JPH06123539A - Refrigerator - Google Patents

Refrigerator

Info

Publication number
JPH06123539A
JPH06123539A JP27405892A JP27405892A JPH06123539A JP H06123539 A JPH06123539 A JP H06123539A JP 27405892 A JP27405892 A JP 27405892A JP 27405892 A JP27405892 A JP 27405892A JP H06123539 A JPH06123539 A JP H06123539A
Authority
JP
Japan
Prior art keywords
heat storage
heat
temperature
cooler
refrigerator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP27405892A
Other languages
Japanese (ja)
Other versions
JP3153649B2 (en
Inventor
Takeshi Shimizu
武 清水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Refrigeration Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Refrigeration Co filed Critical Matsushita Refrigeration Co
Priority to JP27405892A priority Critical patent/JP3153649B2/en
Publication of JPH06123539A publication Critical patent/JPH06123539A/en
Application granted granted Critical
Publication of JP3153649B2 publication Critical patent/JP3153649B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/25Control of valves
    • F25B2600/2511Evaporator distribution valves

Landscapes

  • Devices That Are Associated With Refrigeration Equipment (AREA)
  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Abstract

PURPOSE:To accumulate heat by utilizing electric power at night and achieve the leveling of power demand by shifting accumulated heat to daytime use. CONSTITUTION:A refrigerator comprises a freezing cycle in which a cooler 8 and a heat accumulator 31 having a heat storage material 32 in its interior are connected in parallel to each other, a time controlling means 46 which controls the time of heat accumulation operation for accumulating heat to the heat accumulator 31 in an arbitrary time zone and controls the time of regenerative cooling operation for cooling the interior of the refrigerator with accumulated heat, and an accumulated heat temperature detecting means 56.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、蓄熱材を用いて庫内を
保冷する蓄熱式の冷蔵庫に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a heat storage type refrigerator for keeping the inside of a refrigerator cold by using a heat storage material.

【0002】[0002]

【従来の技術】近年、深夜電力の有効利用ないし電力需
要のピ−クカットによる平準化等の観点より蓄熱材を利
用して庫内の冷却を行う蓄熱式の冷蔵庫が特開昭63−
58068号公報に示されるごとく、考えられている。
2. Description of the Related Art In recent years, a heat storage type refrigerator for cooling the inside of a refrigerator by using a heat storage material has been disclosed from the viewpoint of effective utilization of late-night power or leveling of power demand by peak cut.
As shown in Japanese Patent No. 58068, this is considered.

【0003】以下図面を参照しながら、上述した従来の
蓄熱式の冷蔵庫の一例について説明する。
An example of the above conventional heat storage type refrigerator will be described below with reference to the drawings.

【0004】図8は、従来の蓄熱式の冷蔵庫の構造を示
す縦断面図であり、図9は冷凍システム図である。図8
と図9において、1は保冷庫本体で断熱材を内蔵したキ
ャビ0ネット2と、ドア3と、ドア3とキャビネット2
をシ−ルするガスケット14とで構成されている。その
内部は、水平に配された中間仕切壁16により上部の冷
凍室17と下部の冷蔵室18との2室に仕切られてい
る。
FIG. 8 is a longitudinal sectional view showing the structure of a conventional heat storage type refrigerator, and FIG. 9 is a refrigeration system diagram. Figure 8
In FIG. 9, reference numeral 1 is a cabinet body with a heat insulation material, a cabinet 0 net 2, a door 3, a door 3 and a cabinet 2.
And a gasket 14 that seals the. The interior is divided into two chambers, an upper freezing chamber 17 and a lower refrigerating chamber 18, by a horizontally arranged intermediate partition wall 16.

【0005】4はコンプレッサでありコンデンサ5を介
して3方電磁弁6に接続される。さらに、この3方電磁
弁6の第1の流出口6aはキャピラリ7、冷却器8及び
アキュムレ−タ13を順次介して前記コンプレッサ4に
接続される。また、3方電磁弁6の第2の流出口6b
は、蓄熱器用キャピラリ9及び内部に蓄熱材15が充填
された蓄熱器10を順次介して前記アキュムレ−タ13
接続される。さらに、冷却器8と蓄熱器10との間には
閉ル−プ形サ−モサイホン12が、伝熱経路として設け
られ、この閉ル−プ形サ−モサイホン12の途中に蓄熱
器用電磁弁11が配される。なお、閉ル−プ形サ−モサ
イホン12には、たとえば重力式のものが用いられ、そ
の閉ル−プ状のパイプの中には、冷媒が封入されてい
る。
A compressor 4 is connected to a three-way solenoid valve 6 via a capacitor 5. Further, the first outlet 6a of the three-way solenoid valve 6 is connected to the compressor 4 through a capillary 7, a cooler 8 and an accumulator 13 in this order. In addition, the second outlet 6b of the three-way solenoid valve 6
Is the accumulator 13 through the regenerator capillary 9 and the regenerator 10 having the regenerator material 15 filled therein.
Connected. Further, a closed loop type thermosiphon 12 is provided as a heat transfer path between the cooler 8 and the heat storage device 10, and a heat storage solenoid valve 11 is provided in the middle of the closed loop type thermosiphon 12. Are arranged. The closed loop type thermosiphon 12 is, for example, a gravity type, and a refrigerant is enclosed in the closed loop type pipe.

【0006】19は庫内を冷却するための冷却ファンで
あり、冷却器8の前方に設けられた冷凍室上部吹出口2
0及び冷凍室下部吹出口21から冷気を送出することが
できるようにしている。前記中間仕切壁16の冷凍室側
前方には冷凍室吸込口22が設けられ、ここから冷却器
8至る冷凍室中間ダクト23が水平に形成されている。
また、冷却器8の奥には、冷蔵庫背面部に沿って冷却
ファン19から冷蔵室吹出口24に至る冷蔵室ダクト2
5が垂直に設けている。この冷蔵室吹出口24は、ダン
パ−26により開閉可能としている。前記中間仕切壁1
6の冷蔵室側前方には、冷蔵室吸込口27が設けられ、
ここから前記冷却器8に至る冷蔵室中間ダクト28が水
平に形成されている。この冷蔵室中間ダクト28の出口
には、ガラス管ヒ−タ29が配され、その上方に配され
ている冷却器8の除霜を可能としている。
Reference numeral 19 denotes a cooling fan for cooling the inside of the refrigerator, which is provided in front of the cooler 8 and has a freezer compartment upper outlet 2
0 and cold air can be sent out from the lower part 21 of the freezer compartment. A freezing compartment suction port 22 is provided in front of the intermediate partition wall 16 on the freezing compartment side, and a freezing compartment intermediate duct 23 extending from this to the cooler 8 is horizontally formed.
In the back of the cooler 8, the refrigerating compartment duct 2 extending from the cooling fan 19 to the refrigerating compartment outlet 24 along the back surface of the refrigerator.
5 is provided vertically. The refrigerating compartment outlet 24 can be opened and closed by a damper 26. The intermediate partition wall 1
6, a refrigerating compartment suction port 27 is provided in front of the refrigerating compartment side of 6,
A refrigerating compartment intermediate duct 28 extending from here to the cooler 8 is horizontally formed. A glass tube heater 29 is arranged at the outlet of the refrigerating compartment intermediate duct 28 to enable defrosting of the cooler 8 arranged above it.

【0007】以上の様に構成された冷蔵庫について図8
と図9を用いてその動作を説明する。
FIG. 8 shows the refrigerator configured as described above.
The operation will be described with reference to FIG.

【0008】通常冷却運転は、3方電磁弁6のコイルに
通電せず、第1の流出口6aが連通させ、コンプレッサ
4からコンデンサ5、3方電磁弁6及びキャピラリ7を
順次介して冷却器8に至り、この冷却器8からアキュム
レ−タ13を介して前記コンプレッサ4に至る冷媒流路
が構成し、冷却器8により庫内を冷却する。
In the normal cooling operation, the coil of the three-way solenoid valve 6 is not energized, the first outlet 6a is communicated, and the compressor 4 is sequentially passed through the condenser 5, the three-way solenoid valve 6 and the capillary 7 to cool the cooler. 8, a refrigerant flow path from the cooler 8 to the compressor 4 via the accumulator 13 is formed, and the cooler 8 cools the inside of the refrigerator.

【0009】これに対して、蓄熱運転は、3方電磁弁6
のコイルに通電することで、第2の流出口6bが連通さ
せ、コンプレッサ4からコンデンサ5、3方電磁弁6及
びキャピラリ7を順次介して蓄熱器10に至り、この蓄
熱器10からアキュムレ−タ13を介して前記コンプレ
ッサ4に至る冷媒流路が構成し蓄熱器10内の蓄熱材1
5の冷却を行う。
On the other hand, in the heat storage operation, the three-way solenoid valve 6
By energizing the coil of No. 2, the second outlet 6b is made to communicate with each other, and reaches the heat storage device 10 from the compressor 4 through the condenser 5, the three-way solenoid valve 6 and the capillary 7 in order, and from this heat storage device 10 to the accumulator. The heat storage material 1 in the heat storage device 10 is constituted by a refrigerant flow path reaching the compressor 4 via
Cool 5

【0010】また、蓄熱冷却運転は、蓄熱器用電磁弁1
1を開けることで閉ル−プ形サ−モサイホン12によ
り、蓄熱器10から冷却器8に放冷が行われ、この熱を
利用して庫内を冷却する。
In the heat storage cooling operation, the heat storage solenoid valve 1 is used.
When 1 is opened, the closed loop type thermosiphon 12 allows the heat accumulator 10 to cool the cooler 8, and the heat is used to cool the inside of the refrigerator.

【0011】そして、各運転を図示していないタイマ作
用にて制御する。電力需要の少ない夜間(23時から翌
日の7時まで)にタイマ作用にて、蓄熱運転と通常冷却
運転を交互に行うことにより庫内温度は設定温度に保ち
ながら蓄熱材15を充分冷却しておき、昼間の電力需要
がピ−クの時間帯(13時から16時まで)の3時間に
おいては、大きな電力を必要とする通常冷却運転に代え
て定時間蓄熱冷却運転を行い庫内温度を保つ。
Then, each operation is controlled by a timer action (not shown). At night when power demand is low (from 23:00 to 7:00 on the next day), the heat storage operation and the normal cooling operation are alternately performed by the timer action to sufficiently cool the heat storage material 15 while keeping the inside temperature at the set temperature. Every 3 hours during the peak daytime power demand (13:00 to 16:00), the constant temperature heat storage cooling operation is performed instead of the normal cooling operation that requires a large amount of power to control the temperature inside the warehouse. keep.

【0012】また冷却器8の除霜は、コンプレッサ4の
運転時間を積算し積算時間が任意時間になると、ガラス
管ヒ−タ29に通電し除霜を行う。除霜回数は、1日に
2回程度になるよう任意時間を設定している。
For defrosting of the cooler 8, when the operating time of the compressor 4 is integrated and the integrated time reaches an arbitrary time, the glass tube heater 29 is energized for defrosting. The defrosting frequency is set to an arbitrary time such that it is about twice a day.

【0013】[0013]

【発明が解決しようとする課題】しかしながら上記の様
な構成では、蓄熱冷却運転の対象に冷凍室が含まれるの
で、融解潜熱量が小さい融解温度が−30℃近傍の蓄熱
材を使用する必要があり、冷蔵庫の有効内容積が大きく
減少してしまう。また、融解温度が−30℃近傍の蓄熱
材を凍結させるには蒸発温度が−40℃近傍となり、コ
ンプレッサの冷凍効率が通常冷却運転時より悪くなるこ
とで消費電力量が増大してしまう。
However, in the above-mentioned structure, since the freezing compartment is included in the object of the heat storage cooling operation, it is necessary to use a heat storage material having a small melting latent heat amount and a melting temperature near -30 ° C. Therefore, the effective internal volume of the refrigerator is greatly reduced. Further, in order to freeze the heat storage material having a melting temperature of around -30 ° C, the evaporation temperature becomes around -40 ° C, and the refrigeration efficiency of the compressor becomes worse than that during normal cooling operation, resulting in an increase in power consumption.

【0014】さらに、冷却器の除霜開始時間はコンプレ
ッサの運転率できまり、使用状態がお客様のよって異な
ることから電力需要の多い昼間に除霜開始してしまい、
電力需要の偏りひいては電力の有効利用ができていない
という課題を有していた。
Further, the defrosting start time of the cooler depends on the operating rate of the compressor, and the usage state varies depending on the customer, so defrosting starts during the daytime when the power demand is high,
There was a problem that the electric power demand was unevenly distributed and the electric power could not be effectively used.

【0015】本発明は上記課題を解決するもので、蓄熱
冷却運転の対象が冷蔵温度部分のみであるので融解潜熱
量が大きい蓄熱材が使用でき冷蔵庫の有効内容積の減少
が極力抑えられ、また蓄熱材を凍結させる時の蒸発温度
は通常運転時と同等以上にすることができ消費電力量の
増大がない。さらに冷却器の除霜開始時間は、お客様の
使用状態に関係なく電力需要の少ない夜間にするので電
力需要の平準化ひいては電力の有効利用ができる冷蔵庫
を提供するものである。
The present invention solves the above problems. Since the object of the heat storage cooling operation is only the refrigeration temperature portion, a heat storage material having a large amount of latent heat of fusion can be used and the decrease in the effective internal volume of the refrigerator can be suppressed as much as possible. The evaporation temperature when freezing the heat storage material can be made equal to or higher than that during normal operation, and there is no increase in power consumption. Furthermore, the defrosting start time of the cooler is at night when the power demand is low regardless of the usage condition of the customer, so that the power demand can be leveled and the refrigerator can be effectively used.

【0016】[0016]

【課題を解決するための手段】上記課題を解決するため
に本発明の冷蔵庫は冷却器と内部に蓄熱材を有する蓄熱
器とを並列接続した冷凍サイクルと、任意の時間帯に前
記蓄熱器に熱を蓄熱する蓄熱運転と蓄熱した熱により冷
蔵庫内を冷却する蓄熱冷却運転の時間制御を行う時間制
御手段とを備え、前記蓄熱材の重量は、低室温時におい
て昼間の電力需要が多い所定の時間帯における冷凍室以
外の室の合計した負荷熱量と同等の熱量を全て蓄熱でき
る重量とし、前記蓄熱冷却運転の対象負荷熱量は冷凍室
以外の室全てとする。
In order to solve the above-mentioned problems, the refrigerator of the present invention has a refrigerating cycle in which a cooler and a heat storage device having a heat storage material are connected in parallel, and the refrigerator is provided with the heat storage device at any time zone. A heat storage operation for storing heat and a time control means for performing time control of a heat storage cooling operation for cooling the inside of the refrigerator by the stored heat are provided, and the weight of the heat storage material has a predetermined power demand during the daytime at low room temperature. The amount of heat equivalent to the total load heat amount of the rooms other than the freezing room in the time zone is set as a weight capable of storing heat, and the target load heat amount of the heat storage cooling operation is all the rooms other than the freezing room.

【0017】さらに、蓄熱材の温度を検知する蓄熱温度
検知手段と冷却器を除霜するヒ−タとを備え、時間制御
手段により夜間の電力需要が低い所定の時間帯の始めに
冷却器の除霜を行い、除霜終了後から前記蓄熱温度検知
手段により蓄熱材の蓄熱が終了したことを検知するまで
コンプレッサを連続運転とし通常冷却運転以外の時間を
全て蓄熱運転により蓄熱するもので、蓄熱冷却運転時間
帯が少なくとも昼間の電力需要がピ−クの時間帯を含む
よう前記蓄熱冷却運転を開始し、前記蓄熱温度検知手段
により前記蓄熱器の冷却能力がなくなったことを検知す
ることで前記蓄熱冷却運転を終了する。
Further, a heat storage temperature detecting means for detecting the temperature of the heat storage material and a heater for defrosting the cooler are provided, and the time control means allows the cooler to be operated at the beginning of a predetermined time zone when the power demand at night is low. Defrosting is performed, and after the defrosting is completed, the compressor is continuously operated until the heat storage temperature detecting means detects that the heat storage of the heat storage material is finished, and heat is stored by the heat storage operation during all the time other than the normal cooling operation. By starting the heat storage cooling operation such that the cooling operation time zone includes at least the daytime power demand peak time zone, the heat storage temperature detection means detects that the heat storage capacity of the heat storage device is exhausted. The heat storage cooling operation ends.

【0018】さらに、蓄熱材の温度を検知する蓄熱温度
検知手段と冷却器を除霜するヒ−タとを備え、時間制御
手段により夜間の電力需要が低い所定の時間帯から前記
蓄熱温度検知手段により蓄熱材の蓄熱が終了したことを
検知するまでコンプレッサを連続運転とし通常冷却運転
以外の時間を全て蓄熱運転により蓄熱し、蓄熱運転が終
了後に冷却器の除霜を行うもので、蓄熱冷却運転時間帯
が少なくとも昼間の電力需要がピ−クの時間帯を含むよ
う前記蓄熱冷却運転を開始し、前記蓄熱温度検知手段に
より前記蓄熱器の冷却能力がなくなったことを検知する
ことで前記蓄熱冷却運転を終了するものである。
Further, the heat storage temperature detecting means for detecting the temperature of the heat storage material and a heater for defrosting the cooler are provided, and the heat storage temperature detecting means is operated by the time control means from a predetermined time zone when the power demand at night is low. The compressor is operated continuously until the end of the heat storage of the heat storage material is detected by the heat storage operation, the heat is stored for the entire time except the normal cooling operation, and the cooler is defrosted after the heat storage operation is completed. The heat storage cooling operation is started so that the power demand in the daytime includes at least the peak power demand time, and the heat storage cooling is performed by detecting that the cooling capacity of the heat storage device is lost by the heat storage temperature detection means. It ends the operation.

【0019】[0019]

【作用】本発明は上記した構成によって、融解潜熱量が
大きい蓄熱材が使用でき冷蔵庫の有効内容積の減少が極
力抑えられ、また消費電力量の増大がない。
According to the present invention, with the above-described structure, a heat storage material having a large latent heat of fusion can be used, the reduction of the effective internal volume of the refrigerator can be suppressed as much as possible, and the power consumption does not increase.

【0020】さらに冷却器の除霜開始時間は、お客様の
使用状態に関係なく電力需要の少ない夜間の始めに行う
ので電力需要の平準化ひいては電力の有効利用ができ
る。
Further, the defrosting start time of the cooler is performed at the beginning of the night when the power demand is low irrespective of the usage condition of the customer, so that the power demand can be leveled and the power can be effectively used.

【0021】さらに冷却器の除霜開始時間は、お客様の
使用状態に関係なく電力需要の少ない夜間の蓄熱運転後
に行うので、電力需要の平準化ひいては電力の有効利用
ができ、また夜間中確実に蓄熱材を凍結させることがで
きる。
Further, the defrosting start time of the cooler is performed after the heat storage operation at night when the power demand is low regardless of the customer's usage condition, so that the power demand can be leveled and the power can be effectively used, and the power can be reliably ensured during the night. The heat storage material can be frozen.

【0022】[0022]

【実施例】以下本発明の一実施例の冷蔵庫について図面
を参照しながら説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS A refrigerator according to an embodiment of the present invention will be described below with reference to the drawings.

【0023】図1は本発明の一実施例における冷蔵庫の
機能ブロック図であり、図2は本発明の一実施例におけ
る冷凍システム図であり、図3は本発明の一実施例にお
ける要部の電気回路図であり、図4は本発明の一実施例
におけるフロ−チャ−トであり、図5は本発明の一実施
例における室温に応じた一日の運転状態図である。
FIG. 1 is a functional block diagram of a refrigerator in one embodiment of the present invention, FIG. 2 is a refrigeration system diagram in one embodiment of the present invention, and FIG. 3 is a main part of one embodiment of the present invention. FIG. 4 is an electric circuit diagram, FIG. 4 is a flow chart in one embodiment of the present invention, and FIG. 5 is a daily operation state diagram according to room temperature in one embodiment of the present invention.

【0024】図1及び図3において、30は保冷庫本体
で断熱材を内蔵したキャビネット2と、ドア3と、ドア
3とキャビネット2をシ−ルするガスケット14とで構
成されている。その内部は、水平に配された断熱区画壁
33により上部の冷凍室17と下部の冷蔵室18との2
室に仕切られている。
In FIGS. 1 and 3, reference numeral 30 is a cool box body, which is composed of a cabinet 2 in which a heat insulating material is built in, a door 3, and a gasket 14 which seals the door 3 and the cabinet 2. The inside is divided into a freezer compartment 17 at the upper part and a refrigerating compartment 18 at the lower part by a horizontally arranged heat insulating partition wall 33.
The room is partitioned.

【0025】62は冷凍室17内に設けた冷却室で、冷
却室62内には冷却器8と冷却ファン19と冷却器の除
霜を行うヒ−タ58を内装している。
Reference numeral 62 denotes a cooling chamber provided in the freezing chamber 17, and in the cooling chamber 62, a cooler 8, a cooling fan 19 and a heater 58 for defrosting the cooler are installed.

【0026】断熱区画壁33内には、区画壁38をかえ
して冷蔵室吸込口35と冷却室62を連通する送風通路
A37と、冷蔵室吸込口35と冷却室62を連通する送
風通路B39を形成している。31は送風通路B39内
に内装した内部に蓄熱材32を充填している蓄熱器であ
り、56は蓄熱器31に取付られた蓄熱材温度センサ5
7により蓄熱材32温度を検知する蓄熱温度検知手段で
あり、36は冷凍室吸込口である。
Inside the adiabatic partition wall 33, there is provided a ventilation passage A37 for connecting the refrigerating compartment suction port 35 and the cooling chamber 62 by replacing the partition wall 38 and a ventilation passage B39 for communicating the refrigerating compartment suction port 35 and the cooling chamber 62. Is forming. Reference numeral 31 is a regenerator that is filled in the air passage B39 with the regenerator 32, and 56 is a regenerator temperature sensor 5 attached to the regenerator 31.
7 is a heat storage temperature detecting means for detecting the temperature of the heat storage material 32, and 36 is a freezer inlet.

【0027】34は風路切替ダンパで、区画壁38に設
けている。風路切替ダンパ34は風路切り替え手段61
により送風通路B39を閉路する34aと、送風通路A
37を閉路する34bの2段階に切り替えるものであ
る。
Reference numeral 34 is an air passage switching damper, which is provided on the partition wall 38. The air passage switching damper 34 is the air passage switching means 61.
34a for closing the air passage B39 by the air passage A
It is to switch to two stages of 34b for closing 37.

【0028】26はダンパ−で、冷却ファン19により
冷蔵室ダクト25に送風された冷気の冷蔵室18への吐
出送風量を調整し、冷蔵室18を設定温度に制御するも
のである。
Reference numeral 26 is a damper for adjusting the discharge air flow rate of the cool air blown to the refrigerating compartment duct 25 by the cooling fan 19 to the refrigerating compartment 18 to control the refrigerating compartment 18 to a preset temperature.

【0029】電気回路図のうち本発明の要旨に関係した
部分のみ示されており、46は時間制御手段としてのC
PUで、周知の如く図示しない記憶回路に記憶されたプ
ログラムにより動作するもので、現在の時刻を出力する
時計回路45と室温検知手段40及び庫内温度検出回路
44からの出力信号によってリレ−47、49、51、
53、59の通電制御を行う。即ち、各リレ−47、4
9、51、53に接続された各トランジスタ48、5
0、52、54、60のベ−スにハイレベルの信号を与
えることにより各リレ−47、49、51、53、59
に通電される。
Of the electric circuit diagram, only the portion related to the gist of the present invention is shown, and 46 is C as a time control means.
As is well known, the PU is operated by a program stored in a storage circuit (not shown), and is released by the clock circuit 45 that outputs the current time, the room temperature detection means 40, and the output signal from the internal temperature detection circuit 44. , 49, 51,
Energization control of 53 and 59 is performed. That is, each relay 47, 4
Transistors 48, 5 connected to 9, 51, 53
By applying a high level signal to the bases of 0, 52, 54 and 60, the respective relays 47, 49, 51, 53 and 59 are provided.
Is energized.

【0030】リレ−47が通電されるとコンプレッサ4
が運転する。リレ−49が通電されると3方電磁弁6が
作動して第2の流出口6bが連通し、リレ−49が通電
されていない時は第1の流出口6aが連通する。リレ−
51が通電されると冷却ファン19が運転する。リレ−
53が通電されると風路切り替え手段34により送風通
路A37を閉路(34b)し、リレ−53が通電されて
いない時は、送風通路B39を閉路(34a)する。リ
レ−59が通電されるとヒ−タ58により冷却器8を除
霜する。
When the relay 47 is energized, the compressor 4
Will drive. When the relay 49 is energized, the three-way solenoid valve 6 operates and the second outlet 6b communicates, and when the relay 49 is not energized, the first outlet 6a communicates. Relay
When 51 is energized, the cooling fan 19 operates. Relay
When 53 is energized, the air passage switching means 34 closes the air passage A37 (34b), and when the relay 53 is not energized, it closes the air passage B39 (34a). When the relay 59 is energized, the heater 58 defrosts the cooler 8.

【0031】また、庫内温度検出回路44は温度センサ
43により検出した値が設定温度以上の時に時間制御手
段46に信号を出力する。また、室温検知手段40は、
冷蔵庫の周囲室温を室温度センサ41からの信号をA/
D変換器42により出力電圧をデジタル化して時間制御
手段46に信号を出力する。また、蓄熱温度検知手段5
6は蓄熱材温度センサ57により検出した値が設定温度
以上の時に時間制御手段46に信号を出力する。
Further, the internal temperature detection circuit 44 outputs a signal to the time control means 46 when the value detected by the temperature sensor 43 is equal to or higher than the set temperature. Further, the room temperature detecting means 40 is
Around the room temperature of the refrigerator, the signal from the room temperature sensor 41 is A /
The D converter 42 digitizes the output voltage and outputs a signal to the time control means 46. Further, the heat storage temperature detecting means 5
6 outputs a signal to the time control means 46 when the value detected by the heat storage material temperature sensor 57 is equal to or higher than the set temperature.

【0032】図2において、4はコンプレッサでありコ
ンデンサ5を介して3方電磁弁6に接続される。さら
に、この3方電磁弁6の第1の流出口6aはキャピラリ
7、冷却器8及びアキュムレ−タ13を順次介して前記
コンプレッサ4に接続される。また、3方電磁弁6の第
2の流出口6bは、蓄熱器用キャピラリ9及び内部に蓄
熱材15が充填された蓄熱器31を順次介して前記アキ
ュムレ−タ13接続される。
In FIG. 2, reference numeral 4 denotes a compressor, which is connected to a three-way solenoid valve 6 via a condenser 5. Further, the first outlet 6a of the three-way solenoid valve 6 is connected to the compressor 4 through a capillary 7, a cooler 8 and an accumulator 13 in this order. Further, the second outlet 6b of the three-way solenoid valve 6 is connected to the accumulator 13 through the regenerator capillary 9 and the regenerator 31 filled with the regenerator material 15 in order.

【0033】以上の様に構成された冷蔵庫について図1
と図2と図3と図4及び図5を用いてその動作を説明す
る。
The refrigerator constructed as described above is shown in FIG.
The operation will be described with reference to FIGS. 2, 3, 4, and 5.

【0034】通常冷却運転は、冷却器8を用いて庫内を
冷却し設定温度に保冷するものである。即ち、CPU4
6によりリレ−51及び53をOFFとすることで冷媒
流路は、冷却器8を連通する側(ステップS1)、冷気
風路は風路切り替え手段34が34a側(ステップS
2)となり送風通路Aが連通の状態を保持し、庫内温度
が設定値以上の時は庫内温度検出回路44からの信号に
よりCPU46は、リレ−47及び49をONとしコン
プレッサ4及び冷却ファン19を運転する(ステップS
3)ことで冷却器8により庫内を設定温度以下に冷却す
る。そして、庫内温度が設定値以下になると庫内温度検
出回路44の信号がOFFとなりCPU46は、リレ−
47及び49をOFFとし、冷媒と冷気の循環を停止す
る(ステップS4)。以上の動作を繰り返すことにより
庫内を設定温度に保冷する。
In the normal cooling operation, the inside of the refrigerator is cooled by using the cooler 8 and kept at the set temperature. That is, CPU4
By turning off the relays 51 and 53 by 6, the refrigerant flow path is the side communicating with the cooler 8 (step S1), and the cold air flow path is the air path switching means 34a side 34a (step S1).
2) and the ventilation passage A is maintained in the communicating state, and when the temperature inside the refrigerator is equal to or higher than the set value, the CPU 46 turns on the relays 47 and 49 by the signal from the temperature detecting circuit 44 inside the refrigerator, and the compressor 4 and the cooling fan. Drive 19 (Step S
As a result of 3), the inside of the refrigerator is cooled by the cooler 8 to the set temperature or lower. Then, when the temperature inside the refrigerator becomes equal to or lower than the set value, the signal from the temperature detecting circuit 44 inside the refrigerator turns off, and the CPU 46 releases the relay.
47 and 49 are turned off, and the circulation of the refrigerant and the cool air is stopped (step S4). By repeating the above operation, the inside of the refrigerator is kept cool at the set temperature.

【0035】蓄熱運転は、夜間の電力需要が低い所定の
時間帯(23時から翌日の7時まで)において(ステッ
プS5)、蓄熱器31内に充填されている蓄熱材32に
夜間の所定の時間帯の電力を熱に代えて蓄熱するもので
ある。即ち、庫内温度が設定値以上の時は庫内温度検出
回路44からの信号によりCPU46は、リレ−47及
び49をONとしコンプレッサ4及び冷却ファン19を
運転する通常運転を行い(ステップS6)、庫内温度が
設定値以下の時は庫内温度検出回路44からの信号から
CPU46によりリレ−51及び47をONとすること
で冷媒流路を、蓄熱器31が連通する側に保持し、コン
プレッサ4を運転することで冷媒を蓄熱器31内で蒸発
させ、蓄熱材32を凍結させる(ステップS7)。
The heat storage operation is performed in a predetermined time zone (from 23:00 to 7:00 of the next day) during which the power demand at night is low (step S5), in which the heat storage material 32 filled in the heat storage unit 31 is operated at a predetermined night time. The electric power in the time zone is replaced with heat to store heat. That is, when the temperature inside the refrigerator is equal to or higher than the set value, the CPU 46 performs a normal operation in which the relays 47 and 49 are turned on and the compressor 4 and the cooling fan 19 are driven by a signal from the temperature detecting circuit 44 (step S6). When the temperature inside the refrigerator is equal to or lower than the set value, the relays 51 and 47 are turned on by the CPU 46 from the signal from the temperature detection circuit 44 inside to keep the refrigerant passage on the side where the heat storage device 31 communicates, By operating the compressor 4, the refrigerant is evaporated in the heat storage device 31 and the heat storage material 32 is frozen (step S7).

【0036】また、蓄熱材32の重量としては、春季、
秋季等の低室温時(15℃)における冷蔵温度帯の室を
基準とした重量としておく。即ち、低室温時において昼
間の電力需要が多い所定の時間帯(7時から23時ま
で)の冷蔵室の合計した負荷熱量と同等の熱量を全て蓄
熱できる重量とすることである。
The weight of the heat storage material 32 is as follows:
The weight is based on the room in the refrigerating temperature zone at low room temperature (15 ° C) such as autumn. That is, the weight is such that all heat amounts equivalent to the total load heat amount of the refrigerating room in a predetermined time zone (from 7 o'clock to 23 o'clock) in which daytime power demand is high at low room temperature can be stored.

【0037】蓄熱冷却運転は、昼間の電力需要がピ−ク
の時間帯に蓄熱器31が蓄熱した熱を利用して冷凍室以
外の室の戻り空気冷却するものである。即ち、冷凍室内
温度が設定値以上の時は庫内温度検出回路44からの信
号によりCPU46は、リレ−47、49をONとしコ
ンプレッサ4、冷却ファン19を運転することで冷凍室
を設定温度以下に冷却する。また、冷蔵室18の温度調
節はダンパ−26により冷蔵室18への吐出送風量を調
整することで設定温度に制御し、戻り空気はCPU46
によりリレ−53をONとすることで、冷気風路は風路
切り替え手段34が34b側となり送風通路B39が連
通の状態を保持し冷却する(ステップS8)。これによ
り冷却器8で冷却する熱量は、冷凍室の負荷熱量だけと
なる。
The heat storage cooling operation is to cool the return air of a room other than the freezing room by using the heat stored in the heat storage unit 31 during the peak daytime power demand. That is, when the temperature in the freezer compartment is equal to or higher than the set value, the CPU 46 responds to a signal from the in-compartment temperature detection circuit 44 to turn on the relays 47 and 49 to operate the compressor 4 and the cooling fan 19 so that the freezer compartment is kept below the set temperature. Cool to. Further, the temperature of the refrigerating compartment 18 is controlled to a set temperature by adjusting the amount of air blown into the refrigerating compartment 18 by the damper 26, and the return air is controlled by the CPU 46.
By turning on the relay 53, the cool air passage is cooled by keeping the air passage switching means 34 on the 34b side and keeping the air passage B39 in communication (step S8). As a result, the amount of heat cooled by the cooler 8 is only the amount of heat applied to the freezer.

【0038】そして、庫内温度が設定値以下になると庫
内温度検出回路44の信号がOFFとなりCPU46
は、リレ−47、49をOFFとし、コンプレッサ及び
冷気の循環を停止する。以上の動作を繰り返すことによ
り各庫内を設定温度に保冷する。
When the temperature inside the refrigerator falls below the set value, the signal of the temperature detecting circuit 44 inside the refrigerator turns off and the CPU 46
Turns off the relays 47 and 49 to stop the circulation of the compressor and the cool air. By repeating the above operation, the inside of each refrigerator is kept cold at the set temperature.

【0039】次に、各運転の制御方法を図4及び図5を
用いて説明する。時間制御手段46により夜間電力需要
が低い所定の時間帯(23時から翌日の7時まで)の始
めである23時から冷却器8の除霜を必ず行う(ステッ
プS9)。昼間の蓄熱冷却運転時の冷蔵室18の水分は
蓄熱器31で着霜するので冷却器8の着霜量が低減でき
1日1回の除霜が可能となる。そして除霜終了後、通常
冷却運転と蓄熱運転の交互運転をする。即ち、庫内温度
が設定値以上の時は通常冷却運転で庫内を冷却し、庫内
温度が設定値以下の時は蓄熱運転により電力を熱に代え
て蓄熱する制御を行う。
Next, the control method for each operation will be described with reference to FIGS. 4 and 5. The time control means 46 always defrosts the cooler 8 from 23:00, which is the beginning of a predetermined time period (23:00 to 7:00 of the next day) when the nighttime power demand is low (step S9). Moisture in the refrigerating chamber 18 during the daytime heat storage cooling operation is frosted by the heat storage unit 31, so that the frosting amount of the cooler 8 can be reduced and defrosting can be performed once a day. After the defrosting is completed, the normal cooling operation and the heat storage operation are alternately performed. That is, when the temperature in the refrigerator is equal to or higher than the set value, the inside of the refrigerator is cooled by the normal cooling operation, and when the temperature in the refrigerator is equal to or lower than the set value, heat is stored in the heat storage operation instead of heat.

【0040】しかし、その時の蓄熱運転の時間は室温に
より変化する。それは、キャビネット2から侵入する熱
量やシステムの冷凍能力が室温によって変化するためで
あり、低室温の方が蓄熱運転時間が短くなる。そのこと
から、蓄熱温度検知手段56により蓄熱材32の凍結終
了を検知し蓄熱運転を終了する(ステップS10)。
However, the heat storage operation time at that time varies depending on the room temperature. This is because the amount of heat entering from the cabinet 2 and the refrigerating capacity of the system change depending on the room temperature, and the heat storage operation time becomes shorter at the low room temperature. Therefore, the heat storage temperature detecting means 56 detects the end of freezing of the heat storage material 32 and ends the heat storage operation (step S10).

【0041】また、昼間の負荷量に対しては、室温検知
手段40により検知した前日の昼間の平均室温より時間
制御手段46が推測する。
For the daytime load, the time control means 46 estimates from the daytime average room temperature detected by the room temperature detection means 40.

【0042】この推測値より、時間制御手段46が少な
くとも昼間の電力需要がピ−クの時間帯(13時から1
6時)を含むように蓄熱冷却運転を開始する(ステップ
S11)。そして、蓄熱温度検知手段56が蓄熱材32
が設定温度以上になり蓄熱器31の冷却能力がなくなっ
たことの信号を時間制御手段46に送出することで蓄熱
冷却運転が終了する。
From this estimated value, the time control means 46 determines that at least the daytime power demand is in a peak time zone (13:00 to 1
The heat storage cooling operation is started so as to include 6:00 (step S11). Then, the heat storage temperature detecting means 56 causes the heat storage material 32 to
Is higher than the set temperature and the signal indicating that the cooling capacity of the heat storage device 31 is lost is sent to the time control means 46, whereby the heat storage cooling operation is completed.

【0043】例えば図5に示す如く、蓄熱冷却運転の時
間は室温30℃の場合は8時間であり、室温15℃の場
合は16時間となる。
For example, as shown in FIG. 5, the heat storage cooling operation time is 8 hours when the room temperature is 30 ° C. and 16 hours when the room temperature is 15 ° C.

【0044】次に、その他の実施例の冷蔵庫について図
面を参照しながら説明する。図6は本発明のその他の実
施例におけるフロ−チャ−トであり、図7は本発明のそ
の他の実施例における室温に応じた一日の運転状態図で
ある。
Next, a refrigerator according to another embodiment will be described with reference to the drawings. FIG. 6 is a flow chart in another embodiment of the present invention, and FIG. 7 is a diagram showing a daily operation state according to room temperature in another embodiment of the present invention.

【0045】時間制御手段46により夜間電力需要が低
い所定の時間帯(23時から翌日の7時まで)は、通常
冷却運転と蓄熱運転の交互運転をする。即ち、庫内温度
が設定値以上の時は通常冷却運転で庫内を冷却し(ステ
ップS12)、庫内温度が設定値以下の時は蓄熱運転に
より電力を熱に代えて蓄熱する(ステップS13)制御
を行う。
By the time control means 46, the normal cooling operation and the heat storage operation are alternately performed during a predetermined time period (from 23:00 to 7:00 of the next day) when the nighttime power demand is low. That is, when the temperature inside the refrigerator is equal to or higher than the set value, the inside of the refrigerator is cooled by the normal cooling operation (step S12), and when the temperature inside the refrigerator is equal to or lower than the set value, heat is stored instead of heat by the heat storage operation (step S13). ) Perform control.

【0046】そして蓄熱温度検知手段56により蓄熱材
32の凍結終了を検知した蓄熱運転終了後に冷却器8の
除霜を必ず行う(ステップS14)。
After the end of the heat storage operation when the end of freezing of the heat storage material 32 is detected by the heat storage temperature detecting means 56, the cooler 8 is always defrosted (step S14).

【0047】以上のように本実施例によれば、冷却器と
内部に蓄熱材を有する蓄熱器とを並列接続した冷凍サイ
クルと、任意の時間帯に前記蓄熱器に熱を蓄熱する蓄熱
運転と蓄熱した熱により冷蔵庫内を冷却する蓄熱冷却運
転の時間制御を行う時間制御手段とを備え、前記蓄熱材
の重量は、低室温時において昼間の電力需要が多い所定
の時間帯における冷凍室以外の室の合計した負荷熱量と
同等の熱量を全て蓄熱できる重量とし、前記蓄熱冷却運
転の対象負荷熱量は冷凍室以外の室全てとするので、融
解潜熱量が大きい蓄熱材が使用でき冷蔵庫の有効内容積
の減少が極力抑えられ、また消費電力量の増大がない。
As described above, according to this embodiment, the refrigerating cycle in which the cooler and the heat accumulator having the heat accumulating material inside are connected in parallel, and the heat storage operation for storing heat in the heat accumulator at an arbitrary time zone, A time control means for performing time control of the heat storage cooling operation for cooling the inside of the refrigerator by the stored heat, and the weight of the heat storage material is other than the freezing room in a predetermined time zone in which daytime power demand is high at low room temperature. The amount of heat equivalent to the total load heat amount of the chamber is set to a weight capable of storing heat, and the target load heat amount of the heat storage cooling operation is set to all the chambers other than the freezing chamber, so a heat storage material with a large latent heat of fusion can be used and the effective contents of the refrigerator Product reduction is suppressed as much as possible, and power consumption does not increase.

【0048】さらに、蓄熱材の温度を検知する蓄熱温度
検知手段と冷却器を除霜するヒ−タとを備え、時間制御
手段により夜間の電力需要が低い所定の時間帯の始めに
冷却器の除霜を行い、除霜終了後から前記蓄熱温度検知
手段により蓄熱材の蓄熱が終了したことを検知するまで
コンプレッサを連続運転とし通常冷却運転以外の時間を
全て蓄熱運転により蓄熱するもので、蓄熱冷却運転時間
帯が少なくとも昼間の電力需要がピ−クの時間帯を含む
よう前記蓄熱冷却運転を開始し、前記蓄熱温度検知手段
により前記蓄熱器の冷却能力がなくなったことを検知す
ることで前記蓄熱冷却運転を終了するので、冷却器の除
霜開始時間は、お客様の使用状態に関係なく電力需要の
少ない夜間の始めに行うので電力需要の平準化ひいては
電力の有効利用ができ、また夜間中に確実に冷却器の除
霜ができ冷凍能力の確保ができる。
Further, a heat storage temperature detecting means for detecting the temperature of the heat storage material and a heater for defrosting the cooler are provided, and the time control means allows the cooler to be operated at the beginning of a predetermined time zone when the power demand at night is low. Defrosting is performed, and after the defrosting is completed, the compressor is continuously operated until the heat storage temperature detecting means detects that the heat storage of the heat storage material is finished, and heat is stored by the heat storage operation for all the time other than the normal cooling operation. By starting the heat storage cooling operation such that the cooling operation time zone includes at least the daytime power demand peak time zone, the heat storage temperature detection means detects that the heat storage capacity of the heat storage device is exhausted. Since the heat storage cooling operation is terminated, the defrosting start time of the cooler is performed at the beginning of the night when the power demand is low regardless of the customer's usage condition, so the power demand is leveled and the power is effectively used. It can, also can ensure the refrigerating capacity can be defrosted reliably cooler at night.

【0049】さらに、時間制御手段により夜間の電力需
要が低い所定の時間帯から前記蓄熱温度検知手段により
蓄熱材の蓄熱が終了したことを検知するまでコンプレッ
サを連続運転とし通常冷却運転以外の時間を全て蓄熱運
転により蓄熱し、蓄熱運転が終了後に冷却器の除霜を行
うので、冷却器の除霜開始時間は、お客様の使用状態に
関係なく電力需要の少ない夜間の蓄熱運転後に行うの
で、電力需要の平準化ひいては電力の有効利用ができ、
また夜間中確実に蓄熱材を凍結させることができる。
Further, the compressor is continuously operated until the heat storage temperature detecting means detects that the heat storage of the heat storage material is completed from a predetermined time zone when the power demand at night is low by the time control means, and the time other than the normal cooling operation is set. All the heat is stored by the heat storage operation, and the defrosting of the cooler is performed after the heat storage operation is completed.Therefore, the defrosting start time of the cooler is performed after the heat storage operation at night when the power demand is low regardless of the customer's usage condition. Demand leveling and effective use of electricity can be achieved,
In addition, the heat storage material can be reliably frozen during the night.

【0050】[0050]

【発明の効果】以上のように本発明は、冷却器と内部に
蓄熱材を有する蓄熱器とを並列接続した冷凍サイクル
と、任意の時間帯に前記蓄熱器に熱を蓄熱する蓄熱運転
と蓄熱した熱により冷蔵庫内を冷却する蓄熱冷却運転の
時間制御を行う時間制御手段とを備え、前記蓄熱材の重
量は、低室温時において昼間の電力需要が多い所定の時
間帯における冷凍室以外の室の合計した負荷熱量と同等
の熱量を全て蓄熱できる重量とし、前記蓄熱冷却運転の
対象負荷熱量は冷凍室以外の室全てとする。
As described above, the present invention has a refrigeration cycle in which a cooler and a heat storage device having a heat storage material are connected in parallel, a heat storage operation for storing heat in the heat storage device at any time and a heat storage operation. And a time control means for performing time control of the heat storage cooling operation for cooling the inside of the refrigerator by the heat, the weight of the heat storage material is a room other than the freezer room in a predetermined time zone in which daytime power demand is high at low room temperature. The amount of heat equivalent to the total load heat amount of is set to a weight capable of storing heat, and the target load heat amount of the heat storage cooling operation is set to all the rooms other than the freezing room.

【0051】さらに、蓄熱材の温度を検知する蓄熱温度
検知手段と冷却器を除霜するヒ−タとを備え、時間制御
手段により夜間の電力需要が低い所定の時間帯の始めに
冷却器の除霜を行い、除霜終了後から前記蓄熱温度検知
手段により蓄熱材の蓄熱が終了したことを検知するまで
コンプレッサを連続運転とし通常冷却運転以外の時間を
全て蓄熱運転により蓄熱するもので、蓄熱冷却運転時間
帯が少なくとも昼間の電力需要がピ−クの時間帯を含む
よう前記蓄熱冷却運転を開始し、前記蓄熱温度検知手段
により前記蓄熱器の冷却能力がなくなったことを検知す
ることで前記蓄熱冷却運転を終了する。
Further, the heat storage temperature detecting means for detecting the temperature of the heat storage material and a heater for defrosting the cooler are provided, and the time control means allows the cooler to be operated at the beginning of a predetermined time zone where the power demand at night is low. Defrosting is performed, and after the defrosting is completed, the compressor is continuously operated until the heat storage temperature detecting means detects that the heat storage of the heat storage material is finished, and heat is stored by the heat storage operation for all the time other than the normal cooling operation. By starting the heat storage cooling operation such that the cooling operation time zone includes at least the daytime power demand peak time zone, the heat storage temperature detection means detects that the heat storage capacity of the heat storage device is exhausted. The heat storage cooling operation ends.

【0052】さらに、蓄熱材の温度を検知する蓄熱温度
検知手段と冷却器を除霜するヒ−タとを備え、時間制御
手段により夜間の電力需要が低い所定の時間帯から前記
蓄熱温度検知手段により蓄熱材の蓄熱が終了したことを
検知するまでコンプレッサを連続運転とし通常冷却運転
以外の時間を全て蓄熱運転により蓄熱し、蓄熱運転が終
了後に冷却器の除霜を行うもので、蓄熱冷却運転時間帯
が少なくとも昼間の電力需要がピ−クの時間帯を含むよ
う前記蓄熱冷却運転を開始し、前記蓄熱温度検知手段に
より前記蓄熱器の冷却能力がなくなったことを検知する
ことで前記蓄熱冷却運転を終了するので、融解潜熱量が
大きい蓄熱材が使用でき冷蔵庫の有効内容積の減少が極
力抑えられ、また消費電力量の増大がない。
Further, the heat storage temperature detecting means for detecting the temperature of the heat storage material and a heater for defrosting the cooler are provided, and the heat storage temperature detecting means is operated by the time control means from a predetermined time zone when the power demand at night is low. The compressor is operated continuously until the end of the heat storage of the heat storage material is detected by the heat storage operation, the heat is stored for the entire time except the normal cooling operation, and the cooler is defrosted after the heat storage operation is completed. The heat storage cooling operation is started so that the power demand in the daytime includes at least the peak power demand time, and the heat storage cooling is performed by detecting that the cooling capacity of the heat storage device is lost by the heat storage temperature detection means. Since the operation is terminated, the heat storage material having a large latent heat of fusion can be used, the decrease in the effective internal volume of the refrigerator can be suppressed as much as possible, and the power consumption does not increase.

【0053】さらに冷却器の除霜開始時間は、お客様の
使用状態に関係なく電力需要の少ない夜間の始めに行う
ので電力需要の平準化ひいては電力の有効利用ができ
る。
Further, since the defrosting start time of the cooler is performed at the beginning of the night when the power demand is low regardless of the usage condition of the customer, the power demand can be leveled and the power can be effectively used.

【0054】さらに冷却器の除霜開始時間は、お客様の
使用状態に関係なく電力需要の少ない夜間の蓄熱運転後
に行うので、電力需要の平準化ひいては電力の有効利用
ができ、また夜間中確実に蓄熱材を凍結させることがで
きる冷蔵庫となる。
Further, since the defrosting start time of the cooler is performed after the heat storage operation at night when the power demand is low regardless of the customer's usage condition, the power demand can be leveled, and the power can be effectively used, and the power can be reliably ensured during the night. It becomes a refrigerator that can freeze the heat storage material.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例における冷蔵庫の構造を示す
縦断面図
FIG. 1 is a vertical sectional view showing a structure of a refrigerator according to an embodiment of the present invention.

【図2】図1の冷蔵庫の冷凍システム図FIG. 2 is a refrigeration system diagram of the refrigerator shown in FIG.

【図3】図1の冷蔵庫の要部の電気回路図FIG. 3 is an electric circuit diagram of a main part of the refrigerator shown in FIG.

【図4】一実施例のフローチャートFIG. 4 is a flowchart of an embodiment.

【図5】図1の室温に応じた一日の運転状態図[Fig. 5] Fig. 5 is a diagram showing the operating state of one day according to the room temperature in Fig. 1.

【図6】他の実施例のフローチャートFIG. 6 is a flowchart of another embodiment.

【図7】他の実施例における室温に応じた一日の運転状
態図
FIG. 7 is a daily operation state diagram according to room temperature in another example.

【図8】従来の冷蔵庫の構造を示す縦断面図FIG. 8 is a vertical sectional view showing the structure of a conventional refrigerator.

【図9】図8の冷蔵庫の冷凍システム図FIG. 9 is a refrigeration system diagram of the refrigerator shown in FIG.

【符号の説明】[Explanation of symbols]

8 冷却器 31 蓄熱器 32 蓄熱材 46 時間制御手段 56 蓄熱温度検知手段 58 ヒ−タ 8 Cooler 31 Heat storage device 32 Heat storage material 46 Time control means 56 Heat storage temperature detection means 58 Heater

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 冷却器と内部に蓄熱材を有する蓄熱器と
を並列接続した冷凍サイクルと、任意の時間帯に前記蓄
熱器に熱を蓄熱する蓄熱運転と蓄熱した熱により冷蔵庫
内を冷却する蓄熱冷却運転の時間制御を行う時間制御手
段とを備え、前記蓄熱材の融解温度は、冷凍室温度より
も高い温度とし、前記蓄熱材の重量は、低室温時におい
て昼間の電力需要が多い所定の時間帯における冷凍室以
外の室の合計した負荷熱量と同等の熱量を全て蓄熱でき
る重量とし、前記蓄熱冷却運転の対象負荷熱量は冷凍室
以外の室全てとすることを特徴とする冷蔵庫。
1. A refrigeration cycle in which a cooler and a heat storage device having a heat storage material inside are connected in parallel, a heat storage operation of storing heat in the heat storage device at an arbitrary time zone, and a refrigerator is cooled by the stored heat. And a time control means for performing time control of the heat storage cooling operation, the melting temperature of the heat storage material is set to a temperature higher than the freezing room temperature, and the weight of the heat storage material has a predetermined daytime power demand at low room temperature. In the refrigerator, the heat load equivalent to the total load heat amount of the rooms other than the freezing room in the time zone is set as a weight capable of storing heat, and the target load heat amount of the heat storage cooling operation is all the rooms other than the freezing room.
【請求項2】 蓄熱材の温度を検知する蓄熱温度検知手
段と冷却器を除霜するヒ−タとを備え、時間制御手段に
より夜間の電力需要が低い所定の時間帯の始めに冷却器
の除霜を行い、除霜終了後から前記蓄熱温度検知手段に
より蓄熱材の蓄熱が終了したことを検知するまでコンプ
レッサを連続運転とし通常冷却運転以外の時間を全て蓄
熱運転により蓄熱するもので、蓄熱冷却運転時間帯が少
なくとも昼間の電力需要がピ−クの時間帯を含むよう前
記蓄熱冷却運転を開始し、前記蓄熱温度検知手段により
前記蓄熱器の冷却能力がなくなったことを検知すること
で前記蓄熱冷却運転を終了する請求項1記載の冷蔵庫。
2. A heat storage temperature detecting means for detecting the temperature of the heat storage material and a heater for defrosting the cooler, and the time control means allows the cooler to be operated at the beginning of a predetermined time zone when the power demand at night is low. Defrosting is performed, and after the defrosting is completed, the compressor is continuously operated until the heat storage temperature detecting means detects that the heat storage of the heat storage material is finished, and heat is stored by the heat storage operation for all the time other than the normal cooling operation. By starting the heat storage cooling operation such that the cooling operation time zone includes at least the daytime power demand peak time zone, the heat storage temperature detection means detects that the heat storage capacity of the heat storage device is exhausted. The refrigerator according to claim 1, wherein the heat storage cooling operation is ended.
【請求項3】 蓄熱材の温度を検知する蓄熱温度検知手
段と冷却器を除霜するヒ−タとを備え、時間制御手段に
より夜間の電力需要が低い所定の時間帯から前記蓄熱温
度検知手段により蓄熱材の蓄熱が終了したことを検知す
るまでコンプレッサを連続運転とし通常冷却運転以外の
時間を全て蓄熱運転により蓄熱し、蓄熱運転が終了後に
冷却器の除霜を行うもので、蓄熱冷却運転時間帯が少な
くとも昼間の電力需要がピ−クの時間帯を含むよう前記
蓄熱冷却運転を開始し、前記蓄熱温度検知手段により前
記蓄熱器の冷却能力がなくなったことを検知することで
前記蓄熱冷却運転を終了する請求項1記載の冷蔵庫。
3. A heat storage temperature detecting means for detecting the temperature of a heat storage material and a heater for defrosting a cooler, and the heat storage temperature detecting means is operated by a time control means from a predetermined time zone when the power demand at night is low. The compressor is operated continuously until the end of the heat storage of the heat storage material is detected by the heat storage operation, the heat is stored for the entire time except the normal cooling operation, and the cooler is defrosted after the heat storage operation is completed. The heat storage cooling operation is started so that the power demand in the daytime includes at least the peak power demand time, and the heat storage cooling is performed by detecting that the cooling capacity of the heat storage device is lost by the heat storage temperature detection means. The refrigerator according to claim 1, which terminates the operation.
JP27405892A 1992-10-13 1992-10-13 refrigerator Expired - Fee Related JP3153649B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27405892A JP3153649B2 (en) 1992-10-13 1992-10-13 refrigerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27405892A JP3153649B2 (en) 1992-10-13 1992-10-13 refrigerator

Publications (2)

Publication Number Publication Date
JPH06123539A true JPH06123539A (en) 1994-05-06
JP3153649B2 JP3153649B2 (en) 2001-04-09

Family

ID=17536385

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27405892A Expired - Fee Related JP3153649B2 (en) 1992-10-13 1992-10-13 refrigerator

Country Status (1)

Country Link
JP (1) JP3153649B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20130023874A (en) * 2011-08-30 2013-03-08 엘지전자 주식회사 Refrigerator and controlling method for the same
KR20130023872A (en) * 2011-08-30 2013-03-08 엘지전자 주식회사 Refrigerator and controlling method for the same
JP2016116372A (en) * 2014-12-16 2016-06-23 シャープ株式会社 Power management system, control system, control method, and control program

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20130023874A (en) * 2011-08-30 2013-03-08 엘지전자 주식회사 Refrigerator and controlling method for the same
KR20130023872A (en) * 2011-08-30 2013-03-08 엘지전자 주식회사 Refrigerator and controlling method for the same
JP2016116372A (en) * 2014-12-16 2016-06-23 シャープ株式会社 Power management system, control system, control method, and control program

Also Published As

Publication number Publication date
JP3153649B2 (en) 2001-04-09

Similar Documents

Publication Publication Date Title
US5251455A (en) Energy efficient insulation system for refrigerator/freezer
US8209991B2 (en) Cooling storage and method of operating the same
CA2108342C (en) Method for sequentially operating refrigeration system with multiple evaporators
US4840037A (en) Refrigerator with cold accumulation system
EP3435014B1 (en) Refrigerator and control method therefor
US6952930B1 (en) Methods and apparatus for controlling refrigerators
JP2001082850A (en) Refrigerator
JP3193924B2 (en) refrigerator
JP3098909B2 (en) refrigerator
JPH06123539A (en) Refrigerator
JP3098893B2 (en) refrigerator
JP3184334B2 (en) refrigerator
JP3585564B2 (en) refrigerator
JPH09287863A (en) Refrigerator
JP3184335B2 (en) refrigerator
JP3265004B2 (en) refrigerator
JP3098892B2 (en) refrigerator
JP3098889B2 (en) refrigerator
JPH08240372A (en) Refrigerator
JP3135428B2 (en) refrigerator
JPH06174355A (en) Refrigerator
JPH08240371A (en) Refrigerator
JPH06257926A (en) Refrigerator
JPH1123136A (en) Refrigerator
JPS63197865A (en) Cold accumulation type refrigerator

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees