dephospyhorizing and forced desulfurating in cupola
EP0225560A1 (en) Fluidizing composition for basic slag for steel-making furnaces
USRE29567E (en) Method of refining steel
KR100226925B1 (en) Dephosphorous method of molten metal
JPH0617495B2 (en) Dephosphorizing agent for hot metal
US3304172A (en) Process for the manufacture of low phosphorus pig iron
JPS5952924B2 (en) Lime-based steel refining agent
JPH0587571B2 (en)
JPS61217519A (en) Dephosphorizing method for molten steel
KR890004042B1 (en) Dephosphorus drug for melting iron
JPS61106706A (en) Method for desulfurizing molten steel
KR20220149648A (en) Method of manufacturing calcium-ferrite flux using steel by-product
JPH04317445A (en) Production of raw material for superrapid hardening cement improved steel slag
JPS6013043B2 (en) Slag forming agent for steelmaking