JPH06174354A - Heat accumulative type refrigerator - Google Patents

Heat accumulative type refrigerator

Info

Publication number
JPH06174354A
JPH06174354A JP32298692A JP32298692A JPH06174354A JP H06174354 A JPH06174354 A JP H06174354A JP 32298692 A JP32298692 A JP 32298692A JP 32298692 A JP32298692 A JP 32298692A JP H06174354 A JPH06174354 A JP H06174354A
Authority
JP
Japan
Prior art keywords
heat storage
heat
cooling
temperature
refrigerant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP32298692A
Other languages
Japanese (ja)
Inventor
Shinji Fujimoto
眞嗣 藤本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Refrigeration Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Refrigeration Co filed Critical Matsushita Refrigeration Co
Priority to JP32298692A priority Critical patent/JPH06174354A/en
Publication of JPH06174354A publication Critical patent/JPH06174354A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/25Control of valves
    • F25B2600/2511Evaporator distribution valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D2317/00Details or arrangements for circulating cooling fluids; Details or arrangements for circulating gas, e.g. air, within refrigerated spaces, not provided for in other groups of this subclass
    • F25D2317/06Details or arrangements for circulating cooling fluids; Details or arrangements for circulating gas, e.g. air, within refrigerated spaces, not provided for in other groups of this subclass with forced air circulation
    • F25D2317/065Details or arrangements for circulating cooling fluids; Details or arrangements for circulating gas, e.g. air, within refrigerated spaces, not provided for in other groups of this subclass with forced air circulation characterised by the air return
    • F25D2317/0653Details or arrangements for circulating cooling fluids; Details or arrangements for circulating gas, e.g. air, within refrigerated spaces, not provided for in other groups of this subclass with forced air circulation characterised by the air return through the mullion

Landscapes

  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)
  • Devices That Are Associated With Refrigeration Equipment (AREA)

Abstract

PURPOSE:To provide a heat accumulative type refrigerator in which heat accumulative material having a high melting temperature can be used, a dew formation at a cabinet during a cold heat accumulative cooling operation can be prevented and an increasing of thermal load in a cabinet during the heat accumulative operation can be prevented and further it has a superior efficiency. CONSTITUTION:A heat accumulative type refrigerator is constructed such that it has a heat accumulative device 53 having a melting temperature which is approximately the same temperature as that of a freezing chamber, the heat accumulative device 53 is freezed with an operating surplus force of a compressor 57 at a midnight time range and there is provided means for cooling a freezing chamber 35 with the compressor 57 and for cooling a load of the refrigerator chamber with a cold heat source for the heat accumulative device 53 only for a predetermined period of time at a daytime. During the operation at midnight for keeping cold heat accumulation, means is provided for changing- over it to a heat accumulative cooling circuit where no refrigerant is flowed to a drying pipe.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、蓄熱材を用いて庫内を
冷却する蓄熱式の冷凍冷蔵庫に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a heat storage type refrigerator / freezer which cools the inside of a refrigerator by using a heat storage material.

【0002】[0002]

【従来の技術】近年、深夜電力の有効利用ないし電力需
要のピークカットによる平準化等の観点より、深夜電力
にて蓄熱材を凍結させ昼間時間帯に凍結させた蓄熱材の
融解潜熱を利用して庫内の冷却を行う蓄熱式の冷凍冷蔵
庫の研究が行われており、例えば特開昭63−5806
8号公報等のおいて知られているような蓄熱式冷凍冷蔵
庫が考えられている。
2. Description of the Related Art In recent years, from the viewpoints of effective use of late-night power or leveling by cutting the peak of power demand, the heat storage material is frozen at midnight power and the latent heat of fusion of the heat storage material frozen during the daytime is used. Studies have been conducted on a heat storage type refrigerator / freezer that cools the inside of a refrigerator by, for example, Japanese Patent Laid-Open No. 63-5806.
A heat storage type freezer-refrigerator such as that known from Japanese Patent No. 8 is considered.

【0003】以下図面を参照しながら、上述した従来の
蓄熱式冷凍冷蔵庫の一例について説明する。
An example of the conventional heat storage type refrigerator-freezer described above will be described below with reference to the drawings.

【0004】図3は、従来の蓄熱式冷凍冷蔵庫の構造を
示す縦断面図であり、図4は冷凍システム図である。図
3と図4において、1は冷蔵庫本体で断熱材を内蔵した
キャビネット2と、ドア3とドア3とキャビネット2を
シールするガスケット14で構成されている。その内部
は水平に配された中間仕切り壁16により上部の冷凍室
17と下部の冷蔵室18との2室に仕切られている。
FIG. 3 is a longitudinal sectional view showing the structure of a conventional heat storage type refrigerator / freezer, and FIG. 4 is a refrigeration system diagram. In FIG. 3 and FIG. 4, reference numeral 1 is a refrigerator main body and is composed of a cabinet 2 having a heat insulating material built therein, and a door 3, a gasket 14 for sealing the door 3 and the cabinet 2. The interior is divided into two chambers, an upper freezing chamber 17 and a lower refrigerating chamber 18, by a horizontally arranged intermediate partition wall 16.

【0005】4はコンプレッサであり、コンデンサ5a
とキャビネット2の結露防止を行うドライパイプ5bの
各コンデンサを介して3方電磁弁6に接続される。さら
に、この3方電磁弁6の第1の流出口6aはキャピラリ
7、冷却器8およびアキュームレータ13を順次介して
コンプレッサ4に接続されている。
Reference numeral 4 is a compressor, which is a condenser 5a.
And the cabinet 2 is connected to the three-way solenoid valve 6 via each capacitor of the dry pipe 5b for preventing dew condensation. Further, the first outlet 6a of the three-way solenoid valve 6 is connected to the compressor 4 via the capillary 7, the cooler 8 and the accumulator 13 in this order.

【0006】また、3方電磁弁6の第2の流出口6b
は、蓄熱器用キャピラリ9および内部に蓄熱材15が充
填された蓄熱器10を順次介して前記アキュームレータ
13に接続されている。
The second outlet 6b of the three-way solenoid valve 6
Are sequentially connected to the accumulator 13 via a heat storage capillary 9 and a heat storage device 10 having a heat storage material 15 filled therein.

【0007】さらに、冷却器8と蓄熱器10との間には
閉ループ形サーモサイホン12が伝熱経路として設けら
れ、この閉ループ形サーモサイホン12の途中に蓄熱器
用電磁弁11が配される。なお、閉ループ形サーモサイ
ホン12には、たとえば重力式のものが用いられ、その
閉ループ状のパイプの中には、冷媒が封入されている。
Further, a closed loop type thermosiphon 12 is provided as a heat transfer path between the cooler 8 and the heat storage unit 10, and a heat storage solenoid valve 11 is arranged in the middle of the closed loop type thermosiphon 12. The closed-loop thermosiphon 12 is, for example, a gravity type, and a refrigerant is enclosed in the closed-loop pipe.

【0008】19は庫内を冷却するための冷却ファンで
あり、冷却器8の前方に設けられた冷凍室上部吹き出し
口20および冷凍室下部吹き出し口21から冷気を送出
することができるようにしている。前記中間仕切壁16
の冷凍室側前方には冷凍室吸込口22が設けられ、ここ
から冷却器8に至る冷凍室中間ダクト23が水平に形成
されている。
Numeral 19 is a cooling fan for cooling the inside of the refrigerator, and is arranged so that cold air can be discharged from the freezer compartment upper outlet 20 and the freezer compartment lower outlet 21 provided in front of the cooler 8. There is. The intermediate partition wall 16
A freezing compartment suction port 22 is provided on the front side of the freezing compartment, and a freezing compartment intermediate duct 23 extending from here to the cooler 8 is horizontally formed.

【0009】また、冷却器8の奥には、冷蔵庫背面部に
沿って冷却ファン19から冷蔵室吹出口24に至る冷蔵
室ダクト25が垂直に設けている。この冷蔵室吹出口2
4は、ダンパー26により開閉可能としている。前記中
間仕切壁16の冷蔵室側前方には冷蔵室吸込口27が設
けられ、ここから前記冷却器8に至る冷蔵室中間ダクト
28が水平に形成されている。
Further, a refrigerating compartment duct 25 extending vertically from the cooling fan 19 to the refrigerating compartment outlet 24 is vertically provided at the back of the cooler 8 along the back surface of the refrigerator. This refrigerating room outlet 2
4 can be opened and closed by a damper 26. A refrigerating compartment suction port 27 is provided on the front side of the intermediate partition wall 16 on the refrigerating compartment side, and a refrigerating compartment middle duct 28 extending from this to the cooler 8 is horizontally formed.

【0010】この冷蔵室中間ダクト28の出口には、ガ
ラス管ヒータ29が配され、その上方に配されている冷
却器8の除霜を可能としている。
A glass tube heater 29 is arranged at the outlet of the refrigerating compartment intermediate duct 28 to enable defrosting of the cooler 8 arranged above it.

【0011】以上の様に構成された蓄熱式冷凍冷蔵庫に
ついて、以下その動作について説明する。
The operation of the heat storage type refrigerator-freezer constructed as above will be described below.

【0012】通常冷却運転は、3方電磁弁6のコイルに
通電せず、第1の流出口6a側に切り替え、コンプレッ
サ4からコンデンサ5a,ドライパイプ5b,3方電磁
弁6,キャピラリチューブ7を順次介して冷却器8に至
り、この冷却器8からアキュームレータ13を介して前
記コンプレッサ4に至る冷媒流路を形成し、冷却器8の
冷気を冷却ファン19にて冷凍室17と冷蔵室18に送
風し、各室を冷却する。
In the normal cooling operation, the coil of the three-way solenoid valve 6 is not energized and is switched to the first outlet 6a side, and the compressor 4 is connected to the condenser 5a, the dry pipe 5b, the three-way solenoid valve 6, and the capillary tube 7. A cooling medium flow path is sequentially formed to reach the cooler 8, and a cooling medium flow path from the cooler 8 to the compressor 4 via the accumulator 13 is formed, and the cool air of the cooler 8 is supplied to the freezing chamber 17 and the refrigerating chamber 18 by the cooling fan 19. Blow and cool each room.

【0013】これに対して蓄熱運転は、3方電磁弁6の
コイルに通電することで第2の流出側に切り替え、コン
プレッサ4からコンデンサ5a,ドライパイプ5b,3
方電磁弁6および蓄熱器用キャピラリ9を順次介して蓄
熱器に至り、この蓄熱器10からアキュームレータ13
を介して前記コンプレッサ4に至る冷媒流路を形成し蓄
熱器10内の蓄熱材15の凍結を行う。
On the other hand, the heat storage operation is switched to the second outflow side by energizing the coil of the three-way solenoid valve 6, and the compressor 4 to the condenser 5a and the dry pipes 5b and 3 are switched.
The solenoid valve 6 and the regenerator capillary 9 are sequentially passed to reach the regenerator, and from this regenerator 10 to the accumulator 13
A refrigerant flow path is formed to reach the compressor 4 via the heat storage material 10 to freeze the heat storage material 15 in the heat storage device 10.

【0014】また、蓄熱冷却運転は、蓄熱器用電磁弁1
1を開路することで閉ループ形サーモサイホン12によ
り、蓄熱器10から冷却器8に放冷が行われ、この熱を
利用して、冷凍室17と冷蔵室18を冷却する。
In the heat storage cooling operation, the heat storage solenoid valve 1 is used.
When 1 is opened, the closed loop thermosiphon 12 cools the heat storage device 10 to the cooler 8, and the heat is used to cool the freezer compartment 17 and the refrigerating compartment 18.

【0015】そして、上記各運転モードをタイマ(図示
せず)にて次の様に制御する。電力需要の少ない深夜時
間帯(本実施例では23時〜翌日の7時まで)はタイマ
により、蓄熱運転と通常冷却運転を交互に行うことによ
り庫内温度は設定温度に保ちながら蓄熱材15を凍結す
る。
Then, each of the above operation modes is controlled by a timer (not shown) as follows. During the midnight hours when the power demand is low (from 23:00 to 7:00 on the next day in this embodiment), the heat storage operation and the normal cooling operation are alternately performed by the timer to keep the internal temperature of the refrigerator at the set temperature while the heat storage material 15 is kept. to freeze.

【0016】そして、昼間の電力需要がピークの時間帯
(本実施例では13時〜16時)の3時間はタイマにて
コンプレッサ4を停止させて蓄熱冷却運転を行い、蓄熱
材15の融解潜熱にて庫内を冷却し、冷蔵庫の使用電力
量を大幅に減少させる。
Then, the compressor 4 is stopped by the timer for the heat storage cooling operation for 3 hours during the peak daytime power demand period (13:00 to 16:00 in this embodiment), and the latent heat of fusion of the heat storage material 15 is carried out. The inside of the refrigerator is cooled by and the electric power consumption of the refrigerator is greatly reduced.

【0017】また冷却器8の除霜は、コンプレッサ4の
運転時間を積算し、積算時間が任意時間になると、コン
プレッサ4を停止させると共に蓄熱器用電磁弁11を閉
路し、ガラス管ヒータ29に通電して除霜を行う。除霜
回数は、夏場は1日に2回程度になるように任意時間を
設定している。
For defrosting the cooler 8, the operating time of the compressor 4 is integrated, and when the integrated time reaches an arbitrary time, the compressor 4 is stopped, the heat storage solenoid valve 11 is closed, and the glass tube heater 29 is energized. Then defrost. The defrosting frequency is set to an arbitrary time such that it is about twice a day in the summer.

【0018】[0018]

【発明が解決しようとする課題】しかしながら上記の従
来の構成では蓄熱材15の融解潜熱にて冷凍室17と冷
蔵室を冷却するためには−30℃以下の融解温度を有す
る低温の蓄熱材15を使用することが必要であり、深夜
時間帯に−30℃以下の蓄熱材を凍結させるためにはコ
ンプレッサ4を大型化する必要があり、且つ低温の蓄熱
材15の融解潜熱は小さいため蓄熱器10が非常に大き
くなり、冷蔵庫の冷却負荷が増大し、冷蔵庫の消費電力
量が増大するという問題点を有していた。
However, in the above-mentioned conventional structure, in order to cool the freezer compartment 17 and the refrigerating compartment by the latent heat of fusion of the heat storage material 15, the low temperature heat storage material 15 having a melting temperature of -30 ° C. or less is used. Is required, the compressor 4 needs to be upsized in order to freeze the heat storage material at −30 ° C. or lower at midnight, and the latent heat of fusion of the low temperature heat storage material 15 is small, so the heat storage device 10 is very large, the cooling load of the refrigerator is increased, and the power consumption of the refrigerator is increased.

【0019】また、蓄熱冷却運転中はコンプレッサ4を
停止させるので、蓄熱冷却運転中はドライパイプ5bに
高温冷媒が流れないため、キャビネット2の結露防止機
能が低下し、キャビネット2の一部に結露が発生すると
いう問題点を有していた。
Further, since the compressor 4 is stopped during the heat storage cooling operation, the high temperature refrigerant does not flow into the dry pipe 5b during the heat storage cooling operation, so that the function of preventing dew condensation of the cabinet 2 is deteriorated and dew condensation occurs on a part of the cabinet 2. It had a problem that occurs.

【0020】また、深夜時間帯は蓄熱材15を凍結させ
るためコンプレッサ4の運転率が非常に高くなり、ドラ
イパイプ5bに高温冷媒が流れる時間が長くなりすぎる
ためキャビネット2の結露防止機能が過多となり、庫内
の熱負荷が増加し増電となるという問題点を有してい
た。
Further, during the midnight time, the operation rate of the compressor 4 becomes extremely high because the heat storage material 15 is frozen, and the time during which the high-temperature refrigerant flows through the dry pipe 5b becomes too long, so that the condensation preventing function of the cabinet 2 becomes excessive. However, there is a problem in that the heat load in the refrigerator increases and the electric power increases.

【0021】本発明は上記従来の問題点を解決するもの
で、コンプレッサを大型化することなく深夜時間帯のコ
ンプレッサの余力冷却能力を最大限利用できる蓄熱器を
有し、蓄熱冷却運転中のキャビネット2の結露発生を防
止するとともに、深夜時間帯の蓄熱運転中のキャビネッ
ト2の熱負荷の増加を防止することができる蓄熱式冷蔵
庫を提供することを目的とする。
The present invention solves the above-mentioned conventional problems, and has a regenerator capable of maximizing the remaining cooling capacity of the compressor in the midnight hours without increasing the size of the compressor, and a cabinet in a regenerative cooling operation. It is an object of the present invention to provide a heat storage refrigerator capable of preventing dew condensation of No. 2 and preventing an increase in the heat load of the cabinet 2 during the heat storage operation in the midnight time zone.

【0022】[0022]

【課題を解決するための手段】この目的を達成するため
に本発明の蓄熱式冷蔵庫は、通常冷蔵庫を冷却するため
の冷却器と、冷蔵室内に吸い込み口と吐出口を有する断
熱壁で区画され、内部に冷凍室の温度と同等以上の融解
温度を有し、深夜時間帯のコンプレッサの運転余力と同
等の融解潜熱量を有する蓄熱材を充填する蓄熱器と、昼
間時間の所定時間のみ運転される送風ファンとを備え、
深夜時間帯の冷凍室が所定の温度よりひくいときのみ蓄
熱材を凍結し、昼間時間帯の所定時間のみ蓄熱器で冷却
された冷気にて冷蔵室と冷却器の吸い込み空気の冷却を
おこなう構成を備えたものである。
In order to achieve this object, the heat storage type refrigerator of the present invention is usually partitioned by a cooler for cooling the refrigerator and a heat insulating wall having a suction port and a discharge port in the refrigerating chamber. , A regenerator with a melting temperature equal to or higher than the temperature of the freezer and a latent heat of fusion equivalent to the remaining operating capacity of the compressor in the midnight hours, and a regenerator that is operated only for a certain period of daytime. With a blower fan
The heat storage material is frozen only when the freezing room in the midnight time is lower than the predetermined temperature, and the intake air of the refrigerating room and the cooler is cooled only by the cool air cooled by the heat storage device for the predetermined time in the daytime time. Be prepared.

【0023】また、コンプレッサとコンデンサとドライ
パイプとキャピラリチューブと冷却器を順次接続してな
る通常冷凍サイクルと、前記ドライパイプとキャピラリ
チューブと冷却器の直列回路と並列に蓄熱器用キャピラ
リチューブと蓄熱器の直列回路からなる蓄熱用冷凍サイ
クルとを有し、深夜時間帯の冷凍室の温度が所定の温度
より低いときのみドライパイプに高温冷媒を流さない蓄
熱用冷凍サイクルに切り替える構成を備えたものであ
る。
Further, a normal refrigeration cycle in which a compressor, a condenser, a dry pipe, a capillary tube and a cooler are sequentially connected, and a capillary tube for a regenerator and a regenerator in parallel with a series circuit of the dry pipe, the capillary tube and the cooler. With a heat storage refrigeration cycle consisting of a series circuit of, with a configuration to switch to a heat storage refrigeration cycle in which the high temperature refrigerant does not flow to the dry pipe only when the temperature of the freezing room in the midnight time is lower than a predetermined temperature. is there.

【0024】[0024]

【作用】本発明は上述したような構成によって、蓄熱冷
却運転とドライパイプに高温冷媒をながす冷凍サイクル
と同時におこなうことができ、蓄熱冷却運転中のキャビ
ネットの結露を防止できる。
According to the present invention, with the above-described structure, the heat storage cooling operation and the refrigeration cycle in which the high temperature refrigerant is supplied to the dry pipe can be performed simultaneously, and the dew condensation of the cabinet during the heat storage cooling operation can be prevented.

【0025】また、融解潜熱の大きい−15℃〜−20
℃程度の融解温度の蓄熱材を使用することが可能となる
ので、蓄熱運転時のコンプレッサの運転蒸発温度を高く
設定でき、深夜時間帯の蓄熱量が増大でき、現行のコン
プレッサを大型化することなく昼間の使用電力を低減す
ることができる。
Further, the large latent heat of fusion is -15 ° C to -20.
Since it is possible to use a heat storage material with a melting temperature of about ℃, it is possible to set the operating evaporation temperature of the compressor during heat storage operation to a high value, increase the amount of heat stored during the midnight hours, and increase the size of the existing compressor. It is possible to reduce power consumption during the daytime.

【0026】また深夜時間帯の蓄熱運転時のドライパイ
プからの冷蔵庫内への熱負荷の増大を防止できるので、
省エネルギー化が図れる。
Further, since it is possible to prevent an increase in heat load from the dry pipe into the refrigerator during the heat storage operation in the midnight time,
Energy saving can be achieved.

【0027】[0027]

【実施例】以下本発明の一実施例について図面を参照し
ながら説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to the drawings.

【0028】図1は、本発明の一実施例における蓄熱式
冷蔵庫の構造を示す縦断面図であり、図2は冷凍サイク
ル図である。図1と図2において、30は冷蔵庫本体で
断熱材を内蔵したキャビネット31と、ドア32とドア
32とキャビネット31をシールするガスケット33で
構成されている。
FIG. 1 is a vertical sectional view showing the structure of a heat storage type refrigerator according to an embodiment of the present invention, and FIG. 2 is a refrigeration cycle diagram. In FIGS. 1 and 2, reference numeral 30 denotes a refrigerator main body, which includes a cabinet 31 in which a heat insulating material is incorporated, and a door 32, a door 32, and a gasket 33 that seals the cabinet 31.

【0029】冷蔵庫本体30の内部は、中間仕切り壁3
4により、上部の冷凍室35と下部の冷蔵室36との2
室の仕切られている。
The interior of the refrigerator body 30 has an intermediate partition wall 3
2 of the upper freezing chamber 35 and the lower refrigerating chamber 36.
The room is partitioned.

【0030】37は庫内を冷却するための冷却ファンで
あり、38は冷蔵庫を冷却するための冷却器で、冷却器
38の前方に設けられた冷凍室上部吹き出し口39およ
び冷凍室下部吹き出し口40から冷気を送出することが
できるようにしている。
Reference numeral 37 is a cooling fan for cooling the inside of the refrigerator, and 38 is a cooler for cooling the refrigerator. The freezer compartment upper outlet 39 and the freezer compartment lower outlet provided in front of the cooler 38. The cold air can be sent from 40.

【0031】前記、中間仕切り壁34の冷凍室側前方に
は冷凍室吸い込み口41が設けられ、ここから前記冷却
器38に至る冷凍室中間ダクト42が形成されている。
A freezer compartment suction port 41 is provided in front of the intermediate partition wall 34 on the freezer compartment side, and a freezer compartment intermediate duct 42 extending from here to the cooler 38 is formed.

【0032】また冷却器38の奥には、冷蔵庫背面部に
沿って冷却ファン37から冷蔵室吹き出し口43に至る
冷蔵室ダクトが44が垂直に設けている。この冷蔵庫吹
き出し口43はダンパー45により開閉可能としてい
る。
A refrigerating compartment duct 44 extending vertically from the cooling fan 37 to the refrigerating compartment outlet 43 is provided vertically along the back of the refrigerator at the back of the cooler 38. The refrigerator outlet 43 can be opened and closed by a damper 45.

【0033】前記中間仕切り壁34の冷蔵室側前方には
冷蔵室吸い込み口46が設けられ、ここから前記冷却器
38に至る冷蔵室中間ダクト47が水平に形成されてい
る。
A refrigerating compartment suction port 46 is provided in front of the intermediate partition wall 34 on the refrigerating compartment side, and a refrigerating compartment intermediate duct 47 extending from this to the cooler 38 is horizontally formed.

【0034】この冷蔵室中間ダクト47の出口には、ガ
ラス管ヒータ48が配され、その上方に配されている冷
却器38の除霜を可能としている。
A glass tube heater 48 is arranged at the outlet of the refrigerating compartment intermediate duct 47 to enable defrosting of the cooler 38 arranged above it.

【0035】また前記中間仕切り壁34の冷蔵室側部に
は吸い込み口49と第1の吐出口50と第2の吐出口5
1を有する断熱区画室52を配し、断熱区画室52内に
は、蓄熱器53と送風ファン54を配置している。吸い
込み口49は冷蔵室吸い込み口46近傍の冷蔵室中間ダ
クト部47aと連通し、第1の吐出口50は冷蔵室中間
ダクト部47の出口近傍部47bと連通し、第2の吐出
口51は冷蔵室吹き出し口43近傍の冷蔵室36内に連
通している。
Further, on the side of the refrigerating chamber of the intermediate partition wall 34, a suction port 49, a first discharge port 50 and a second discharge port 5 are provided.
1 is arranged, and a heat storage device 53 and a blower fan 54 are arranged in the heat insulating compartment 52. The suction port 49 communicates with the refrigerating compartment intermediate duct portion 47a near the refrigerating compartment suction port 46, the first outlet 50 communicates with the outlet neighboring portion 47b of the refrigerating compartment intermediate duct portion 47, and the second discharge outlet 51 extends. It communicates with the inside of the refrigerating compartment 36 near the refrigerating compartment outlet 43.

【0036】蓄熱器53の内部には冷凍室35の温度と
同等以上の融解温度(本実施例では−16℃)を有し、
深夜時間帯(本実施例では23時〜翌日の7時まで)の
コンプレッサの運転余力と同等の融解潜熱量を有する潜
熱型蓄熱材55を充填している。56は蓄熱材55と熱
交換的に配した冷媒管で、夜間時間帯の冷凍室35が所
定温度より低いとき、冷媒を流し蓄熱材55を凍結する
ものである。
Inside the regenerator 53, there is a melting temperature equal to or higher than the temperature of the freezer compartment 35 (-16 ° C. in this embodiment),
The latent heat storage material 55 having a latent heat of fusion equivalent to the remaining operating capacity of the compressor in the midnight time zone (from 23:00 to 7:00 on the next day) is filled. Reference numeral 56 denotes a refrigerant pipe that is arranged in heat exchange with the heat storage material 55, and flows a refrigerant to freeze the heat storage material 55 when the freezing chamber 35 during the night time is lower than a predetermined temperature.

【0037】冷凍システムは第2図に示すようにコンプ
レッサ57とコンデンサ58とガスケット33近傍のキ
ャビネット部の発汗を防止するためのドライパイプ59
とキャピラリチューブ60と冷却器38を順次接続して
通常の冷凍サイクルを形成している。
As shown in FIG. 2, the refrigeration system has a compressor 57, a condenser 58, and a dry pipe 59 for preventing perspiration from the cabinet portion near the gasket 33.
The capillary tube 60 and the cooler 38 are sequentially connected to form a normal refrigeration cycle.

【0038】またコンデンサ58の出口部に3方弁62
を配置し、ドライパイプ59とキャピラリチューブ60
と冷却器38の直列回路と並列に、蓄熱器用キャピラリ
63と蓄熱器53の冷媒管56からなる蓄熱用冷媒回路
を接続している。
A three-way valve 62 is provided at the outlet of the condenser 58.
The dry pipe 59 and the capillary tube 60.
A heat storage refrigerant circuit including a heat storage capillary 63 and a refrigerant pipe 56 of the heat storage device 53 is connected in parallel with the series circuit of the cooler 38.

【0039】63は過冷却器で、蓄熱器用キャピラリ6
3入口パイプと蓄熱器用冷媒管56の出口パイプを熱交
換している。64はアキュームレータである。
Reference numeral 63 is a supercooler, which is a capillary 6 for a heat storage device.
Heat is exchanged between the 3 inlet pipe and the outlet pipe of the heat storage refrigerant pipe 56. 64 is an accumulator.

【0040】以上の様に構成された蓄熱式冷蔵庫につい
て、以下その動作を説明する。まず通常冷却運転時の動
作について説明する。通常冷却運転時は3方弁をドライ
パイプ59側に切り替え、コンプレッサ57からコンデ
ンサ58,ドライパイプ59,キャピラリチューブ6
0,アキュームレータ64からコンプレッサ58に至る
冷凍サイクルを形成し、冷却器38で冷却された冷気を
冷却ファン37にて図1点線矢印で示すように冷凍室3
5と冷蔵室36に送風冷却し、ダンパー45の開閉にて
冷蔵室36を所定の温度に制御し、コンプレッサ57と
冷却ファン37の運転停止を冷凍室35温度検知器(図
示せず)にて制御し、冷凍室36を所定の温度に制御す
る。
The operation of the heat storage refrigerator constructed as described above will be described below. First, the operation during the normal cooling operation will be described. During normal cooling operation, the three-way valve is switched to the dry pipe 59 side, and the compressor 57 to the condenser 58, the dry pipe 59, and the capillary tube 6 are connected.
0, a refrigeration cycle from the accumulator 64 to the compressor 58 is formed, and the cool air cooled by the cooler 38 is cooled by the cooling fan 37 as shown by the dotted line arrow in FIG.
5 and the refrigerating compartment 36 are cooled by blowing air, and the damper 45 is opened and closed to control the refrigerating compartment 36 to a predetermined temperature, and the compressor 57 and the cooling fan 37 are stopped by a freezing compartment 35 temperature detector (not shown). Then, the freezer compartment 36 is controlled to a predetermined temperature.

【0041】次に蓄熱運転時の動作について説明する。
蓄熱運転は、深夜時間帯の冷却ファン37停止時すなわ
ち冷凍室36が所定の温度に低下したとき3方弁62を
蓄熱器用キャピラリチューブ63側に切り替え、コンプ
レッサ57から蓄熱器用キャピラリチューブ63,冷媒
管56からアキュームレータ64,コンプレッサ57に
至る蓄熱用冷媒回路を形成し、蓄熱器53内の蓄熱材5
5の凍結をおこなう。
Next, the operation during the heat storage operation will be described.
The heat storage operation is performed by switching the three-way valve 62 to the heat storage capillary tube 63 side when the cooling fan 37 is stopped in the middle of the night, that is, when the freezing room 36 has dropped to a predetermined temperature, and the compressor 57 is connected to the heat storage capillary tube 63 and the refrigerant pipe. A heat storage refrigerant circuit is formed from 56 to the accumulator 64 and the compressor 57, and the heat storage material 5 in the heat storage device 53 is formed.
Freeze 5.

【0042】そして、冷凍室35の温度が所定の温度以
上に上昇すると3方弁62をドライパイプ59側に切り
替えるとともに冷却ファン37を運転し、通常冷却運転
をおこなう。
When the temperature of the freezer compartment 35 rises above a predetermined temperature, the three-way valve 62 is switched to the dry pipe 59 side, the cooling fan 37 is operated, and the normal cooling operation is performed.

【0043】深夜時間帯(本実施例では23時〜翌日の
7時まで)は上記動作を繰り返し、蓄熱器53の蓄熱材
55を凍結させる。
During the midnight time (from 23:00 to 7:00 of the next day in this embodiment), the above operation is repeated to freeze the heat storage material 55 of the heat storage device 53.

【0044】このとき、冷凍室35の温度と同等以上の
融解温度(本実施例では−16℃)蓄熱材53を使用
し、かつ蓄熱材53の充填量は上記深夜時間帯の通常冷
却運転時のコンプレッサ57の運転余力で凍結できる蓄
熱材量としている。
At this time, a heat storage material 53 whose melting temperature is equal to or higher than the temperature of the freezer compartment 35 (-16 ° C. in this embodiment) is used, and the filling amount of the heat storage material 53 is during the normal cooling operation in the above-mentioned midnight time zone. The amount of heat storage material that can be frozen by the remaining operating capacity of the compressor 57 is set.

【0045】従って、通常冷却運転時と同等の蒸発温度
で凍結できるので、従来に比べ蓄熱運転時の蒸発温度を
高くでき、深夜時間帯の蓄熱量を増大できるとともに、
冷凍サイクルの性能指数を低下させることなく効率のよ
い凍結運転ができる。
Therefore, since the evaporation temperature can be frozen at the same evaporation temperature as in the normal cooling operation, the evaporation temperature in the heat storage operation can be made higher than in the conventional case, and the heat storage amount in the midnight time zone can be increased.
Efficient freezing operation can be performed without lowering the performance index of the refrigeration cycle.

【0046】また、断熱区画壁52を介して冷蔵室36
に漏れる冷却熱量も減少でき、コンプレッサ57の冷凍
能力を最大限蓄熱材53の凍結に利用することができ
る。
Further, the refrigerating chamber 36 is provided through the heat insulating partition wall 52.
The amount of cooling heat leaked to the compressor can be reduced, and the refrigerating capacity of the compressor 57 can be utilized to the maximum extent for freezing the heat storage material 53.

【0047】また、蓄熱運転中はドライパイプ59に高
温冷媒を流さないため、ドライパイプ59の高温冷媒に
よって冷蔵庫本体30内に侵入する熱負荷量の増加を防
止することができ、省エネルギー化が図れる。
Further, since the high temperature refrigerant does not flow into the dry pipe 59 during the heat storage operation, it is possible to prevent an increase in the heat load amount entering the refrigerator main body 30 due to the high temperature refrigerant in the dry pipe 59, and energy saving can be achieved. .

【0048】次に昼間の蓄熱冷却運転時の動作について
説明する。昼間時間帯(本実施例では7時〜23時)に
入ると、蓄熱運転を中止し、通常冷却運転を行い、冷却
器38で冷却された冷気を図1の点線矢印に示すように
循環し、冷凍室35と冷蔵室36を所定の温度に冷却す
る。
Next, the operation during the daytime heat storage cooling operation will be described. When it enters the daytime zone (7:00 to 23:00 in this embodiment), the heat storage operation is stopped, the normal cooling operation is performed, and the cool air cooled by the cooler 38 is circulated as shown by the dotted line arrow in FIG. The freezer compartment 35 and the refrigerator compartment 36 are cooled to a predetermined temperature.

【0049】そして、昼間の電力需要がピークの時間帯
(本実施例は13時〜16時)に入ると、送風ファン5
4を運転し、蓄熱器53で冷却した冷気を図1の実線矢
印示すように循環し、冷蔵室36と冷却器38の吸い込
み空気を冷却する。
Then, when the daytime power demand enters a peak time zone (13:00 to 16:00 in this embodiment), the blower fan 5
4 is operated and the cold air cooled by the heat storage device 53 is circulated as shown by the solid line arrow in FIG. 1 to cool the intake air of the refrigerating chamber 36 and the cooler 38.

【0050】このとき送風ファン54の送風量は通常冷
却運転時に冷蔵室中間ダクト部47aを通過する風量の
2倍程度(本実施例では0.5m3/分程度)とし、第
1の吐出口50の大きさは、冷蔵室中間ダクト47より
大幅に小さくし且つダンパー43が完全に開き、冷却フ
ァン37と送風ファン54が運転している状態で通常冷
却運転時に冷蔵室中間ダクト部47aを通過する風量と
同等程度(本実施例では0.2m3/分程度)としてい
る。
At this time, the amount of air blown by the blower fan 54 is about twice the amount of air passing through the refrigerating compartment intermediate duct portion 47a during the normal cooling operation (about 0.5 m 3 / min in this embodiment), and the first discharge port The size of 50 is significantly smaller than that of the refrigerating compartment intermediate duct 47, the damper 43 is completely opened, and the cooling fan 37 and the blower fan 54 are in operation while passing through the refrigerating compartment intermediate duct portion 47a during normal cooling operation. The flow rate is about the same (about 0.2 m 3 / min in this embodiment).

【0051】このとき蓄熱器53の冷熱源で冷却された
冷気を第2吐出口51より冷蔵室36に吐出し、冷蔵室
36を冷却するのでダンパー43の付近の温度は低温と
なるのでダンパー43はほとんど閉じた状態となる。ま
た、冷蔵室36の冷却負荷が増大したときは、ダンパー
43を開路し、冷却器38の冷気で冷蔵室36を補助冷
却する。
At this time, cold air cooled by the cold heat source of the heat accumulator 53 is discharged into the refrigerating chamber 36 through the second outlet 51, and the refrigerating chamber 36 is cooled, so that the temperature in the vicinity of the damper 43 becomes low, so that the damper 43. Is almost closed. Further, when the cooling load of the refrigerating chamber 36 increases, the damper 43 is opened, and the refrigerating chamber 36 is auxiliary cooled by the cool air of the cooler 38.

【0052】このとき冷蔵室36を冷却し、温度が上昇
した冷気は蓄熱器53で冷却された後、第1吐出口50
より冷蔵室中間ダクト部47の出口近傍部47bに吐出
し、冷却器38に吸い込み冷気の温度上昇を防止する。
At this time, the refrigerating chamber 36 is cooled, and the cold air whose temperature has risen is cooled by the heat storage device 53, and then the first discharge port 50.
Further, it is discharged to a portion 47b near the outlet of the refrigerating compartment intermediate duct portion 47 and sucked into the cooler 38 to prevent the temperature of the cool air from rising.

【0053】従って、蓄熱冷却運転中は、コンプレッサ
57で冷凍室35を冷却し、冷蔵室36の熱負荷を確実
に蓄熱器53で冷却することができるので冷却器38の
冷却負荷は冷凍室35の冷却負荷のみに減少でき、昼間
の電力需要がピークの時間帯(本実施例は13〜16
時)のコンプレッサ57の運転率の低減が図れる。ま
た、蓄熱冷却運転中はコンプレッサ57による冷却運転
を並行しておこなうため、蓄熱冷却運転中もドライパイ
プ59に高温冷媒を流すことができ、蓄熱冷却運転時の
キャビネット31の結露発生を防止することができる。
Therefore, during the heat storage cooling operation, the freezer compartment 35 can be cooled by the compressor 57 and the heat load of the refrigerating compartment 36 can be reliably cooled by the heat storage unit 53, so that the cooling load of the cooler 38 is reduced. It can be reduced only to the cooling load, and the daytime power demand is at a peak time (13 to 16 in this embodiment).
The operation rate of the compressor 57 can be reduced. Further, since the cooling operation by the compressor 57 is performed in parallel during the heat storage cooling operation, the high-temperature refrigerant can flow through the dry pipe 59 even during the heat storage cooling operation, and the dew condensation of the cabinet 31 during the heat storage cooling operation can be prevented. You can

【0054】以上の様に本実施例によればコンプレッサ
57とコンデンサ58とドライパイプ59とキャピラリ
チューブ60と冷却器38を順次接続してなる冷凍サイ
クルと、内部に潜熱型蓄熱材55を充填し、蓄熱材55
と熱交換的に配置してなる冷媒管56を有する蓄熱器5
3と、所定の深夜時間帯に蓄熱器53の冷媒管56に冷
却冷媒を流し蓄熱材55を凍結する蓄熱用冷却冷媒回路
と、昼間の所定時間に蓄熱器53の冷熱源を送風制御し
冷蔵庫を冷却する送風ファン54を備え、蓄熱器53と
送風ファン54を吸い込み口49と第1の吐出口50と
第2の吐出口51を有する断熱区画室52内に配置し、
蓄熱器53の内部に冷凍室35温度と同等以上の融解温
度を有し夏場の深夜時間帯のコンプレッサの運転余力と
同等の融解潜熱量を有する潜熱型蓄熱材55を充填し、
深夜時間帯の冷凍室35の温度が所定温度より低いとき
蓄熱材55を凍結し、昼間時間帯の所定時間に送風ファ
ン37を運転し蓄熱器53の冷熱源を第1、第2の吐出
口50,51より吐出し、第1の吐出口50より吐出さ
れた冷気で冷却器38の吸い込み空気を、第2の吐出口
51より吐出された冷気で冷蔵室を冷却する構成を備え
たものである。
As described above, according to this embodiment, the refrigerating cycle in which the compressor 57, the condenser 58, the dry pipe 59, the capillary tube 60 and the cooler 38 are sequentially connected, and the latent heat storage material 55 is filled inside. , Heat storage material 55
Accumulator 5 having a refrigerant pipe 56 arranged in heat exchange with
3, a cooling storage refrigerant circuit for flowing a cooling refrigerant into the refrigerant pipe 56 of the heat storage device 53 to freeze the heat storage material 55 at a predetermined midnight time, and a cooling source for controlling the cold heat source of the heat storage device 53 at a predetermined time during the day to control the refrigerator. And a heat storage device 53 and a blower fan 54 are arranged in an adiabatic compartment 52 having a suction port 49, a first discharge port 50, and a second discharge port 51.
The inside of the heat storage device 53 is filled with a latent heat storage material 55 having a melting temperature equal to or higher than the temperature of the freezer compartment 35 and a latent heat amount of melting equivalent to the remaining operating capacity of the compressor in the midnight time of summer,
When the temperature of the freezer compartment 35 in the midnight time is lower than the predetermined temperature, the heat storage material 55 is frozen, and the blower fan 37 is operated at the predetermined time in the daytime to operate the cold heat source of the heat storage device 53 as the first and second discharge ports. A configuration is provided in which the cool air discharged from the first and second discharge ports 50 and 51 sucks the air sucked into the cooler 38 and the cool air discharged from the second and second discharge ports 51 cools the refrigerating chamber. is there.

【0055】このことにより、蓄熱冷却運転中は、コン
プレッサ57で冷凍室35を冷却し、冷蔵室36の熱負
荷を確実に蓄熱器53で冷却することができるので冷却
器38の冷却負荷は冷凍室35の冷却負荷のみに減少で
き、昼間の電力需要がピークの時間帯(本実施例は13
〜16時)のコンプレッサ57の運転率の低減が図れ
る。
As a result, during the heat storage cooling operation, the freezer compartment 35 can be cooled by the compressor 57 and the heat load of the refrigerating compartment 36 can be reliably cooled by the heat store 53, so the cooling load of the cooler 38 is frozen. It can be reduced only to the cooling load of the room 35, and the daytime power demand is at a peak time (in this embodiment, 13
It is possible to reduce the operating rate of the compressor 57 from 16:00 to 16:00.

【0056】また、蓄熱冷却運転中はコンプレッサ57
による冷却運転を並行しておこなうため、蓄熱冷却運転
中もドライパイプ59に高温冷媒を流すことができ、蓄
熱冷却運転時のキャビネット31の結露発生を防止する
ことができる。
During the heat storage cooling operation, the compressor 57
Since the cooling operation is performed in parallel, the high-temperature refrigerant can flow through the dry pipe 59 even during the heat storage cooling operation, and the occurrence of dew condensation on the cabinet 31 during the heat storage cooling operation can be prevented.

【0057】また、ドライパイプ59とキャピラリチュ
ーブ60と冷却器61の直列冷媒回路と並列に、蓄熱器
用キャピラリチューブ63と蓄熱器53の冷媒管56か
らなる蓄熱用冷却冷媒回路を接続し、深夜時間帯の冷凍
室の温度が所定の温度より低いときのみドライパイプに
冷媒を流さない蓄熱用冷却冷媒回路に切り替える構成を
備えたものである。
Further, a heat storage cooling refrigerant circuit consisting of the heat storage capillary tube 63 and the refrigerant tube 56 of the heat storage device 53 is connected in parallel with the series refrigerant circuit of the dry pipe 59, the capillary tube 60 and the cooler 61, and the midnight time. Only when the temperature of the freezing compartment in the strip is lower than a predetermined temperature, a configuration is provided for switching to the heat storage cooling refrigerant circuit in which the refrigerant does not flow through the dry pipe.

【0058】このことにより、蓄熱運転中はドライパイ
プ59に高温冷媒を流さないため、ドライパイプ59の
高温冷媒によって冷蔵庫本体30内に侵入する熱負荷量
の増加を防止することができ、省エネルギー化が図れ
る。
As a result, since the high-temperature refrigerant does not flow through the dry pipe 59 during the heat storage operation, it is possible to prevent an increase in the heat load amount that enters the refrigerator body 30 due to the high-temperature refrigerant in the dry pipe 59, thus saving energy. Can be achieved.

【0059】[0059]

【発明の効果】以上の様に本発明はコンプレッサとコン
デンサとドライパイプとキャピラリチューブと冷却器を
順次接続してなる冷凍サイクルと、内部に潜熱型蓄熱材
を充填し、蓄熱材と熱交換的に配置してなる冷媒管を有
する蓄熱器と、所定の深夜時間帯に蓄熱器の冷媒管に冷
却冷媒を流し蓄熱材を凍結する蓄熱用冷却冷媒回路と、
昼間の所定時間に蓄熱器の冷熱源を送風制御し冷蔵庫を
冷却する送風ファンを備え、蓄熱器と送風ファンを吸い
込み口と吐出口を有する断熱区画室に配置し、蓄熱器の
内部に冷凍室温度と同等以上の融解温度を有し夏場の深
夜時間帯のコンプレッサの運転余力と同等の融解潜熱量
を有する潜熱型蓄熱材を充填し、深夜時間帯の冷凍室の
温度が所定温度より低いとき蓄熱材を凍結し、昼間時間
帯の所定時間のみ、冷蔵室の空気を吸い込み蓄熱器の冷
熱源で冷却された冷気を送風ファンにより吐出口より吐
出し、冷却器の吸い込み空気と、冷蔵室内の空気を冷却
する構成を備えたことものである。
As described above, the present invention has a refrigerating cycle in which a compressor, a condenser, a dry pipe, a capillary tube and a cooler are sequentially connected, and a latent heat type heat storage material is filled in the refrigeration cycle to exchange heat with the heat storage material. A heat storage device having a refrigerant pipe arranged in, a heat storage cooling refrigerant circuit for freezing a heat storage material by flowing a cooling refrigerant into the refrigerant pipe of the heat storage device in a predetermined midnight time period,
Equipped with a blower fan that controls the cold heat source of the regenerator to cool the refrigerator at a predetermined time in the daytime, the regenerator and the blower fan are placed in an adiabatic compartment that has a suction port and a discharge port, and a freezer inside the regenerator. When a latent heat storage material with a melting temperature equal to or higher than the temperature and a latent heat of fusion equivalent to the remaining operating capacity of the compressor in the midnight time of summer is filled, and the temperature of the freezer in the midnight time is lower than the specified temperature. The heat storage material is frozen, and the air in the refrigerating room is sucked in only during the daytime hours, and the cool air cooled by the cold heat source of the regenerator is discharged from the discharge port by the blower fan. It is provided with a structure for cooling air.

【0060】このことにより、蓄熱冷却運転中は、コン
プレッサで冷凍室を冷却し、冷蔵室の熱負荷を確実に蓄
熱器で冷却することができるので冷却器の冷却負荷は冷
凍室の冷却負荷のみに減少でき、昼間の電力需要がピー
クの時間帯のコンプレッサの運転率の低減が図れる。ま
た、蓄熱冷却運転中はコンプレッサによる冷却運転を並
行しておこなうため、蓄熱冷却運転中もドライパイプに
高温冷媒を流すことができ、蓄熱冷却運転時のキャビネ
ットの結露発生を防止することができる。
As a result, during the heat storage cooling operation, the freezer can be cooled by the compressor and the heat load of the refrigerating room can be surely cooled by the heat store. Therefore, the cooling load of the cooler is only the cooling load of the freezer. The operating rate of the compressor can be reduced during the peak daytime power demand. In addition, since the cooling operation by the compressor is performed in parallel during the heat storage cooling operation, the high temperature refrigerant can be flown through the dry pipe even during the heat storage cooling operation, and it is possible to prevent dew condensation of the cabinet during the heat storage cooling operation.

【0061】また、ドライパイプとキャピラリチューブ
と冷却器の直列冷媒回路と並列に、蓄熱器用キャピラリ
チューブと蓄熱器の冷媒管からなる蓄熱用冷却冷媒回路
を接続し、深夜時間帯の冷凍室の温度が所定の温度より
低いときのみドライパイプに冷媒を流さない蓄熱用冷却
冷媒回路に切り替える構成を備えたものである。
Further, a heat storage cooling refrigerant circuit composed of a heat storage capillary tube and a refrigerant tube of the heat storage device is connected in parallel with the series refrigerant circuit of the dry pipe, the capillary tube, and the cooler, and the temperature of the freezing room during the midnight time When the temperature is lower than a predetermined temperature, the heat storage cooling refrigerant circuit that does not flow the refrigerant to the dry pipe is switched to.

【0062】このことにより、蓄熱運転中はドライパイ
プに高温冷媒を流さないため、ドライパイプの高温冷媒
によって冷蔵庫本体内に侵入する熱負荷量の増加を防止
することができる。
As a result, since the high temperature refrigerant does not flow through the dry pipe during the heat storage operation, it is possible to prevent an increase in the amount of heat load entering the refrigerator body due to the high temperature refrigerant in the dry pipe.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例の蓄熱式冷凍冷蔵庫の構造を
示す縦断面図
FIG. 1 is a vertical cross-sectional view showing the structure of a heat storage type refrigerator / freezer according to an embodiment of the present invention.

【図2】同実施例の蓄熱式冷凍冷蔵庫の冷凍サイクル図FIG. 2 is a refrigeration cycle diagram of the heat storage type refrigerator / freezer of the embodiment.

【図3】従来の蓄熱式冷凍冷蔵庫の構造を示す縦断面図FIG. 3 is a vertical sectional view showing the structure of a conventional heat storage type refrigerator / freezer.

【図4】従来例の蓄熱式冷凍冷蔵庫の冷凍サイクル図FIG. 4 is a refrigeration cycle diagram of a conventional heat storage type refrigerator / freezer.

【符号の説明】[Explanation of symbols]

35 冷凍室 36 冷蔵室 38 冷却器 53 蓄熱器 54 送風ファン 56 冷媒管 59 ドライパイプ 60 キャピラリチューブ 62 3方弁 35 Freezing Room 36 Refrigerating Room 38 Cooler 53 Heat Storage 54 Blower Fan 56 Refrigerant Pipe 59 Dry Pipe 60 Capillary Tube 62 3-Way Valve

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 コンプレッサとコンデンサとドライパイ
プとキャピラリチューブと冷却器を順次接続してなる冷
凍サイクルと、内部に潜熱型蓄熱材を充填し、蓄熱材と
熱交換的に配置してなる冷媒管を有する蓄熱器と、所定
の深夜時間帯に蓄熱器の冷媒管に冷却冷媒を流し蓄熱材
を凍結する蓄熱用冷却冷媒回路と、昼間の所定時間に蓄
熱器の冷熱源を送風制御し冷蔵庫を冷却する送風ファン
を備え、蓄熱器と送風ファンを吸い込み口と吐出口を有
する断熱区画室内に配置し、蓄熱器の内部に冷凍室温度
と同等以上の融解温度を有し夏場の深夜時間帯のコンプ
レッサの運転余力と同等の融解潜熱量を有する潜熱型蓄
熱材を充填し、深夜時間帯の冷凍室の温度が所定温度よ
り低いとき蓄熱材を凍結し、昼間時間帯の所定時間の
み、冷蔵室の空気を吸い込み蓄熱器の冷熱源で冷却され
た冷気を送風ファンにより吐出口より吐出し、冷却器の
吸い込み空気と、冷蔵室内の空気を冷却する構成を備え
た蓄熱式冷蔵庫。
1. A refrigeration cycle in which a compressor, a condenser, a dry pipe, a capillary tube, and a cooler are sequentially connected, and a refrigerant pipe which is filled with a latent heat storage material and arranged in heat exchange with the storage material. A heat storage device having a, a heat storage cooling refrigerant circuit for freezing the heat storage material by flowing a cooling refrigerant into the refrigerant pipe of the heat storage device in a predetermined midnight time period, and a refrigerator for controlling the blowing of the cold heat source of the heat storage device at a predetermined time in the daytime. Equipped with a blower fan for cooling, a heat storage unit and a blower fan are placed in an adiabatic compartment with a suction port and a discharge port.The heat storage unit has a melting temperature equal to or higher than the freezing room temperature and is used during the midnight hours of summer. It is filled with a latent heat storage material that has a latent heat of fusion equivalent to the remaining operating capacity of the compressor, freezes the storage material when the temperature of the freezer compartment during the midnight hours is lower than the specified temperature, and only during the daytime hours during the specified hours. Suck in the air A heat storage refrigerator equipped with a structure in which cold air cooled by a cold heat source of an intake heat storage device is discharged from a discharge port by a blower fan to cool the intake air of the cooler and the air in the refrigerating room.
【請求項2】 ドライパイプとキャピラリチューブと冷
却器の直列冷媒回路と並列に、蓄熱器用キャピラリチュ
ーブと蓄熱器の冷媒管からなる蓄熱用冷却冷媒回路を接
続し、深夜時間帯の冷凍室の温度が所定の温度より低い
ときのみドライパイプに冷媒を流さない蓄熱用冷却冷媒
回路に切り替える構成を備えた請求項1記載の蓄熱式冷
蔵庫。
2. The temperature of the freezer compartment during the midnight time is connected to the series refrigerant circuit of the dry pipe, the capillary tube and the cooler in parallel with the heat storage cooling refrigerant circuit composed of the heat storage capillary tube and the refrigerant tube of the heat storage device. The heat storage refrigerator according to claim 1, further comprising a configuration for switching to a heat storage cooling refrigerant circuit in which the refrigerant does not flow through the dry pipe only when the temperature is lower than a predetermined temperature.
JP32298692A 1992-12-02 1992-12-02 Heat accumulative type refrigerator Pending JPH06174354A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32298692A JPH06174354A (en) 1992-12-02 1992-12-02 Heat accumulative type refrigerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32298692A JPH06174354A (en) 1992-12-02 1992-12-02 Heat accumulative type refrigerator

Publications (1)

Publication Number Publication Date
JPH06174354A true JPH06174354A (en) 1994-06-24

Family

ID=18149871

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32298692A Pending JPH06174354A (en) 1992-12-02 1992-12-02 Heat accumulative type refrigerator

Country Status (1)

Country Link
JP (1) JPH06174354A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108496052A (en) * 2016-01-29 2018-09-04 松下知识产权经营株式会社 Freezer
CN117606095A (en) * 2023-02-15 2024-02-27 C-肯兹株式会社 Refrigerating machine

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108496052A (en) * 2016-01-29 2018-09-04 松下知识产权经营株式会社 Freezer
EP3410046A4 (en) * 2016-01-29 2019-01-23 Panasonic Intellectual Property Management Co., Ltd. Refrigerator
CN117606095A (en) * 2023-02-15 2024-02-27 C-肯兹株式会社 Refrigerating machine

Similar Documents

Publication Publication Date Title
JP2001082850A (en) Refrigerator
JPH11173729A (en) Refrigerator
KR100764267B1 (en) Refrigerator, and method for controlling operation of the same
JPH06174354A (en) Heat accumulative type refrigerator
JP3098909B2 (en) refrigerator
US20220235977A1 (en) Method for controlling refrigerator
JPH07174451A (en) Refrigerator with deep freezer
JP3361109B2 (en) Thermal storage refrigerator
JP3098893B2 (en) refrigerator
JPH08285440A (en) Refrigerator
JPH09287863A (en) Refrigerator
CN219390195U (en) Refrigerating apparatus
JP2005098605A (en) Refrigerator
JP3190381B2 (en) Cool storage type cool box
JP3609598B2 (en) refrigerator
JP2004144364A (en) Refrigerator
JP2003207249A (en) Refrigerator
US20220170685A1 (en) Method for controlling refrigerator
JPH05322412A (en) Heat accumulation type refrigerator
US20220146154A1 (en) Refrigerator control method
JP3098908B2 (en) refrigerator
JPH06123539A (en) Refrigerator
CN118293612A (en) Refrigerating apparatus
JP3098892B2 (en) refrigerator
JPH0452479A (en) Cold storage type cold insulation chamber