JP3153649B2 - refrigerator - Google Patents
refrigeratorInfo
- Publication number
- JP3153649B2 JP3153649B2 JP27405892A JP27405892A JP3153649B2 JP 3153649 B2 JP3153649 B2 JP 3153649B2 JP 27405892 A JP27405892 A JP 27405892A JP 27405892 A JP27405892 A JP 27405892A JP 3153649 B2 JP3153649 B2 JP 3153649B2
- Authority
- JP
- Japan
- Prior art keywords
- heat storage
- heat
- temperature
- refrigerator
- cooler
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2600/00—Control issues
- F25B2600/25—Control of valves
- F25B2600/2511—Evaporator distribution valves
Landscapes
- Devices That Are Associated With Refrigeration Equipment (AREA)
- Compression-Type Refrigeration Machines With Reversible Cycles (AREA)
Description
【0001】[0001]
【産業上の利用分野】本発明は、蓄熱材を用いて庫内を
保冷する蓄熱式の冷蔵庫に関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a regenerative refrigerator in which the interior of a refrigerator is kept cool by using a heat storage material.
【0002】[0002]
【従来の技術】近年、深夜電力の有効利用ないし電力需
要のピ−クカットによる平準化等の観点より蓄熱材を利
用して庫内の冷却を行う蓄熱式の冷蔵庫が特開昭63−
58068号公報に示されるごとく、考えられている。2. Description of the Related Art In recent years, a regenerative refrigerator that cools the inside of a refrigerator using a regenerative material has been proposed from the viewpoint of effective use of late-night power or leveling by peak-cutting power demand.
This is considered as disclosed in Japanese Patent No. 58068.
【0003】以下図面を参照しながら、上述した従来の
蓄熱式の冷蔵庫の一例について説明する。An example of the above-described conventional regenerative refrigerator will be described below with reference to the drawings.
【0004】図8は、従来の蓄熱式の冷蔵庫の構造を示
す縦断面図であり、図9は冷凍システム図である。図8
と図9において、1は保冷庫本体で断熱材を内蔵したキ
ャビ0ネット2と、ドア3と、ドア3とキャビネット2
をシ−ルするガスケット14とで構成されている。その
内部は、水平に配された中間仕切壁16により上部の冷
凍室17と下部の冷蔵室18との2室に仕切られてい
る。FIG. 8 is a longitudinal sectional view showing the structure of a conventional regenerative refrigerator, and FIG. 9 is a refrigeration system diagram. FIG.
9, reference numeral 1 denotes a cabinet 0 net 2 having a heat insulating material, a door 3, a door 3 and a cabinet 2.
And a gasket 14 for sealing. The interior is partitioned into two compartments, an upper freezer compartment 17 and a lower refrigerating compartment 18 by an intermediate partition wall 16 arranged horizontally.
【0005】4はコンプレッサでありコンデンサ5を介
して3方電磁弁6に接続される。さらに、この3方電磁
弁6の第1の流出口6aはキャピラリ7、冷却器8及び
アキュムレ−タ13を順次介して前記コンプレッサ4に
接続される。また、3方電磁弁6の第2の流出口6b
は、蓄熱器用キャピラリ9及び内部に蓄熱材15が充填
された蓄熱器10を順次介して前記アキュムレ−タ13
接続される。さらに、冷却器8と蓄熱器10との間には
閉ル−プ形サ−モサイホン12が、伝熱経路として設け
られ、この閉ル−プ形サ−モサイホン12の途中に蓄熱
器用電磁弁11が配される。なお、閉ル−プ形サ−モサ
イホン12には、たとえば重力式のものが用いられ、そ
の閉ル−プ状のパイプの中には、冷媒が封入されてい
る。A compressor 4 is connected to a three-way solenoid valve 6 via a condenser 5. Further, a first outlet 6a of the three-way solenoid valve 6 is connected to the compressor 4 via a capillary 7, a cooler 8, and an accumulator 13 in this order. The second outlet 6b of the three-way solenoid valve 6
The accumulator 13 is successively connected via a heat storage capillary 9 and a heat storage 10 in which a heat storage material 15 is filled.
Connected. Further, a closed loop type thermosiphon 12 is provided between the cooler 8 and the regenerator 10 as a heat transfer path, and a solenoid valve 11 for the regenerator is provided in the middle of the closed loop type thermosiphon 12. Is arranged. The closed loop type thermosiphon 12 is, for example, a gravity type, and a refrigerant is sealed in the closed looped pipe.
【0006】19は庫内を冷却するための冷却ファンで
あり、冷却器8の前方に設けられた冷凍室上部吹出口2
0及び冷凍室下部吹出口21から冷気を送出することが
できるようにしている。前記中間仕切壁16の冷凍室側
前方には冷凍室吸込口22が設けられ、ここから冷却器
8至る冷凍室中間ダクト23が水平に形成されている。
また、冷却器8の奥には、冷蔵庫背面部に沿って冷却
ファン19から冷蔵室吹出口24に至る冷蔵室ダクト2
5が垂直に設けている。この冷蔵室吹出口24は、ダン
パ−26により開閉可能としている。前記中間仕切壁1
6の冷蔵室側前方には、冷蔵室吸込口27が設けられ、
ここから前記冷却器8に至る冷蔵室中間ダクト28が水
平に形成されている。この冷蔵室中間ダクト28の出口
には、ガラス管ヒ−タ29が配され、その上方に配され
ている冷却器8の除霜を可能としている。Reference numeral 19 denotes a cooling fan for cooling the inside of the refrigerator.
0 and the freezer compartment lower outlet 21 can send out cool air. A freezer compartment suction port 22 is provided in front of the intermediate partition wall 16 on the freezer compartment side, and a freezer intermediate duct 23 extending from the freezer inlet 22 to the cooler 8 is formed horizontally.
In the back of the cooler 8, the refrigerator compartment duct 2 extending from the cooling fan 19 to the refrigerator compartment outlet 24 along the back of the refrigerator.
5 are provided vertically. The refrigerating compartment outlet 24 can be opened and closed by a damper 26. The intermediate partition 1
6, a refrigerator compartment suction port 27 is provided in front of the refrigerator compartment side.
A refrigerator intermediate duct 28 extending from here to the cooler 8 is formed horizontally. A glass tube heater 29 is arranged at the outlet of the refrigerator compartment intermediate duct 28, and enables the defroster 8 disposed above the glass tube heater 29 to be defrosted.
【0007】以上の様に構成された冷蔵庫について図8
と図9を用いてその動作を説明する。FIG. 8 shows a refrigerator constructed as described above.
The operation will be described with reference to FIG.
【0008】通常冷却運転は、3方電磁弁6のコイルに
通電せず、第1の流出口6aが連通させ、コンプレッサ
4からコンデンサ5、3方電磁弁6及びキャピラリ7を
順次介して冷却器8に至り、この冷却器8からアキュム
レ−タ13を介して前記コンプレッサ4に至る冷媒流路
が構成し、冷却器8により庫内を冷却する。In the normal cooling operation, the coil of the three-way solenoid valve 6 is not energized, the first outlet 6a is communicated, and the compressor 4 passes through the condenser 5, the three-way solenoid valve 6, and the capillary 7 sequentially. The refrigerant flow from the cooler 8 to the compressor 4 via the accumulator 13 is formed. The cooler 8 cools the inside of the refrigerator.
【0009】これに対して、蓄熱運転は、3方電磁弁6
のコイルに通電することで、第2の流出口6bが連通さ
せ、コンプレッサ4からコンデンサ5、3方電磁弁6及
びキャピラリ7を順次介して蓄熱器10に至り、この蓄
熱器10からアキュムレ−タ13を介して前記コンプレ
ッサ4に至る冷媒流路が構成し蓄熱器10内の蓄熱材1
5の冷却を行う。On the other hand, in the heat storage operation, the three-way solenoid valve 6
When the coil is energized, the second outlet 6b communicates with the coil 4 to reach the regenerator 10 via the condenser 5, the three-way solenoid valve 6 and the capillary 7 in sequence, and the accumulator from the regenerator 10. A refrigerant flow path to the compressor 4 through the refrigerant storage 13 constitutes the heat storage material 1 in the heat storage 10.
5 is cooled.
【0010】また、蓄熱冷却運転は、蓄熱器用電磁弁1
1を開けることで閉ル−プ形サ−モサイホン12によ
り、蓄熱器10から冷却器8に放冷が行われ、この熱を
利用して庫内を冷却する。The heat storage and cooling operation is performed by the heat storage solenoid valve 1.
By opening 1, the closed loop type thermosiphon 12 cools the regenerator 10 to the cooler 8 and uses the heat to cool the inside of the refrigerator.
【0011】そして、各運転を図示していないタイマ作
用にて制御する。電力需要の少ない夜間(23時から翌
日の7時まで)にタイマ作用にて、蓄熱運転と通常冷却
運転を交互に行うことにより庫内温度は設定温度に保ち
ながら蓄熱材15を充分冷却しておき、昼間の電力需要
がピ−クの時間帯(13時から16時まで)の3時間に
おいては、大きな電力を必要とする通常冷却運転に代え
て定時間蓄熱冷却運転を行い庫内温度を保つ。[0011] Each operation is controlled by a timer function (not shown). During the night when power demand is low (from 23:00 to 7:00 of the next day), the heat storage operation and the normal cooling operation are alternately performed by the timer operation, so that the heat storage material 15 is sufficiently cooled while keeping the internal temperature at the set temperature. For three hours during peak hours (13:00 to 16:00) during the daytime power demand, constant-time regenerative cooling operation is performed instead of normal cooling operation requiring a large amount of electric power to reduce the temperature in the refrigerator. keep.
【0012】また冷却器8の除霜は、コンプレッサ4の
運転時間を積算し積算時間が任意時間になると、ガラス
管ヒ−タ29に通電し除霜を行う。除霜回数は、1日に
2回程度になるよう任意時間を設定している。The defrosting of the cooler 8 is performed by accumulating the operation time of the compressor 4 and when the accumulated time reaches an arbitrary time, the glass tube heater 29 is energized to perform defrosting. An arbitrary time is set so that the number of times of defrosting is about twice a day.
【0013】[0013]
【発明が解決しようとする課題】しかしながら上記の様
な構成では、蓄熱冷却運転の対象に冷凍室が含まれるの
で、融解潜熱量が小さい融解温度が−30℃近傍の蓄熱
材を使用する必要があり、冷蔵庫の有効内容積が大きく
減少してしまう。また、融解温度が−30℃近傍の蓄熱
材を凍結させるには蒸発温度が−40℃近傍となり、コ
ンプレッサの冷凍効率が通常冷却運転時より悪くなるこ
とで消費電力量が増大してしまう。However, in the above configuration, since the freezing compartment is included in the heat storage / cooling operation, it is necessary to use a heat storage material having a small latent heat of fusion and having a melting temperature of around -30 ° C. Yes, the effective internal volume of the refrigerator is greatly reduced. In addition, in order to freeze the heat storage material having a melting temperature of around -30 ° C, the evaporation temperature becomes around -40 ° C, and the refrigeration efficiency of the compressor becomes worse than in the normal cooling operation, so that the power consumption increases.
【0014】さらに、冷却器の除霜開始時間はコンプレ
ッサの運転率できまり、使用状態がお客様のよって異な
ることから電力需要の多い昼間に除霜開始してしまい、
電力需要の偏りひいては電力の有効利用ができていない
という課題を有していた。Further, the defrosting start time of the cooler is determined by the operation rate of the compressor, and the defrosting is started in the daytime when power demand is high because the use condition differs depending on the customer.
There was a problem that the power demand was uneven and that the power could not be used effectively.
【0015】本発明は上記課題を解決するもので、蓄熱
冷却運転の対象が冷蔵温度部分のみであるので融解潜熱
量が大きい蓄熱材が使用でき冷蔵庫の有効内容積の減少
が極力抑えられ、また蓄熱材を凍結させる時の蒸発温度
は通常運転時と同等以上にすることができ消費電力量の
増大がない。さらに冷却器の除霜開始時間は、お客様の
使用状態に関係なく電力需要の少ない夜間にするので電
力需要の平準化ひいては電力の有効利用ができる冷蔵庫
を提供するものである。The present invention has been made to solve the above-mentioned problem. Since the object of the heat storage cooling operation is only the refrigeration temperature portion, a heat storage material having a large amount of latent heat of fusion can be used, and a decrease in the effective internal volume of the refrigerator can be suppressed as much as possible. The evaporation temperature at the time of freezing the heat storage material can be equal to or higher than that during normal operation, and there is no increase in power consumption. Furthermore, since the defrosting start time of the cooler is set at night when the power demand is small irrespective of the use state of the customer, it is intended to provide a refrigerator that can level the power demand and thereby effectively use the power.
【0016】上記課題を解決するために本発明の冷蔵庫
は、冷却器と内部に蓄熱材を有する蓄熱器とを並列接続
した冷凍サイクルと、任意の時間帯に前記蓄熱器に熱を
蓄熱する蓄熱運転と蓄熱した熱により冷蔵庫内を冷却す
る蓄熱冷却運転の時間制御を行う時間制御手段とを備
え、前記蓄熱材の融解温度は、冷凍室温度よりも高い温
度とし、前記蓄熱材の重量は、前記冷蔵庫の周囲温度の
年間変化の中で夏季における周囲温度より低い周囲温度
において昼間の電力需要が多い所定の時間帯における前
記冷蔵庫内貯蔵室のうち冷蔵温度帯の貯蔵室の合計した
負荷熱量と同等の熱量を全て蓄熱できる重量とし、前記
蓄熱冷却運転の対象負荷熱量は、前記冷蔵庫内貯蔵室の
うち冷蔵温度帯の貯蔵室の合計負荷熱量とする。In order to solve the above-mentioned problems, a refrigerator according to the present invention has a refrigerating cycle in which a cooler and a heat accumulator having a heat accumulating material therein are connected in parallel, and a heat accumulator for accumulating heat in the heat accumulator at any time. Time control means for performing time control of a heat storage cooling operation for cooling the inside of the refrigerator with the operation and the stored heat, wherein a melting temperature of the heat storage material is higher than a freezing room temperature.
Degree, and the weight of the heat storage material is the ambient temperature of the refrigerator.
Before the predetermined time period is large daytime power demand at low ambient temperatures <br/> than the ambient temperature in summer in the annual change
Of the storage room in the refrigerator, a heat amount equivalent to the total load heat amount of the storage room in the refrigeration temperature zone is a weight capable of storing all heat, and the target load heat amount of the heat storage cooling operation is the storage amount in the refrigerator storage room.
Of these, the total load calorie of the storage room in the refrigerated temperature zone .
【0017】さらに、蓄熱材の温度を検知する蓄熱温度
検知手段と冷却器を除霜するヒ−タとを備え、時間制御
手段により夜間の電力需要が低い所定の時間帯の始めに
冷却器の除霜を行い、除霜終了後から前記蓄熱温度検知
手段により蓄熱材の蓄熱が終了したことを検知するまで
コンプレッサを連続運転とし通常冷却運転以外の時間を
全て蓄熱運転により蓄熱するもので、蓄熱冷却運転時間
帯が少なくとも昼間の電力需要がピ−クの時間帯を含む
よう前記蓄熱冷却運転を開始し、前記蓄熱温度検知手段
により前記蓄熱器の冷却能力がなくなったことを検知す
ることで前記蓄熱冷却運転を終了する。Further, a heat storage temperature detecting means for detecting the temperature of the heat storage material and a heater for defrosting the cooler are provided, and the time control means starts the cooler at the beginning of a predetermined time period during which nighttime power demand is low. The defrosting is performed, and after completion of the defrosting, the compressor is continuously operated until the end of the heat storage of the heat storage material is detected by the heat storage temperature detecting means, and heat is stored by the heat storage operation for all times other than the normal cooling operation. The heat storage / cooling operation is started so that the cooling operation time period includes at least a daytime power demand peak time period, and the heat storage temperature detecting means detects that the cooling capacity of the heat storage device has run out. The heat storage cooling operation ends.
【0018】さらに、蓄熱材の温度を検知する蓄熱温度
検知手段と冷却器を除霜するヒ−タとを備え、時間制御
手段により夜間の電力需要が低い所定の時間帯から前記
蓄熱温度検知手段により蓄熱材の蓄熱が終了したことを
検知するまでコンプレッサを連続運転とし通常冷却運転
以外の時間を全て蓄熱運転により蓄熱し、蓄熱運転が終
了後に冷却器の除霜を行うもので、蓄熱冷却運転時間帯
が少なくとも昼間の電力需要がピ−クの時間帯を含むよ
う前記蓄熱冷却運転を開始し、前記蓄熱温度検知手段に
より前記蓄熱器の冷却能力がなくなったことを検知する
ことで前記蓄熱冷却運転を終了するものである。Further, there is provided a heat storage temperature detecting means for detecting the temperature of the heat storage material and a heater for defrosting the cooler, and the heat storage temperature detecting means is provided by a time control means from a predetermined time zone during which nighttime power demand is low. The compressor is continuously operated until the end of the heat storage of the heat storage material is detected, and heat is stored by the heat storage operation for all times other than the normal cooling operation, and the cooler is defrosted after the heat storage operation is completed. The heat storage / cooling operation is started so that at least the daytime power demand includes a peak time period, and the heat storage / cooling operation is performed by detecting that the cooling capacity of the heat storage device is lost by the heat storage temperature detecting means. The operation ends.
【0019】[0019]
【作用】本発明は上記した構成によって、融解潜熱量が
大きい蓄熱材が使用でき冷蔵庫の有効内容積の減少が極
力抑えられ、また消費電力量の増大がない。According to the present invention, a heat storage material having a large amount of latent heat of fusion can be used, the decrease in the effective internal volume of the refrigerator can be suppressed as much as possible, and the power consumption does not increase.
【0020】さらに冷却器の除霜開始時間は、お客様の
使用状態に関係なく電力需要の少ない夜間の始めに行う
ので電力需要の平準化ひいては電力の有効利用ができ
る。Further, since the defrosting start time of the cooler is performed at the beginning of the night when the power demand is small irrespective of the use condition of the customer, the power demand can be leveled and the power can be effectively used.
【0021】さらに冷却器の除霜開始時間は、お客様の
使用状態に関係なく電力需要の少ない夜間の蓄熱運転後
に行うので、電力需要の平準化ひいては電力の有効利用
ができ、また夜間中確実に蓄熱材を凍結させることがで
きる。Further, since the defrosting start time of the cooler is performed after the heat storage operation at night when the power demand is small irrespective of the use condition of the customer, the power demand can be leveled and the power can be effectively used, and the power can be reliably used during the night. The heat storage material can be frozen.
【0022】[0022]
【実施例】以下本発明の一実施例の冷蔵庫について図面
を参照しながら説明する。DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A refrigerator according to one embodiment of the present invention will be described below with reference to the drawings.
【0023】図1は本発明の一実施例における冷蔵庫の
機能ブロック図であり、図2は本発明の一実施例におけ
る冷凍システム図であり、図3は本発明の一実施例にお
ける要部の電気回路図であり、図4は本発明の一実施例
におけるフロ−チャ−トであり、図5は本発明の一実施
例における室温に応じた一日の運転状態図である。FIG. 1 is a functional block diagram of a refrigerator according to an embodiment of the present invention, FIG. 2 is a diagram of a refrigeration system according to an embodiment of the present invention, and FIG. FIG. 4 is an electric circuit diagram, FIG. 4 is a flowchart in one embodiment of the present invention, and FIG. 5 is a one-day operation state diagram according to room temperature in one embodiment of the present invention.
【0024】図1及び図3において、30は保冷庫本体
で断熱材を内蔵したキャビネット2と、ドア3と、ドア
3とキャビネット2をシ−ルするガスケット14とで構
成されている。その内部は、水平に配された断熱区画壁
33により上部の冷凍室17と下部の冷蔵室18との2
室に仕切られている。In FIG. 1 and FIG. 3, reference numeral 30 denotes a cool box main body, which comprises a cabinet 2 containing a heat insulating material, a door 3, and a gasket 14 for sealing the door 3 and the cabinet 2. The interior thereof is divided into two sections by the horizontally arranged heat-insulating partition wall 33 and the upper freezer compartment 17 and the lower refrigerator compartment 18.
It is divided into rooms.
【0025】62は冷凍室17内に設けた冷却室で、冷
却室62内には冷却器8と冷却ファン19と冷却器の除
霜を行うヒ−タ58を内装している。Reference numeral 62 denotes a cooling room provided in the freezing room 17. The cooling room 62 houses the cooler 8, the cooling fan 19, and a heater 58 for defrosting the cooler.
【0026】断熱区画壁33内には、区画壁38をかえ
して冷蔵室吸込口35と冷却室62を連通する送風通路
A37と、冷蔵室吸込口35と冷却室62を連通する送
風通路B39を形成している。31は送風通路B39内
に内装した内部に蓄熱材32を充填している蓄熱器であ
り、56は蓄熱器31に取付られた蓄熱材温度センサ5
7により蓄熱材32温度を検知する蓄熱温度検知手段で
あり、36は冷凍室吸込口である。In the heat insulation partition wall 33, a ventilation passage A37 connecting the refrigerator compartment suction port 35 and the cooling chamber 62 by connecting the partition wall 38 and a ventilation passage B39 connecting the refrigerator compartment suction port 35 and the cooling chamber 62 are provided. Has formed. Numeral 31 denotes a heat storage unit in which the heat storage material 32 is filled inside the ventilation passage B39, and 56 denotes a heat storage material temperature sensor 5 attached to the heat storage unit 31.
Reference numeral 7 denotes a heat storage temperature detecting means for detecting the temperature of the heat storage material 32, and reference numeral 36 denotes a freezer compartment suction port.
【0027】34は風路切替ダンパで、区画壁38に設
けている。風路切替ダンパ34は風路切り替え手段61
により送風通路B39を閉路する34aと、送風通路A
37を閉路する34bの2段階に切り替えるものであ
る。Numeral 34 denotes an air path switching damper, which is provided on the partition wall 38. The air path switching damper 34 includes an air path switching unit 61.
34a closing the ventilation passage B39 by the
37 is switched to two stages of closing 34b.
【0028】26はダンパ−で、冷却ファン19により
冷蔵室ダクト25に送風された冷気の冷蔵室18への吐
出送風量を調整し、冷蔵室18を設定温度に制御するも
のである。Reference numeral 26 denotes a damper for controlling the amount of cold air blown into the refrigerator compartment duct 25 by the cooling fan 19 to the refrigerator compartment 18 and controlling the refrigerator compartment 18 to a set temperature.
【0029】電気回路図のうち本発明の要旨に関係した
部分のみ示されており、46は時間制御手段としてのC
PUで、周知の如く図示しない記憶回路に記憶されたプ
ログラムにより動作するもので、現在の時刻を出力する
時計回路45と室温検知手段40及び庫内温度検出回路
44からの出力信号によってリレ−47、49、51、
53、59の通電制御を行う。即ち、各リレ−47、4
9、51、53に接続された各トランジスタ48、5
0、52、54、60のベ−スにハイレベルの信号を与
えることにより各リレ−47、49、51、53、59
に通電される。Only the portions of the electric circuit diagram relevant to the gist of the present invention are shown, and reference numeral 46 denotes C as time control means.
The PU operates according to a program stored in a storage circuit (not shown) as is well known. The PU 47 is operated by a clock circuit 45 for outputting the current time, an output signal from the room temperature detecting means 40 and an internal temperature detecting circuit 44. , 49, 51,
The energization control of 53 and 59 is performed. That is, each relay 47, 4
Each transistor 48, 5 connected to 9, 51, 53
By providing a high level signal to the bases 0, 52, 54, 60, each relay 47, 49, 51, 53, 59
Is energized.
【0030】リレ−47が通電されるとコンプレッサ4
が運転する。リレ−49が通電されると3方電磁弁6が
作動して第2の流出口6bが連通し、リレ−49が通電
されていない時は第1の流出口6aが連通する。リレ−
51が通電されると冷却ファン19が運転する。リレ−
53が通電されると風路切り替え手段34により送風通
路A37を閉路(34b)し、リレ−53が通電されて
いない時は、送風通路B39を閉路(34a)する。リ
レ−59が通電されるとヒ−タ58により冷却器8を除
霜する。When the relay 47 is energized, the compressor 4
Drives. When the relay 49 is energized, the three-way solenoid valve 6 operates to communicate with the second outlet 6b, and when the relay 49 is not energized, the first outlet 6a communicates. Relay
When the power is supplied to 51, the cooling fan 19 operates. Relay
When 53 is energized, the air passage switching means 34 closes the air passage A37 (34b), and when the relay 53 is not energized, closes the air passage B39 (34a). When the relay 59 is energized, the cooler 8 is defrosted by the heater 58.
【0031】また、庫内温度検出回路44は温度センサ
43により検出した値が設定温度以上の時に時間制御手
段46に信号を出力する。また、室温検知手段40は、
冷蔵庫の周囲室温を室温度センサ41からの信号をA/
D変換器42により出力電圧をデジタル化して時間制御
手段46に信号を出力する。また、蓄熱温度検知手段5
6は蓄熱材温度センサ57により検出した値が設定温度
以上の時に時間制御手段46に信号を出力する。The internal temperature detection circuit 44 outputs a signal to the time control means 46 when the value detected by the temperature sensor 43 is equal to or higher than the set temperature. Further, the room temperature detecting means 40
The signal from the room temperature sensor 41 is A /
The output voltage is digitized by the D converter 42 and a signal is output to the time control means 46. Also, the heat storage temperature detecting means 5
6 outputs a signal to the time control means 46 when the value detected by the heat storage material temperature sensor 57 is equal to or higher than the set temperature.
【0032】図2において、4はコンプレッサでありコ
ンデンサ5を介して3方電磁弁6に接続される。さら
に、この3方電磁弁6の第1の流出口6aはキャピラリ
7、冷却器8及びアキュムレ−タ13を順次介して前記
コンプレッサ4に接続される。また、3方電磁弁6の第
2の流出口6bは、蓄熱器用キャピラリ9及び内部に蓄
熱材15が充填された蓄熱器31を順次介して前記アキ
ュムレ−タ13接続される。In FIG. 2, reference numeral 4 denotes a compressor, which is connected to a three-way solenoid valve 6 via a condenser 5. Further, a first outlet 6a of the three-way solenoid valve 6 is connected to the compressor 4 via a capillary 7, a cooler 8, and an accumulator 13 in this order. The second outlet 6b of the three-way solenoid valve 6 is connected to the accumulator 13 via the heat storage capillary 9 and the heat storage 31 in which the heat storage material 15 is filled.
【0033】以上の様に構成された冷蔵庫について図1
と図2と図3と図4及び図5を用いてその動作を説明す
る。FIG. 1 shows a refrigerator constructed as described above.
The operation will be described with reference to FIGS. 2, 3, 4, and 5.
【0034】通常冷却運転は、冷却器8を用いて庫内を
冷却し設定温度に保冷するものである。即ち、CPU4
6によりリレ−51及び53をOFFとすることで冷媒
流路は、冷却器8を連通する側(ステップS1)、冷気
風路は風路切り替え手段34が34a側(ステップS
2)となり送風通路Aが連通の状態を保持し、庫内温度
が設定値以上の時は庫内温度検出回路44からの信号に
よりCPU46は、リレ−47及び49をONとしコン
プレッサ4及び冷却ファン19を運転する(ステップS
3)ことで冷却器8により庫内を設定温度以下に冷却す
る。そして、庫内温度が設定値以下になると庫内温度検
出回路44の信号がOFFとなりCPU46は、リレ−
47及び49をOFFとし、冷媒と冷気の循環を停止す
る(ステップS4)。以上の動作を繰り返すことにより
庫内を設定温度に保冷する。In the normal cooling operation, the inside of the refrigerator is cooled by using the cooler 8 and kept at a set temperature. That is, CPU4
6, the relays 51 and 53 are turned off, so that the refrigerant flow path is connected to the cooler 8 (step S1), and the cool air path is switched by the air path switching means 34 to the 34a side (step S1).
2), the air passage A is kept in the communicating state, and when the internal temperature is equal to or higher than the set value, the CPU 46 turns on the relays 47 and 49 by a signal from the internal temperature detecting circuit 44 to turn on the relay 4 and the cooling fan. 19 (Step S)
3) The cooler 8 cools the inside of the refrigerator to a set temperature or lower. When the internal temperature falls below the set value, the signal of the internal temperature detecting circuit 44 is turned off, and the CPU 46 sets the relay mode.
47 and 49 are turned off to stop the circulation of the refrigerant and the cool air (step S4). By repeating the above operation, the inside of the refrigerator is kept cool to the set temperature.
【0035】蓄熱運転は、夜間の電力需要が低い所定の
時間帯(23時から翌日の7時まで)において(ステッ
プS5)、蓄熱器31内に充填されている蓄熱材32に
夜間の所定の時間帯の電力を熱に代えて蓄熱するもので
ある。即ち、庫内温度が設定値以上の時は庫内温度検出
回路44からの信号によりCPU46は、リレ−47及
び49をONとしコンプレッサ4及び冷却ファン19を
運転する通常運転を行い(ステップS6)、庫内温度が
設定値以下の時は庫内温度検出回路44からの信号から
CPU46によりリレ−51及び47をONとすること
で冷媒流路を、蓄熱器31が連通する側に保持し、コン
プレッサ4を運転することで冷媒を蓄熱器31内で蒸発
させ、蓄熱材32を凍結させる(ステップS7)。In the heat storage operation, during a predetermined time period during which nighttime power demand is low (from 23:00 to 7:00 the next day) (step S5), the heat storage material 32 filled in the heat storage device 31 is stored in the heat storage material 32 during the night. The electric power in the time zone is stored instead of heat. That is, when the internal temperature is equal to or higher than the set value, the CPU 46 performs a normal operation of turning on the relays 47 and 49 and operating the compressor 4 and the cooling fan 19 according to a signal from the internal temperature detecting circuit 44 (step S6). When the internal temperature is equal to or less than the set value, the relay 46 is turned on by the CPU 46 from the signal from the internal temperature detection circuit 44 to hold the refrigerant flow path on the side where the heat accumulator 31 communicates, By operating the compressor 4, the refrigerant is evaporated in the heat storage device 31, and the heat storage material 32 is frozen (step S7).
【0036】また、蓄熱材32の重量としては、春季、
秋季等の低室温時(15℃)における冷蔵温度帯の室を
基準とした重量としておく。即ち、低室温時において昼
間の電力需要が多い所定の時間帯(7時から23時ま
で)の冷蔵室の合計した負荷熱量と同等の熱量を全て蓄
熱できる重量とすることである。The weight of the heat storage material 32 is as follows:
The weight is set based on the room in the refrigerated temperature zone at the time of low room temperature (15 ° C.) in autumn or the like. That is, the weight is such that all the heat amount equivalent to the total load heat amount of the refrigerating compartment in a predetermined time zone (from 7:00 to 23:00) when the power demand in the daytime is high at the low room temperature can be stored.
【0037】蓄熱冷却運転は、昼間の電力需要がピ−ク
の時間帯に蓄熱器31が蓄熱した熱を利用して冷凍室以
外の室の戻り空気冷却するものである。即ち、冷凍室内
温度が設定値以上の時は庫内温度検出回路44からの信
号によりCPU46は、リレ−47、49をONとしコ
ンプレッサ4、冷却ファン19を運転することで冷凍室
を設定温度以下に冷却する。また、冷蔵室18の温度調
節はダンパ−26により冷蔵室18への吐出送風量を調
整することで設定温度に制御し、戻り空気はCPU46
によりリレ−53をONとすることで、冷気風路は風路
切り替え手段34が34b側となり送風通路B39が連
通の状態を保持し冷却する(ステップS8)。これによ
り冷却器8で冷却する熱量は、冷凍室の負荷熱量だけと
なる。In the heat storage cooling operation, the heat stored in the heat storage unit 31 is used during the peak power demand in the daytime to cool the return air in a room other than the freezing room. That is, when the freezing room temperature is equal to or higher than the set value, the CPU 46 turns on the relays 47 and 49 and operates the compressor 4 and the cooling fan 19 according to a signal from the internal temperature detecting circuit 44 to lower the freezing room below the set temperature. Cool. The temperature of the refrigerating compartment 18 is controlled to a set temperature by adjusting the amount of air blown to the refrigerating compartment 18 by the damper 26, and the return air is supplied to the CPU 46.
By turning on the relay 53, the air path switching means 34 becomes the 34b side of the cool air path, and the air blowing path B39 is maintained in the communicating state to cool (step S8). Thus, the amount of heat to be cooled by the cooler 8 is only the amount of heat applied to the freezing compartment.
【0038】そして、庫内温度が設定値以下になると庫
内温度検出回路44の信号がOFFとなりCPU46
は、リレ−47、49をOFFとし、コンプレッサ及び
冷気の循環を停止する。以上の動作を繰り返すことによ
り各庫内を設定温度に保冷する。When the internal temperature falls below the set value, the signal of the internal temperature detecting circuit 44 is turned off and the CPU 46
Turns off the relays 47 and 49 and stops the circulation of the compressor and the cool air. By repeating the above operation, the inside of each refrigerator is kept at the set temperature.
【0039】次に、各運転の制御方法を図4及び図5を
用いて説明する。時間制御手段46により夜間電力需要
が低い所定の時間帯(23時から翌日の7時まで)の始
めである23時から冷却器8の除霜を必ず行う(ステッ
プS9)。昼間の蓄熱冷却運転時の冷蔵室18の水分は
蓄熱器31で着霜するので冷却器8の着霜量が低減でき
1日1回の除霜が可能となる。そして除霜終了後、通常
冷却運転と蓄熱運転の交互運転をする。即ち、庫内温度
が設定値以上の時は通常冷却運転で庫内を冷却し、庫内
温度が設定値以下の時は蓄熱運転により電力を熱に代え
て蓄熱する制御を行う。Next, a control method of each operation will be described with reference to FIGS. The defrosting of the cooler 8 is always performed by the time control means 46 from 23:00, which is the beginning of a predetermined time zone during which nighttime power demand is low (from 23:00 to 7:00 the next day) (step S9). Moisture in the refrigerator compartment 18 during the heat storage cooling operation in the daytime forms frost in the heat storage device 31, so that the amount of frost formed in the cooler 8 can be reduced and defrosting can be performed once a day. Then, after the completion of the defrosting, the alternating operation of the normal cooling operation and the heat storage operation is performed. That is, when the temperature in the refrigerator is equal to or higher than the set value, the inside of the refrigerator is cooled by the normal cooling operation, and when the temperature in the refrigerator is equal to or lower than the set value, the heat storage operation is performed to store the heat instead of the electric power.
【0040】しかし、その時の蓄熱運転の時間は室温に
より変化する。それは、キャビネット2から侵入する熱
量やシステムの冷凍能力が室温によって変化するためで
あり、低室温の方が蓄熱運転時間が短くなる。そのこと
から、蓄熱温度検知手段56により蓄熱材32の凍結終
了を検知し蓄熱運転を終了する(ステップS10)。However, the time of the heat storage operation at that time varies depending on the room temperature. This is because the amount of heat entering from the cabinet 2 and the refrigeration capacity of the system change depending on the room temperature, and the heat storage operation time is shorter at a lower room temperature. Therefore, the end of freezing of the heat storage material 32 is detected by the heat storage temperature detecting means 56, and the heat storage operation ends (step S10).
【0041】また、昼間の負荷量に対しては、室温検知
手段40により検知した前日の昼間の平均室温より時間
制御手段46が推測する。The daytime load is estimated by the time control means 46 from the average daytime room temperature of the day before detected by the room temperature detection means 40.
【0042】この推測値より、時間制御手段46が少な
くとも昼間の電力需要がピ−クの時間帯(13時から1
6時)を含むように蓄熱冷却運転を開始する(ステップ
S11)。そして、蓄熱温度検知手段56が蓄熱材32
が設定温度以上になり蓄熱器31の冷却能力がなくなっ
たことの信号を時間制御手段46に送出することで蓄熱
冷却運転が終了する。From this estimated value, the time control means 46 determines that at least the daytime power demand is in the peak time zone (13:00 from 13:00).
6:00) is started (step S11). Then, the heat storage temperature detecting means 56
Is sent to the time control means 46, indicating that the cooling capacity of the heat accumulator 31 has been lost due to the temperature exceeding the set temperature.
【0043】例えば図5に示す如く、蓄熱冷却運転の時
間は室温30℃の場合は8時間であり、室温15℃の場
合は16時間となる。For example, as shown in FIG. 5, the time of the heat storage cooling operation is 8 hours when the room temperature is 30 ° C., and 16 hours when the room temperature is 15 ° C.
【0044】次に、その他の実施例の冷蔵庫について図
面を参照しながら説明する。図6は本発明のその他の実
施例におけるフロ−チャ−トであり、図7は本発明のそ
の他の実施例における室温に応じた一日の運転状態図で
ある。Next, a refrigerator according to another embodiment will be described with reference to the drawings. FIG. 6 is a flowchart according to another embodiment of the present invention, and FIG. 7 is a diagram illustrating a one-day operation state according to room temperature in another embodiment of the present invention.
【0045】時間制御手段46により夜間電力需要が低
い所定の時間帯(23時から翌日の7時まで)は、通常
冷却運転と蓄熱運転の交互運転をする。即ち、庫内温度
が設定値以上の時は通常冷却運転で庫内を冷却し(ステ
ップS12)、庫内温度が設定値以下の時は蓄熱運転に
より電力を熱に代えて蓄熱する(ステップS13)制御
を行う。During a predetermined time period during which the nighttime power demand is low (from 23:00 to 7:00 on the following day), the time control means 46 alternately operates the normal cooling operation and the heat storage operation. That is, when the inside temperature is equal to or higher than the set value, the inside is cooled by the normal cooling operation (step S12), and when the inside temperature is equal to or lower than the set value, heat is stored instead of heat by the heat storage operation (step S13). ) Perform control.
【0046】そして蓄熱温度検知手段56により蓄熱材
32の凍結終了を検知した蓄熱運転終了後に冷却器8の
除霜を必ず行う(ステップS14)。After the end of the heat storage operation in which the end of freezing of the heat storage material 32 is detected by the heat storage temperature detecting means 56, the cooling device 8 is always defrosted (step S14).
【0047】以上のように本実施例によれば、冷却器と
内部に蓄熱材を有する蓄熱器とを並列接続した冷凍サイ
クルと、任意の時間帯に前記蓄熱器に熱を蓄熱する蓄熱
運転と蓄熱した熱により冷蔵庫内を冷却する蓄熱冷却運
転の時間制御を行う時間制御手段とを備え、前記蓄熱材
の重量は、低室温時において昼間の電力需要が多い所定
の時間帯における冷凍室以外の室の合計した負荷熱量と
同等の熱量を全て蓄熱できる重量とし、前記蓄熱冷却運
転の対象負荷熱量は冷凍室以外の室全てとするので、融
解潜熱量が大きい蓄熱材が使用でき冷蔵庫の有効内容積
の減少が極力抑えられ、また消費電力量の増大がない。As described above, according to the present embodiment, a refrigerating cycle in which a cooler and a heat accumulator having a heat accumulating material therein are connected in parallel, and a heat accumulating operation for accumulating heat in the heat accumulator at an arbitrary time zone. Time control means for performing time control of a heat storage and cooling operation for cooling the refrigerator with the stored heat, wherein the weight of the heat storage material is other than a freezer compartment in a predetermined time zone where power demand in the daytime is high at low room temperature. The amount of heat equivalent to the total load heat of the room is assumed to be the weight that can be stored, and the target load heat of the heat storage / cooling operation is all the rooms other than the freezing room, so that the heat storage material having a large latent heat of fusion can be used, and the effective contents of the refrigerator The reduction of the product is suppressed as much as possible, and the power consumption does not increase.
【0048】さらに、蓄熱材の温度を検知する蓄熱温度
検知手段と冷却器を除霜するヒ−タとを備え、時間制御
手段により夜間の電力需要が低い所定の時間帯の始めに
冷却器の除霜を行い、除霜終了後から前記蓄熱温度検知
手段により蓄熱材の蓄熱が終了したことを検知するまで
コンプレッサを連続運転とし通常冷却運転以外の時間を
全て蓄熱運転により蓄熱するもので、蓄熱冷却運転時間
帯が少なくとも昼間の電力需要がピ−クの時間帯を含む
よう前記蓄熱冷却運転を開始し、前記蓄熱温度検知手段
により前記蓄熱器の冷却能力がなくなったことを検知す
ることで前記蓄熱冷却運転を終了するので、冷却器の除
霜開始時間は、お客様の使用状態に関係なく電力需要の
少ない夜間の始めに行うので電力需要の平準化ひいては
電力の有効利用ができ、また夜間中に確実に冷却器の除
霜ができ冷凍能力の確保ができる。Further, a heat storage temperature detecting means for detecting the temperature of the heat storage material and a heater for defrosting the cooler are provided, and the time control means controls the cooler at the beginning of a predetermined time period during which nighttime power demand is low. The defrosting is performed, and after completion of the defrosting, the compressor is continuously operated until the end of the heat storage of the heat storage material is detected by the heat storage temperature detecting means, and heat is stored by the heat storage operation for all times other than the normal cooling operation. The heat storage / cooling operation is started so that the cooling operation time period includes at least a daytime power demand peak time period, and the heat storage temperature detecting means detects that the cooling capacity of the heat storage device has run out. Since the heat storage / cooling operation is completed, the defrosting start time of the cooler is performed at the beginning of the night when the power demand is low regardless of the customer's use condition, so that the power demand is leveled and the power is effectively used. It can, also can ensure the refrigerating capacity can be defrosted reliably cooler at night.
【0049】さらに、時間制御手段により夜間の電力需
要が低い所定の時間帯から前記蓄熱温度検知手段により
蓄熱材の蓄熱が終了したことを検知するまでコンプレッ
サを連続運転とし通常冷却運転以外の時間を全て蓄熱運
転により蓄熱し、蓄熱運転が終了後に冷却器の除霜を行
うので、冷却器の除霜開始時間は、お客様の使用状態に
関係なく電力需要の少ない夜間の蓄熱運転後に行うの
で、電力需要の平準化ひいては電力の有効利用ができ、
また夜間中確実に蓄熱材を凍結させることができる。Further, the compressor is continuously operated until the heat storage temperature detecting means detects the end of the heat storage of the heat storage material from a predetermined time zone in which the nighttime power demand is low by the time control means, and the time other than the normal cooling operation is set. Since all heat is stored by the heat storage operation and the defrosting of the cooler is performed after the heat storage operation is completed, the start time of the defrosting of the cooler is performed after the nighttime heat storage operation where the power demand is small, regardless of the usage condition of the customer. Leveling demand, and effectively using electricity.
In addition, the heat storage material can be reliably frozen during the night.
【0050】[0050]
【発明の効果】以上のように本発明は、冷却器と内部に
蓄熱材を有する蓄熱器とを並列接続した冷凍サイクル
と、任意の時間帯に前記蓄熱器に熱を蓄熱する蓄熱運転
と蓄熱した熱により冷蔵庫内を冷却する蓄熱冷却運転の
時間制御を行う時間制御手段とを備え、前記蓄熱材の重
量は、低室温時において昼間の電力需要が多い所定の時
間帯における冷凍室以外の室の合計した負荷熱量と同等
の熱量を全て蓄熱できる重量とし、前記蓄熱冷却運転の
対象負荷熱量は冷凍室以外の室全てとする。As described above, the present invention provides a refrigeration cycle in which a cooler and a heat accumulator having a heat accumulating material therein are connected in parallel, a heat accumulating operation for accumulating heat in the heat accumulator at any time, and a heat accumulating operation. Time control means for controlling the time of the heat storage cooling operation for cooling the inside of the refrigerator by the generated heat, wherein the weight of the heat storage material is a room other than the freezer room in a predetermined time zone in which daytime power demand is high at low room temperature. The heat load equivalent to the sum of the load heat amounts is the weight that can be stored, and the load heat amounts to be subjected to the heat storage cooling operation are all the rooms other than the freezing room.
【0051】さらに、蓄熱材の温度を検知する蓄熱温度
検知手段と冷却器を除霜するヒ−タとを備え、時間制御
手段により夜間の電力需要が低い所定の時間帯の始めに
冷却器の除霜を行い、除霜終了後から前記蓄熱温度検知
手段により蓄熱材の蓄熱が終了したことを検知するまで
コンプレッサを連続運転とし通常冷却運転以外の時間を
全て蓄熱運転により蓄熱するもので、蓄熱冷却運転時間
帯が少なくとも昼間の電力需要がピ−クの時間帯を含む
よう前記蓄熱冷却運転を開始し、前記蓄熱温度検知手段
により前記蓄熱器の冷却能力がなくなったことを検知す
ることで前記蓄熱冷却運転を終了する。Further, a heat storage temperature detecting means for detecting the temperature of the heat storage material and a heater for defrosting the cooler are provided, and the time control means is used to start the cooler at the beginning of a predetermined time period during which nighttime power demand is low. The defrosting is performed, and after completion of the defrosting, the compressor is continuously operated until the end of the heat storage of the heat storage material is detected by the heat storage temperature detecting means, and heat is stored by the heat storage operation for all times other than the normal cooling operation. The heat storage / cooling operation is started so that the cooling operation time period includes at least a daytime power demand peak time period, and the heat storage temperature detecting means detects that the cooling capacity of the heat storage device has run out. The heat storage cooling operation ends.
【0052】さらに、蓄熱材の温度を検知する蓄熱温度
検知手段と冷却器を除霜するヒ−タとを備え、時間制御
手段により夜間の電力需要が低い所定の時間帯から前記
蓄熱温度検知手段により蓄熱材の蓄熱が終了したことを
検知するまでコンプレッサを連続運転とし通常冷却運転
以外の時間を全て蓄熱運転により蓄熱し、蓄熱運転が終
了後に冷却器の除霜を行うもので、蓄熱冷却運転時間帯
が少なくとも昼間の電力需要がピ−クの時間帯を含むよ
う前記蓄熱冷却運転を開始し、前記蓄熱温度検知手段に
より前記蓄熱器の冷却能力がなくなったことを検知する
ことで前記蓄熱冷却運転を終了するので、融解潜熱量が
大きい蓄熱材が使用でき冷蔵庫の有効内容積の減少が極
力抑えられ、また消費電力量の増大がない。Further, there is provided a heat storage temperature detecting means for detecting the temperature of the heat storage material and a heater for defrosting the cooler, and the heat control temperature detecting means is provided by a time control means from a predetermined time period during which nighttime power demand is low. The compressor is continuously operated until the end of the heat storage of the heat storage material is detected, and heat is stored by the heat storage operation for all times other than the normal cooling operation, and the cooler is defrosted after the heat storage operation is completed. The heat storage / cooling operation is started so that at least the daytime power demand includes a peak time period, and the heat storage / cooling operation is performed by detecting that the cooling capacity of the heat storage device is lost by the heat storage temperature detecting means. Since the operation is terminated, a heat storage material having a large amount of latent heat of fusion can be used, the decrease in the effective internal volume of the refrigerator can be suppressed as much as possible, and the power consumption does not increase.
【0053】さらに冷却器の除霜開始時間は、お客様の
使用状態に関係なく電力需要の少ない夜間の始めに行う
ので電力需要の平準化ひいては電力の有効利用ができ
る。Further, since the defrosting start time of the cooler is performed at the beginning of the night when the power demand is small irrespective of the use condition of the customer, the power demand can be leveled and the power can be effectively used.
【0054】さらに冷却器の除霜開始時間は、お客様の
使用状態に関係なく電力需要の少ない夜間の蓄熱運転後
に行うので、電力需要の平準化ひいては電力の有効利用
ができ、また夜間中確実に蓄熱材を凍結させることがで
きる冷蔵庫となる。Furthermore, since the defrosting start time of the cooler is performed after the nighttime heat storage operation, when the power demand is small, irrespective of the use condition of the customer, the power demand can be leveled and the power can be effectively used, and the power can be reliably used during the night. It becomes a refrigerator that can freeze the heat storage material.
【図1】本発明の一実施例における冷蔵庫の構造を示す
縦断面図FIG. 1 is a longitudinal sectional view showing the structure of a refrigerator in one embodiment of the present invention.
【図2】図1の冷蔵庫の冷凍システム図FIG. 2 is a refrigeration system diagram of the refrigerator of FIG. 1;
【図3】図1の冷蔵庫の要部の電気回路図FIG. 3 is an electric circuit diagram of a main part of the refrigerator of FIG. 1;
【図4】一実施例のフローチャートFIG. 4 is a flowchart of an embodiment.
【図5】図1の室温に応じた一日の運転状態図FIG. 5 is an operation state diagram of one day according to the room temperature in FIG. 1;
【図6】他の実施例のフローチャートFIG. 6 is a flowchart of another embodiment.
【図7】他の実施例における室温に応じた一日の運転状
態図FIG. 7 is a diagram showing a daily operation state according to room temperature in another embodiment.
【図8】従来の冷蔵庫の構造を示す縦断面図FIG. 8 is a longitudinal sectional view showing the structure of a conventional refrigerator.
【図9】図8の冷蔵庫の冷凍システム図FIG. 9 is a refrigeration system diagram of the refrigerator of FIG. 8;
8 冷却器 31 蓄熱器 32 蓄熱材 46 時間制御手段 56 蓄熱温度検知手段 58 ヒ−タ Reference Signs List 8 cooler 31 heat storage device 32 heat storage material 46 time control means 56 heat storage temperature detection means 58 heater
Claims (3)
を並列接続した冷凍サイクルと、任意の時間帯に前記蓄
熱器に熱を蓄熱する蓄熱運転と蓄熱した熱により冷蔵庫
内を冷却する蓄熱冷却運転の時間制御を行う時間制御手
段とを備え、前記蓄熱材の融解温度は、冷凍室温度より
も高い温度とし、前記蓄熱材の重量は、前記冷蔵庫の周
囲温度の年間変化の中で夏季における周囲温度より低い
周囲温度において昼間の電力需要が多い所定の時間帯に
おける前記冷蔵庫内貯蔵室のうち冷蔵温度帯の貯蔵室の
室の合計した負荷熱量と同等の熱量を全て蓄熱できる重
量とし、前記蓄熱冷却運転の対象負荷熱量は、前記冷蔵
庫内貯蔵室のうち冷蔵温度帯の貯蔵室の合計負荷熱量と
することを特徴とする冷蔵庫。1. A refrigerating cycle in which a cooler and a heat accumulator having a heat accumulating material therein are connected in parallel, a heat accumulating operation for accumulating heat in the heat accumulator in an arbitrary time zone, and cooling the inside of the refrigerator by the accumulated heat. and a time control means for time control of the energy storage and cooling operation, the melting temperature of the heat storage material, and higher than the freezing room temperature temperature, weight of the heat storage material, the peripheral of the refrigerator
Lower than ambient temperature in summer in annual change of ambient temperature
In the storage room in the refrigerator in the predetermined time period when the power demand in the daytime is large at the ambient temperature , the amount of heat equivalent to the total load heat amount of the storage room in the storage room in the refrigeration temperature zone is a weight capable of storing all heat, and the heat storage cooling operation is performed. The target load heat quantity is the refrigerated
A refrigerator characterized by a total load calorie of a storage room in a refrigeration temperature zone in a storage room in a refrigerator.
段と冷却器を除霜するヒ−タとを備え、時間制御手段に
より夜間の電力需要が低い所定の時間帯の始めに冷却器
の除霜を行い、除霜終了後から前記蓄熱温度検知手段に
より蓄熱材の蓄熱が終了したことを検知するまでコンプ
レッサを連続運転とし通常冷却運転以外の時間を全て蓄
熱運転により蓄熱するもので、蓄熱冷却運転時間帯が少
なくとも昼間の電力需要がピ−クの時間帯を含むよう前
記蓄熱冷却運転を開始し、前記蓄熱温度検知手段により
前記蓄熱器の冷却能力がなくなったことを検知すること
で前記蓄熱冷却運転を終了する請求項1記載の冷蔵庫。2. A heat storage temperature detecting means for detecting the temperature of a heat storage material and a heater for defrosting the cooler, wherein the time control means starts the cooler at the beginning of a predetermined time zone in which nighttime power demand is low. The defrosting is performed, and after completion of the defrosting, the compressor is continuously operated until the end of the heat storage of the heat storage material is detected by the heat storage temperature detecting means, and heat is stored by the heat storage operation for all times other than the normal cooling operation. The heat storage / cooling operation is started so that the cooling operation time period includes at least a daytime power demand peak time period, and the heat storage temperature detecting means detects that the cooling capacity of the heat storage device has run out. The refrigerator according to claim 1, wherein the heat storage cooling operation is terminated.
段と冷却器を除霜するヒ−タとを備え、時間制御手段に
より夜間の電力需要が低い所定の時間帯から前記蓄熱温
度検知手段により蓄熱材の蓄熱が終了したことを検知す
るまでコンプレッサを連続運転とし通常冷却運転以外の
時間を全て蓄熱運転により蓄熱し、蓄熱運転が終了後に
冷却器の除霜を行うもので、蓄熱冷却運転時間帯が少な
くとも昼間の電力需要がピ−クの時間帯を含むよう前記
蓄熱冷却運転を開始し、前記蓄熱温度検知手段により前
記蓄熱器の冷却能力がなくなったことを検知することで
前記蓄熱冷却運転を終了する請求項1記載の冷蔵庫。3. A heat storage temperature detecting means for detecting a temperature of a heat storage material and a heater for defrosting a cooler, wherein the time control means starts the heat storage temperature detecting means from a predetermined time zone during which nighttime power demand is low. The compressor is continuously operated until the end of the heat storage of the heat storage material is detected, and heat is stored by the heat storage operation for all times other than the normal cooling operation, and the cooler is defrosted after the heat storage operation is completed. The heat storage / cooling operation is started so that at least the daytime power demand includes a peak time period, and the heat storage / cooling operation is performed by detecting that the cooling capacity of the heat storage device is lost by the heat storage temperature detecting means. The refrigerator according to claim 1, wherein the operation is terminated.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP27405892A JP3153649B2 (en) | 1992-10-13 | 1992-10-13 | refrigerator |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP27405892A JP3153649B2 (en) | 1992-10-13 | 1992-10-13 | refrigerator |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH06123539A JPH06123539A (en) | 1994-05-06 |
JP3153649B2 true JP3153649B2 (en) | 2001-04-09 |
Family
ID=17536385
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP27405892A Expired - Fee Related JP3153649B2 (en) | 1992-10-13 | 1992-10-13 | refrigerator |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3153649B2 (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101988305B1 (en) * | 2011-08-30 | 2019-06-12 | 엘지전자 주식회사 | Refrigerator and Controlling Method for the same |
KR20130023872A (en) * | 2011-08-30 | 2013-03-08 | 엘지전자 주식회사 | Refrigerator and controlling method for the same |
JP2016116372A (en) * | 2014-12-16 | 2016-06-23 | シャープ株式会社 | Power management system, control system, control method, and control program |
-
1992
- 1992-10-13 JP JP27405892A patent/JP3153649B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH06123539A (en) | 1994-05-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4840037A (en) | Refrigerator with cold accumulation system | |
US5251455A (en) | Energy efficient insulation system for refrigerator/freezer | |
US8209991B2 (en) | Cooling storage and method of operating the same | |
US4843831A (en) | Refrigerator control system | |
JP2001082850A (en) | Refrigerator | |
JP3193924B2 (en) | refrigerator | |
JP3153649B2 (en) | refrigerator | |
JP3098909B2 (en) | refrigerator | |
JP3098893B2 (en) | refrigerator | |
JP3184334B2 (en) | refrigerator | |
JP3585564B2 (en) | refrigerator | |
JP3184335B2 (en) | refrigerator | |
JP3098892B2 (en) | refrigerator | |
JP3265004B2 (en) | refrigerator | |
JP3098889B2 (en) | refrigerator | |
JP3135428B2 (en) | refrigerator | |
JP3361109B2 (en) | Thermal storage refrigerator | |
JPH09287863A (en) | Refrigerator | |
JPH08240372A (en) | Refrigerator | |
CN112361700A (en) | Refrigerator refrigeration control method and device | |
JPH04254181A (en) | Refrigerator | |
JPH08240371A (en) | Refrigerator | |
JPH06257926A (en) | Refrigerator | |
JPS63197865A (en) | Cold accumulation type refrigerator | |
JP2002122373A (en) | Cold reserving storage |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |