JPH08285440A - Refrigerator - Google Patents

Refrigerator

Info

Publication number
JPH08285440A
JPH08285440A JP9332195A JP9332195A JPH08285440A JP H08285440 A JPH08285440 A JP H08285440A JP 9332195 A JP9332195 A JP 9332195A JP 9332195 A JP9332195 A JP 9332195A JP H08285440 A JPH08285440 A JP H08285440A
Authority
JP
Japan
Prior art keywords
cold air
evaporator
defrosting
cooling system
refrigerator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9332195A
Other languages
Japanese (ja)
Inventor
Shinichi Kaneoka
伸一 金岡
Toshinori Noda
俊典 野田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Refrigeration Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Refrigeration Co filed Critical Matsushita Refrigeration Co
Priority to JP9332195A priority Critical patent/JPH08285440A/en
Publication of JPH08285440A publication Critical patent/JPH08285440A/en
Pending legal-status Critical Current

Links

Landscapes

  • Devices That Are Associated With Refrigeration Equipment (AREA)
  • Defrosting Systems (AREA)
  • Cold Air Circulating Systems And Constructional Details In Refrigerators (AREA)

Abstract

PURPOSE: To change over a defrosting method according to a defrosting load when a cooling system is in an OFF state and reduce power supply to a heater by carrying out defrosting with a heat load in a refrigerating chamber while preventing cold air in a freezing chamber from circulating to operate a cooling fan when a defrosting load is low, and carrying out defrosting with the heater when a defrosting load is high. CONSTITUTION: A cooling system comprises a cold air circulation controlling means 21 for controlling the circulation of cold air to a freezing chamber 18, a cold air blowing means 10 for blowing cold air cooled by an evaporator and a defrosting load detecting means for detecting a defrosting load. In the case where the cooling system is in an OFF state, the inflow of cold air is prevented by the cold air circulation controlling means 21 in the freezing chamber, thereupon the cold air blowing means 10 is operated when a defrosting load detected by the defrosting load detecting means is high, while power is supplied to a defrosting heater 6 when a defrosting load is low.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、冷凍冷蔵庫、特に、蒸
発器を加熱除霜するようにした冷凍冷蔵庫の運転制御に
関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a refrigerator / freezer, and more particularly to an operation control of a refrigerator / freezer in which an evaporator is heated and defrosted.

【0002】[0002]

【従来の技術】図10から図11に従来のこの種の冷凍
冷蔵庫の一例として、実開昭60ー65582号公報
や、特開平2ー33592号公報に開示されている冷凍
冷蔵庫の冷媒回路ブロック図および冷凍冷蔵庫の要部概
略図を示す。
2. Description of the Related Art FIGS. 10 to 11 show an example of a conventional refrigerator-freezer of this type, which is disclosed in Japanese Utility Model Laid-Open No. 60-65582 and Japanese Patent Laid-Open No. 2-33592. The figure and the principal part schematic diagram of a freezer-refrigerator are shown.

【0003】1は冷蔵庫箱体、2はこの箱体の上部奥側
に設けられた蒸発器室、3は前記蒸発器室2に配設され
た蒸発器、4は蒸発器3を支持するための相対する一対
のエンドプレートである。
Reference numeral 1 is a refrigerator box, 2 is an evaporator chamber provided in the upper back side of the box, 3 is an evaporator provided in the evaporator chamber 2, and 4 is for supporting the evaporator 3. And a pair of end plates facing each other.

【0004】5はエンドプレート4の下部に先端部をそ
れぞれ内側に向けて取り付けられた一対の熱対流用ガイ
ド、6は蒸発器3の下方に配設された除霜手段(以下除
霜ヒータと呼ぶ)、7はこの除霜ヒータ6の真上に取り
付けられたカサ、8は蒸発器室2の最下部5配設され
て、霜溶け水をうけるためのトイ、9は蒸発器3の出口
側に接続され蒸発器3の上部に配設した液だめタンクで
ある。
Reference numeral 5 denotes a pair of heat convection guides which are attached to the lower portion of the end plate 4 with their front ends facing inward, and 6 denotes defrosting means (hereinafter referred to as a defrosting heater) arranged below the evaporator 3. 7 is a bulkhead mounted directly above the defrosting heater 6, 8 is a lowermost portion 5 of the evaporator chamber 2, and is a toy for receiving frost-melting water, and 9 is an outlet of the evaporator 3. It is a liquid reservoir tank connected to the side and arranged above the evaporator 3.

【0005】10は蒸発器室2の上部に設置された冷気
送風手段で、蒸発器3との熱交換により冷却された冷気
を庫内に強制対流させるものである。
Reference numeral 10 denotes a cool air blowing means installed in the upper part of the evaporator chamber 2 for forcibly convection the cool air cooled by heat exchange with the evaporator 3 into the chamber.

【0006】また、11は除霜タイマで、圧縮機12の
運転時間を積算して一定時間毎に圧縮機12の運転を停
止させると共に、前記除霜ヒータ6を作動させ、蒸発器
3の温度が所定温度になった後、圧縮機12を再起動作
せるためのものである。
A defrosting timer 11 integrates the operating time of the compressor 12 to stop the operation of the compressor 12 at regular intervals, and activates the defrosting heater 6 to control the temperature of the evaporator 3. Is for restarting the compressor 12 after the temperature reaches a predetermined temperature.

【0007】13は除霜ヒータ6に直列に接続した温度
ヒューズ、14は除霜タイマ11を介して圧縮機12に
直列に接続した庫内温度検出手段、15は凝縮器、16
は減圧装置である。
Reference numeral 13 is a temperature fuse connected in series to the defrosting heater 6, 14 is an inside temperature detecting means connected in series to the compressor 12 via the defrosting timer 11, 15 is a condenser, 16
Is a decompression device.

【0008】前記蒸発器3、液だめタンク9、圧縮機1
2、凝縮器15、減圧装置16冷媒管路により順次接続
して冷凍サイクル回路を構成している。
The evaporator 3, the sump tank 9 and the compressor 1
2, the condenser 15, and the pressure reducing device 16 are connected in sequence by a refrigerant pipe line to form a refrigeration cycle circuit.

【0009】以上のように従来例の冷凍冷蔵庫は、除霜
ヒータ6を蒸発器3の下方に設置しているため、除霜ヒ
ータにより加熱された空気の一部は、上方、すなわち蒸
発器3下部へ自然対流し、加熱された空気の一部は熱対
流用ガイド5に案内されて蒸発器3の両側部に自然対流
する。又一部は蒸発器3の中央部に対流する。
As described above, in the conventional refrigerator-freezer, since the defrost heater 6 is installed below the evaporator 3, a part of the air heated by the defrost heater is located above, that is, the evaporator 3. Natural convection to the lower part occurs, and part of the heated air is guided by the heat convection guide 5 and naturally convection to both sides of the evaporator 3. Further, a part of it convects to the central part of the evaporator 3.

【0010】従って、蒸発器3及び、液だめタンク9の
表面に付着した霜は、上方に自然対流する空気と熱交換
して除霜される。
Therefore, the frost adhering to the surfaces of the evaporator 3 and the liquid storage tank 9 is defrosted by exchanging heat with the air which naturally convects upward.

【0011】[0011]

【発明が解決しようとする課題】しかしながら、上記の
様な冷凍冷蔵庫では除霜ヒータ6により熱せられた空気
を、蒸発器3下部とその両側部に対流させ、蒸発器3を
昇温させて霜を融かす。このとき除霜以外に周辺の部品
等の温度も同時に上昇させてしまい霜を融かすという本
来の役割以外に除霜ヒータ6の熱量を使用するので非常
に効率が悪い。
However, in the refrigerating refrigerator as described above, the air heated by the defrosting heater 6 is convected to the lower portion of the evaporator 3 and both side portions thereof to raise the temperature of the evaporator 3 and frost. Melt. At this time, in addition to the defrosting, the temperature of peripheral parts and the like is also raised at the same time, and the heat quantity of the defrosting heater 6 is used in addition to the original role of melting the frost, which is extremely inefficient.

【0012】また除霜時に発生する熱負荷により冷凍室
の食品温度が一次的に上昇するので食品の品質劣化が発
生し易い。しかも除霜終了後は庫内温度が高くなってい
るため、除霜終了後の圧縮機12の運転時間が長くなり
消費電力量の増加につながる。
Further, since the food temperature in the freezing room rises temporarily due to the heat load generated during defrosting, the quality of the food is likely to deteriorate. Moreover, since the internal temperature of the refrigerator is high after the defrosting ends, the operating time of the compressor 12 after the defrosting ends becomes longer, which leads to an increase in the power consumption.

【0013】また、従来方式の除霜では日に1〜2度程
度の除霜であり蒸発器3の表面はほぼ常に着霜した状態
で運転を行うこととなり、蒸発器3の効率がフルに発揮
できない状態が続くことになるので冷蔵庫の冷却能力の
低下をきたし、増電となる。
In the conventional method of defrosting, the defrosting is performed once or twice a day, and the operation of the evaporator 3 is almost always frosted, so that the efficiency of the evaporator 3 is maximized. Since it will continue to be inoperable, it will reduce the cooling capacity of the refrigerator and increase electricity.

【0014】このように従来のヒータ加熱方式の除霜
は、消費電力量の面、食品保鮮の面の両面で大きな欠点
を有している。
As described above, the conventional heater-heating-type defrosting has major drawbacks in terms of both power consumption and food preservation.

【0015】本発明は、以上のような従来例の問題点を
解決するもので、除霜負荷が小さいときは冷蔵室、野菜
室等の冷蔵庫庫内の空気熱源により除霜を行い、除霜負
荷が大きいときは除霜ヒータにより除霜を行うことによ
り、除霜ヒータの使用頻度を減らし、しかも蒸発器は着
霜がほとんどない状態に維持できるため非常に効率の良
い省エネルギーな冷凍冷蔵庫を提供するものである。
The present invention solves the above-described problems of the conventional example. When the defrosting load is small, defrosting is performed by an air heat source in a refrigerator such as a refrigerating room or a vegetable room. By providing defrosting with a defrosting heater when the load is heavy, the frequency of use of the defrosting heater can be reduced, and since the evaporator can be maintained in a state with almost no frost formation, a highly efficient and energy-saving refrigerator / freezer is provided. To do.

【0016】また、除霜時における冷凍室食品温度の大
幅な上昇を軽減することができるので、庫内の食品の温
度をほぼ一定に保つことができ、高品質に食品を保鮮、
維持できる従来にない斬新的な冷凍冷蔵庫を提供するも
のである。
Further, since it is possible to reduce a large rise in the temperature of the food in the freezer during defrosting, the temperature of the food in the refrigerator can be kept substantially constant, and the food can be preserved with high quality,
It is a novel freezer-refrigerator that is unprecedented and can be maintained.

【0017】[0017]

【課題を解決するための手段】この目的を達成するため
に本発明の冷凍冷蔵庫は、庫内温度検出手段の出力結果
を基にON、OFFする冷却システムと、冷凍室への冷
気循環を制御する冷気循環制御手段と、蒸発器により冷
却された冷気を送るための冷気送風手段と、除霜負荷を
検出する除霜負荷検出手段から成り、冷却システムがO
FFし、かつ除霜負荷があらかじめ設定した値より少な
いときは、冷凍室の冷気循環制御手段により冷凍室への
冷気流入を防止すると共に冷気送風手段を駆動させるこ
とにより停止時に冷蔵室の庫内空気を蒸発器と熱交換さ
せ除霜させ、除霜負荷があらかじめ設定した値より大き
い場合には、除霜ヒーターにより除霜させるものであ
る。
In order to achieve this object, a refrigerator-freezer of the present invention controls a cooling system which is turned on and off based on an output result of a temperature detecting means in a refrigerator, and a cold air circulation to a freezing compartment. Cooling air circulation control means, cooling air blowing means for sending the cool air cooled by the evaporator, and defrosting load detecting means for detecting the defrosting load.
When the FF is performed and the defrosting load is less than a preset value, the cold air circulation control means of the freezing room prevents the cold air from flowing into the freezing room and drives the cold air blowing means to stop the inside of the refrigerating room. When the defrosting load is larger than a preset value, the defrosting heater defrosts the air by exchanging heat with the evaporator.

【0018】また、庫内温度検出手段の出力結果を基に
ON、OFFする冷却システムと、冷凍室への冷気循環
を制御する冷気循環制御手段と、蒸発器により冷却され
た冷気を送るための冷気送風手段と、蒸発器の着霜量を
検出する蒸発器着霜量検出手段から成り、冷却システム
がOFFし、かつ蒸発器着霜量があらかじめ設定した着
霜量より少ないときは、冷凍室の冷気循環制御手段によ
り冷凍室への冷気流入を防止すると共に冷気送風手段を
駆動させることにより停止時に冷蔵室の庫内空気を蒸発
器と熱交換させ除霜させ、蒸発器着霜量があらかじめ設
定した着霜量より多い場合には、除霜ヒーターにより除
霜させるものである。
Further, a cooling system which is turned on and off based on the output result of the internal temperature detection means, a cold air circulation control means which controls the cold air circulation to the freezing room, and a cool air which is cooled by the evaporator are sent. When the cooling system is off and the evaporator frost amount is less than the preset frost amount, the freezer is composed of a cool air blowing unit and an evaporator frost amount detecting unit that detects the frost amount of the evaporator. The cold air circulation control means prevents the cold air from flowing into the freezing room and drives the cold air blowing means to defrost the air inside the cold storage room by exchanging heat with the evaporator at the time of stop, and When the amount of frost is larger than the set amount, defrosting is performed by the defrosting heater.

【0019】また、庫内温度検出手段の出力結果を基に
ON、OFFする冷却システムと、冷凍室への冷気循環
を制御する冷気循環制御手段と、蒸発器により冷却され
た冷気を送るための冷気送風手段と、冷却システムON
時間を検知する冷却システムON時間検知手段から成
り、冷却システムがOFFし、かつ冷却システムON時
間があらかじめ設定した時間より短いときのみ、冷凍室
の冷気循環制御手段により冷凍室への冷気流入を防止す
ると共に冷気送風手段を駆動させることにより停止時に
冷蔵室の庫内空気を蒸発器と熱交換させ除霜させ、冷却
システムON時間があらかじめ設定した時間より低い場
合には、除霜ヒーターにより除霜させるものである。
Further, a cooling system which is turned on and off based on the output result of the internal temperature detection means, a cold air circulation control means which controls cold air circulation to the freezer compartment, and a cool air which is cooled by the evaporator are sent. Cold air blowing means and cooling system ON
It consists of a cooling system ON time detection means for detecting time, and prevents the cold air from flowing into the freezing room by the cooling air circulation control means of the freezing room only when the cooling system is OFF and the cooling system ON time is shorter than the preset time. In addition, by driving the cool air blowing means, the air inside the refrigerating room is heat-exchanged with the evaporator to defrost when stopped, and when the cooling system ON time is lower than the preset time, the defrost heater defrosts it. It is what makes me.

【0020】また、庫内温度検出手段の出力結果を基に
ON、OFFする冷却システムと、冷凍室への冷気循環
を制御する冷気循環制御手段と、蒸発器により冷却され
た冷気を送るための冷気送風手段と、外気温度を検出す
る外気温検出手段から成り、冷却システムがOFFし、
かつ外気温度があらかじめ設定した温度範囲に含まれる
ときのみ、冷凍室の冷気循環制御手段により冷凍室への
冷気流入を防止すると共に冷気送風手段を駆動させるこ
とにより停止時に冷蔵室の庫内空気を蒸発器と熱交換さ
せ除霜させ、外気温度があらかじめ設定した温度範囲に
含まれないときには、除霜ヒーターにより除霜させるも
のである。
Further, a cooling system that is turned on and off based on the output result of the internal temperature detection means, a cold air circulation control means that controls the cold air circulation to the freezer compartment, and a cool air that is cooled by the evaporator are sent. It consists of cold air blowing means and outside air temperature detecting means for detecting the outside air temperature, and the cooling system is turned off.
And only when the outside air temperature is included in the preset temperature range, the cold air circulation control means of the freezing room prevents cold air from flowing into the freezing room, and the cold air blowing means is driven to remove the air inside the refrigerating room at the time of stop. Defrosting is performed by exchanging heat with the evaporator, and when the outside air temperature is not within the preset temperature range, defrosting is performed by the defrosting heater.

【0021】[0021]

【作用】本発明は、従来のように一定時間毎に圧縮機を
停止し除霜ヒータの加熱により蒸発器の霜を融かすので
はなく、上記の構成によって、冷却システムがOFF
し、かつ除霜負荷があらかじめ設定した値より少ないと
き、冷凍室への吹き出しを閉路したうえで冷気送風手段
を駆動させ冷蔵庫庫内の空気熱源により除霜を行い除霜
負荷があらかじめ設定した値より大きいとき除霜ヒータ
ーにより除霜を行う事により、除霜ヒータをできる限り
使用せずに、しかも蒸発器は常に着霜がほとんどない状
態に維持できるため非常に効率の良い省エネルギーな冷
凍冷蔵庫を提供する。しかも、除霜ヒータの加熱が軽減
できるため冷凍室や冷蔵室の食品の温度上昇が軽減で
き、高品質の食品保鮮が可能である。
The present invention does not melt the frost in the evaporator by heating the defrosting heater to stop the compressor at regular intervals as in the prior art, but the cooling system is turned off by the above configuration.
If the defrosting load is less than the preset value, the blowout to the freezer is closed and the cool air blower is driven to defrost the air heat source in the refrigerator and the defrosting load is set to the preset value. Defrosting with a defrosting heater when it is larger than that can minimize the use of the defrosting heater as much as possible, and because the evaporator can always be kept in a state with almost no frost, it is a very efficient and energy-saving refrigerator / freezer. provide. Moreover, since the heating of the defrosting heater can be reduced, the temperature rise of the food in the freezer compartment or the refrigerator compartment can be reduced, and high-quality food preservation can be achieved.

【0022】また、冷却システムがOFFし、かつ蒸発
器着霜量があらかじめ設定した着霜量より少ないとき、
冷凍室への吹き出しを閉路したうえで冷気送風手段を駆
動させ冷蔵庫庫内の空気熱源により除霜を行い、蒸発器
着霜量があらかじめ設定した着霜量より多いときは除霜
ヒーターにより除霜を行う事により、除霜ヒータをでき
る限り使用せずに、しかも蒸発器は常に着霜がほとんど
ない状態に維持できるため非常に効率の良い省エネルギ
ーな冷凍冷蔵庫を提供する。しかも、除霜ヒータの加熱
が軽減できるため冷凍室や冷蔵室の食品の温度上昇が軽
減でき、高品質の食品保鮮が可能である。
When the cooling system is off and the amount of frost formation on the evaporator is less than the amount of frost formation set in advance,
After closing the blowout to the freezer, the cold air blower is driven to defrost the air heat source in the refrigerator, and when the evaporator frost amount is greater than the preset frost amount, the defrost heater defrosts it. By doing so, it is possible to provide a very efficient and energy-saving refrigerator / refrigerator because it is possible to keep the evaporator almost free of frost while using the defrosting heater as little as possible. Moreover, since the heating of the defrosting heater can be reduced, the temperature rise of the food in the freezer compartment or the refrigerator compartment can be reduced, and high-quality food preservation can be achieved.

【0023】また、冷却システムがOFFし、かつ冷却
システムON時間があらかじめ設定した時間より短いと
きのみ、冷凍室への吹き出しを閉路したうえで冷気送風
手段を駆動させ冷蔵庫庫内の空気熱源により除霜を行
い、冷却システムON時間があらかじめ設定した時間よ
り長いときは除霜ヒーターにより除霜を行う事により、
除霜ヒータをできる限り使用せずに、しかも蒸発器は常
に着霜がほとんどない状態に維持できるため非常に効率
の良い省エネルギーな冷凍冷蔵庫を提供する。しかも、
除霜ヒータの加熱が軽減できるため冷凍室や冷蔵室の食
品の温度上昇が軽減でき、高品質の食品保鮮が可能であ
る。
Further, only when the cooling system is OFF and the cooling system ON time is shorter than a preset time, the blowing to the freezer is closed, the cool air blowing means is driven, and the air heat source in the refrigerator removes the air. When defrosting is performed and the cooling system ON time is longer than the preset time, defrosting is performed by the defrost heater.
The defrosting heater is used as little as possible, and the evaporator can be maintained in a state where there is almost no frost. Moreover,
Since the heating of the defrost heater can be reduced, the temperature rise of the food in the freezer compartment or the refrigerator compartment can be reduced, and high-quality food preservation can be achieved.

【0024】また、冷却システムがOFFし、かつ外気
温があらかじめ設定した温度範囲に含まれるときのみ、
冷凍室への吹き出しを閉路したうえで冷気送風手段を駆
動させ冷蔵庫庫内の空気熱源により除霜を行い、外気温
があらかじめ設定した温度範囲に含まれないときは除霜
ヒーターにより除霜を行う事により、除霜ヒータをでき
る限り使用せずに、しかも蒸発器は常に着霜がほとんど
ない状態に維持できるため非常に効率の良い省エネルギ
ーな冷凍冷蔵庫を提供する。しかも、除霜ヒータの加熱
が軽減できるため冷凍室や冷蔵室の食品の温度上昇が軽
減でき、高品質の食品保鮮が可能である。
Further, only when the cooling system is turned off and the outside air temperature is within the preset temperature range,
After closing the blowout to the freezer, the cold air blower is driven to defrost the air heat source inside the refrigerator, and when the outside air temperature is not within the preset temperature range, the defrost heater defrosts it. As a result, it is possible to provide a very efficient and energy-saving refrigerator / freezer because the evaporator can always be maintained in a state with almost no frost, while using the defrost heater as little as possible. Moreover, since the heating of the defrosting heater can be reduced, the temperature rise of the food in the freezer compartment or the refrigerator compartment can be reduced, and high-quality food preservation can be achieved.

【0025】[0025]

【実施例】以下本発明の一実施例の冷凍冷蔵庫について
図面を参照しながら説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A freezer-refrigerator according to an embodiment of the present invention will be described below with reference to the drawings.

【0026】従来例と同一の構成については同一符号を
符してその詳細な説明を省略する。17は冷凍室18の
奥面の蒸発器室2上部でかつ冷気送風手段10の前方に
設置した冷気循環制御手段である。前記冷気循環制御手
段は冷却システムのオンオフに同期して開閉するダンパ
17aを有している。また冷気送風手段10の側方には
冷蔵室ダクト19を介して冷蔵室20につながる開口部
21を設置している。
The same components as those of the conventional example are designated by the same reference numerals and detailed description thereof will be omitted. Reference numeral 17 denotes a cool air circulation control means installed on the back side of the freezing room 18 above the evaporator chamber 2 and in front of the cool air blowing means 10. The cold air circulation control means has a damper 17a which opens and closes in synchronization with the on / off of the cooling system. In addition, an opening 21 is provided on the side of the cool air blowing means 10 and connected to the refrigerating compartment 20 via a refrigerating compartment duct 19.

【0027】また冷凍室18の底面には冷気の吸い込み
口22を、冷蔵室20の上面に吸い込み口23を設置し
ている。
A cold air suction port 22 is provided on the bottom of the freezing chamber 18, and a suction port 23 is provided on the upper surface of the refrigerating chamber 20.

【0028】また、除霜した際に出てくる水を受けて冷
蔵庫外に排出するためのドレンガイド24を冷蔵庫の背
面に設置し、その排出口の下部に蒸発皿25を設けてい
る。
Further, a drain guide 24 for receiving water discharged during defrosting and discharging it to the outside of the refrigerator is installed on the back surface of the refrigerator, and an evaporation tray 25 is provided below the discharge port.

【0029】また、蒸発器3の下部には従来のように除
霜ヒータ6を設置してる。30は蒸発器3の上左部に設
置した除霜負荷検出手段である。
A defrost heater 6 is installed below the evaporator 3 as in the conventional case. Reference numeral 30 is a defrosting load detecting means installed on the upper left part of the evaporator 3.

【0030】一般に前記除霜負荷検出手段30は蒸発器
の中でも最も霜のつき易い位置に設置する。
Generally, the defrosting load detecting means 30 is installed at a position where frost is most likely to occur in the evaporator.

【0031】以上のように構成されたこの冷凍冷蔵庫の
運転動作について説明する。圧縮機は庫内温度検出手段
14の出力を基に低くなれば停止、高くなれば運転とい
う通常の運転動作を行い冷蔵庫を一定の温度に維持す
る。この通常の運転モードにおける冷気循環制御手段1
7、冷気送風手段10、及び蒸発器3の温度等の制御動
作を図3のタイミングチャートを用いて説明する。
The operation of the refrigerator / refrigerator constructed as above will be described. The compressor keeps the refrigerator at a constant temperature by performing a normal operation operation of stopping when the temperature becomes lower and operating when the temperature becomes higher based on the output of the inside temperature detecting means 14. Cold air circulation control means 1 in this normal operation mode
7, the control operation of the temperature and the like of the cool air blowing unit 10 and the evaporator 3 will be described with reference to the timing chart of FIG.

【0032】圧縮機12がONしている間は冷気循環制
御手段17はダンパ17aにより開路され、また冷気送
風手段10は冷気を庫内に送るためONしている。この
結果、冷蔵庫庫内が冷やされ、蒸発器3の温度も時間と
共に低下する。そして庫内温度検出手段14が充分に冷
やされた時点T1で圧縮機12が停止し、かつ冷気循環
制御手段17のダンパ17aが閉路する。この時点で除
霜負荷検出手段30により検出された値が予め定められ
た量G1より少ない場合、冷気送風手段10は引き続き
通電された状態で送風を続ける。
While the compressor 12 is on, the cool air circulation control means 17 is opened by the damper 17a, and the cool air blowing means 10 is on to send the cool air into the refrigerator. As a result, the inside of the refrigerator is cooled and the temperature of the evaporator 3 also decreases with time. Then, at the time T1 when the internal temperature detection means 14 is sufficiently cooled, the compressor 12 is stopped and the damper 17a of the cold air circulation control means 17 is closed. If the value detected by the defrosting load detecting means 30 is smaller than the predetermined amount G1 at this time point, the cool air blowing means 10 continues to blow air while still being energized.

【0033】従って、冷気送風手段10により送風され
た空気は、冷気循環制御手段17のダンパ17aにより
冷凍室18へは流れ込まず、側面の開口部21から冷蔵
室ダクト19をへて冷蔵室20へと流れ込む。そして冷
蔵庫庫内を冷やした上で、5〜7℃程度の温度となり吸
い込み口23から蒸発器室2へと戻り再び蒸発器3と熱
交換した上で冷気送風手段10により開口部21へと送
り込まれる。この動作を繰り返す。
Therefore, the air blown by the cool air blowing means 10 does not flow into the freezer compartment 18 by the damper 17a of the cool air circulation control means 17, but goes into the refrigerating compartment 20 from the side opening 21 through the refrigerating compartment duct 19. Flows in. After cooling the inside of the refrigerator, the temperature of the refrigerator reaches about 5 to 7 ° C., returns from the suction port 23 to the evaporator chamber 2, exchanges heat with the evaporator 3 again, and is then sent to the opening 21 by the cool air blowing means 10. Be done. This operation is repeated.

【0034】この結果、蒸発器3の温度は5〜7℃程度
の空気と熱交換することになり、急激に温度上昇する。
そして蒸発器3に付着した霜が融ける温度0℃を超える
温度まで到達する。
As a result, the temperature of the evaporator 3 exchanges heat with the air of about 5 to 7 ° C., and the temperature rises rapidly.
Then, the temperature reaches a temperature exceeding 0 ° C. at which the frost attached to the evaporator 3 melts.

【0035】そして、庫内温度検出手段14の温度が上
昇した時点T2で圧縮機12が通電されONし、冷気循
環制御手段17が開路する。この結果蒸発器3の温度は
低下し、冷凍室18、冷蔵室20へ冷気を送り出し、充
分に温度が低下すれば圧縮機12は停止する。このよう
な動作を繰り返し行うことにより、ほぼ一定の温度を維
持しつつ、冷却システムの停止時には霜の着いた蒸発器
3を冷蔵室の比較的高温の空気と熱交換させ融かして、
ドレンガイド24をへて蒸発皿25に排出し、圧縮機1
2の熱で蒸発させられる。
Then, at time T2 when the temperature of the internal temperature detecting means 14 rises, the compressor 12 is energized and turned on, and the cold air circulation control means 17 is opened. As a result, the temperature of the evaporator 3 drops, and cold air is sent to the freezer compartment 18 and the refrigerating compartment 20. If the temperature drops sufficiently, the compressor 12 stops. By repeatedly performing such an operation, while maintaining a substantially constant temperature, the frosted evaporator 3 is heat-exchanged with the relatively high temperature air in the refrigerating room to melt when the cooling system is stopped,
The drain guide 24 is discharged to the evaporation tray 25, and the compressor 1
It is evaporated with the heat of 2.

【0036】また、庫内温度検出手段14が充分に冷や
された時点T3で圧縮機12が停止し、かつ冷気循環制
御手段17のダンパ17aが閉路する時点で除霜負荷検
出手段30により検出された除霜負荷が予め定められた
量G1より多い場合、従来例の冷凍冷蔵庫の除霜方法と
同様に、蒸発器3の下方に設置している除霜ヒータ6に
より加熱された空気の一部が、上方、すなわち蒸発器3
下部へ自然対流し、加熱された空気の一部は熱対流用ガ
イド5に案内されて蒸発器3の両側部に自然対流する。
又一部は蒸発器3の中央部に対流する。
Further, the compressor 12 is stopped at the time T3 when the inside temperature detecting means 14 is sufficiently cooled, and is detected by the defrosting load detecting means 30 at the time when the damper 17a of the cold air circulation control means 17 is closed. When the defrosting load is larger than a predetermined amount G1, a part of the air heated by the defrosting heater 6 installed below the evaporator 3 is used as in the conventional defrosting method of the refrigerator / freezer. But above, ie the evaporator 3
Natural convection to the lower part occurs, and part of the heated air is guided by the heat convection guide 5 and naturally convection to both sides of the evaporator 3.
Further, a part of it convects to the central part of the evaporator 3.

【0037】従って、蒸発器3及び、液だめタンク9の
表面に付着した霜は、上方に自然対流する空気と熱交換
して除霜される。
Therefore, the frost attached to the surfaces of the evaporator 3 and the liquid storage tank 9 is defrosted by exchanging heat with the air that naturally convects upward.

【0038】以上の結果、従来のように一定時間毎に圧
縮機を停止し除霜ヒータの加熱により蒸発器の霜を融か
すのではなく、上記の構成によって、除霜負荷に応じて
除霜方法を切り換え、除霜負荷の少ないときには、冷却
サイクルのON、OFFのOFF中に、冷凍室への吹き
出しを閉路したうえで冷気送風手段を駆動させ冷蔵庫庫
内の空気熱源により除霜を行うことにより、除霜ヒータ
6の通電をできる限り無くすことにより除霜に要するヒ
ータ電力及び除霜時の温度上昇にともなう冷却システム
の運転に必要な電力が押さえられ大幅な省エネになる。
As a result, instead of stopping the compressor at regular intervals and melting the frost in the evaporator by heating the defrosting heater as in the conventional case, the defrosting according to the defrosting load is achieved by the above configuration. When the method is switched and the defrosting load is small, while the cooling cycle is ON and OFF, the blowout to the freezer is closed and the cool air blower is driven to perform defrosting with the air heat source inside the refrigerator. As a result, the defrosting heater 6 is deenergized as much as possible, so that the heater power required for defrosting and the power required for operating the cooling system associated with the temperature rise during defrosting are suppressed, resulting in significant energy savings.

【0039】しかも蒸発器3には常に着霜がほとんどな
い状態を維持できるため非常に効率の良い蒸発器3を維
持できるので一層省エネルギーな冷凍冷蔵庫を提供でき
る。
Moreover, since the evaporator 3 can be maintained in a state where there is almost no frost, the evaporator 3 can be maintained with a very high efficiency, so that a more energy-saving refrigerator / freezer can be provided.

【0040】しかもその上に、除霜ヒータの加熱が軽減
できるため冷凍室や冷蔵室の食品の温度上昇が軽減で
き、より高品質の食品保鮮が可能となるものである。
Moreover, since the heating of the defrosting heater can be reduced, the temperature rise of the food in the freezer compartment or the refrigerator compartment can be suppressed, and higher quality food can be preserved.

【0041】次に本発明による冷凍冷蔵庫の第2の実施
例について、図4、図5を参照しながら第1の実施例と
異なる点を中心に説明する。
Next, a second embodiment of the refrigerator-freezer according to the present invention will be described with reference to FIGS. 4 and 5 focusing on the points different from the first embodiment.

【0042】31は蒸発器3の上左部に設置した蒸発器
着霜量検出手段である。一般に前記蒸発器着霜量検出手
段30は蒸発器の中でも最も霜のつき易い位置に設置す
る。
Reference numeral 31 is an evaporator frost amount detecting means installed on the upper left part of the evaporator 3. Generally, the evaporator frost formation detecting means 30 is installed at a position where frost is most likely to occur in the evaporator.

【0043】以上のように構成されたこの冷凍冷蔵庫の
運転動作について説明する。圧縮機は庫内温度検出手段
14の出力を基に低くなれば停止、高くなれば運転とい
う通常の運転動作を行い冷蔵庫を一定の温度に維持す
る。
The operation of the refrigerator / refrigerator constructed as above will be described. The compressor keeps the refrigerator at a constant temperature by performing a normal operation operation of stopping when the temperature becomes lower and operating when the temperature becomes higher based on the output of the inside temperature detecting means 14.

【0044】この通常の運転モードにおける冷気循環制
御手段17、冷気送風手段10、及び蒸発器3の温度等
の制御動作を図5のタイミングチャートを用いて説明す
る。
The control operation of the temperature of the cool air circulation control means 17, the cool air blowing means 10 and the evaporator 3 in this normal operation mode will be described with reference to the timing chart of FIG.

【0045】圧縮機12がONしている間は冷気循環制
御手段17はダンパ17aにより開路され、また冷気送
風手段10は冷気を庫内に送るためONしている。この
結果、冷蔵庫庫内が冷やされ、蒸発器3の温度も時間と
共に低下する。
While the compressor 12 is on, the cold air circulation control means 17 is opened by the damper 17a, and the cold air blowing means 10 is on to send the cool air to the inside of the refrigerator. As a result, the inside of the refrigerator is cooled and the temperature of the evaporator 3 also decreases with time.

【0046】そして庫内温度検出手段14が充分に冷や
された時点T5で圧縮機12が停止し、かつ冷気循環制
御手段17のダンパ17aが閉路する。
At time T5 when the internal temperature detecting means 14 is sufficiently cooled, the compressor 12 is stopped and the damper 17a of the cold air circulation control means 17 is closed.

【0047】この時点で蒸発器着霜量検出手段31によ
り検出された着霜量が予め定められた量G2より少ない
場合、冷気送風手段10は引き続き通電された状態で送
風を続ける。
At this time, when the frost formation detected by the evaporator frost formation detection unit 31 is smaller than the predetermined amount G2, the cool air blowing unit 10 continues to blow air while being energized.

【0048】従って、冷気送風手段10により送風され
た空気は、冷気循環制御手段17のダンパ17aにより
冷凍室18へは流れ込まず、側面の開口部21から冷蔵
室ダクト19をへて冷蔵室20へと流れ込む。
Therefore, the air blown by the cool air blowing means 10 does not flow into the freezer compartment 18 by the damper 17a of the cool air circulation control means 17, but goes into the refrigerating compartment 20 from the side opening 21 through the refrigerating compartment duct 19. Flows in.

【0049】そして冷蔵庫庫内を冷やした上で、5〜7
℃程度の温度となり吸い込み口23から蒸発器室2へと
戻り再び蒸発器3と熱交換した上で冷気送風手段10に
より開口部21へと送り込まれる。この動作を繰り返
す。
Then, after cooling the inside of the refrigerator, 5 to 7
The temperature reaches about 0 ° C., returns to the evaporator chamber 2 from the suction port 23, exchanges heat with the evaporator 3 again, and is then sent to the opening 21 by the cool air blowing means 10. This operation is repeated.

【0050】この結果、蒸発器3の温度は5〜7℃程度
の空気と熱交換することになり、急激に温度上昇する。
そして蒸発器3に付着した霜が融ける温度0℃を超える
温度まで到達する。
As a result, the temperature of the evaporator 3 exchanges heat with the air at about 5 to 7 ° C., and the temperature rises rapidly.
Then, the temperature reaches a temperature exceeding 0 ° C. at which the frost attached to the evaporator 3 melts.

【0051】そして、庫内温度検出手段14の温度が上
昇した時点T6で圧縮機12が通電されONし、冷気循
環制御手段17が開路する。この結果蒸発器3の温度は
低下し、冷凍室18、冷蔵室20へ冷気を送り出し、充
分に温度が低下すれば圧縮機12は停止する。このよう
な動作を繰り返し行うことにより、ほぼ一定の温度を維
持しつつ、冷却システムの停止時には霜の着いた蒸発器
3を冷蔵室の比較的高温の空気と熱交換させ融かして、
ドレンガイド24をへて蒸発皿25に排出し、圧縮機1
2の熱で蒸発させられる。
Then, at time T6 when the temperature of the internal temperature detecting means 14 rises, the compressor 12 is energized and turned on, and the cold air circulation control means 17 is opened. As a result, the temperature of the evaporator 3 drops, and cold air is sent to the freezer compartment 18 and the refrigerating compartment 20. If the temperature drops sufficiently, the compressor 12 stops. By repeatedly performing such an operation, while maintaining a substantially constant temperature, the frosted evaporator 3 is heat-exchanged with the relatively high temperature air in the refrigerating room to melt when the cooling system is stopped,
The drain guide 24 is discharged to the evaporation tray 25, and the compressor 1
It is evaporated with the heat of 2.

【0052】また、庫内温度検出手段14が充分に冷や
された時点T7で圧縮機12が停止し、かつ冷気循環制
御手段17のダンパ17aが閉路する時点で蒸発器着霜
量検出手段31により検出された着霜量が予め定められ
た量G2より多い場合、従来例の冷凍冷蔵庫の除霜方法
と同様に、蒸発器3の下方に設置している除霜ヒータ6
により加熱された空気の一部が、上方、すなわち蒸発器
3下部へ自然対流し、加熱された空気の一部は熱対流用
ガイド5に案内されて蒸発器3の両側部に自然対流す
る。又一部は蒸発器3の中央部に対流する。
At the time T7 when the inside temperature detecting means 14 is sufficiently cooled, the compressor 12 is stopped, and at the time when the damper 17a of the cool air circulation control means 17 is closed, the evaporator frost amount detecting means 31 is used. When the detected frosting amount is larger than the predetermined amount G2, the defrosting heater 6 installed below the evaporator 3 is similar to the defrosting method of the conventional refrigerator-freezer.
Part of the air heated by means of natural convection to the upper part, that is, the lower part of the evaporator 3, and part of the heated air is guided by the heat convection guides 5 and naturally convection to both sides of the evaporator 3. Further, a part of it convects to the central part of the evaporator 3.

【0053】従って、蒸発器3及び、液だめタンク9の
表面に付着した霜は、上方に自然対流する空気と熱交換
して除霜される。
Therefore, the frost adhering to the surfaces of the evaporator 3 and the liquid storage tank 9 is defrosted by exchanging heat with the air that naturally convects upward.

【0054】以上の結果、従来のように一定時間毎に圧
縮機を停止し除霜ヒータの加熱により蒸発器の霜を融か
すのではなく、上記の構成によって、除霜負荷に応じて
除霜方法を切り換え、除霜負荷の少ないときには、冷却
サイクルのON、OFFのOFF中に、冷凍室への吹き
出しを閉路したうえで冷気送風手段を駆動させ冷蔵庫庫
内の空気熱源により除霜を行うことにより、除霜ヒータ
6の通電をできる限り無くすことにより除霜に要するヒ
ータ電力及び除霜時の温度上昇にともなう冷却システム
の運転に必要な電力が押さえられ大幅な省エネになる。
As a result, instead of stopping the compressor at regular intervals and melting the frost of the evaporator by heating the defrosting heater as in the conventional case, the above-mentioned configuration allows defrosting depending on the defrosting load. When the method is switched and the defrosting load is small, while the cooling cycle is ON and OFF, the blowout to the freezer is closed and the cool air blower is driven to perform defrosting with the air heat source inside the refrigerator. As a result, the defrosting heater 6 is deenergized as much as possible, so that the heater power required for defrosting and the power required for operating the cooling system associated with the temperature rise during defrosting are suppressed, resulting in significant energy savings.

【0055】しかも蒸発器3には常に着霜がほとんどな
い状態を維持できるため非常に効率の良い蒸発器3を維
持できるので一層省エネルギーな冷凍冷蔵庫を提供でき
る。
Moreover, since the evaporator 3 can be maintained in a state where almost no frost is formed at all times, the evaporator 3 can be maintained with a very high efficiency, so that a more energy-saving refrigerator / freezer can be provided.

【0056】しかもその上に、除霜ヒータの加熱が軽減
できるため冷凍室や冷蔵室の食品の温度上昇が軽減で
き、より高品質の食品保鮮が可能となるものである。
Moreover, since the heating of the defrosting heater can be reduced, the temperature rise of the food in the freezer compartment or the refrigerating compartment can be reduced, and higher quality food can be preserved.

【0057】次に本発明による冷凍冷蔵庫の第3の実施
例について、図6、図7を参照しながら第1の実施例と
異なる点を中心に説明する。
Next, a third embodiment of the refrigerator-freezer according to the present invention will be described with reference to FIGS. 6 and 7, focusing on the points different from the first embodiment.

【0058】32は冷却システムの直前の1サイクルの
ON時間を検知する冷却システムON時間検知手段であ
る。
Reference numeral 32 is a cooling system ON time detecting means for detecting the ON time of one cycle immediately before the cooling system.

【0059】以上のように構成したこの冷凍冷蔵庫の運
転動作について図7のタイミングチャートを用いて説明
する。
The operation of the refrigerator constructed as described above will be described with reference to the timing chart of FIG.

【0060】圧縮機12がONしている間は冷気循環制
御手段17はダンパ17aにより開路され、冷気送風手
段10は冷気を庫内に送るためONしている。
While the compressor 12 is on, the cold air circulation control means 17 is opened by the damper 17a, and the cold air blowing means 10 is on to send the cool air to the inside of the refrigerator.

【0061】この結果、冷凍室18、冷蔵室20が適温
に冷やされ、蒸発器3の温度も時間と共に低下する。そ
して庫内温度検出手段14が充分に冷やされた時点T9
で圧縮機12が停止し、かつ冷気循環制御手段17のダ
ンパ17aが閉路する。
As a result, the freezer compartment 18 and the refrigerating compartment 20 are cooled to an appropriate temperature, and the temperature of the evaporator 3 also decreases with time. And at time T9 when the inside temperature detecting means 14 is sufficiently cooled
Thus, the compressor 12 is stopped and the damper 17a of the cold air circulation control means 17 is closed.

【0062】この時点で冷却システムON時間検知手段
32により直前1サイクルの冷却システムON時間を検
知し冷却システムON時間TR1が予め定められた時間
Ta以下の時のみ冷気送風手段10を駆動させる。
At this time, the cooling system ON time detecting means 32 detects the cooling system ON time of the immediately preceding cycle, and the cooling air blowing means 10 is driven only when the cooling system ON time TR1 is equal to or shorter than a predetermined time Ta.

【0063】そして冷気送風手段10により送風された
空気は、冷気循環制御手段17のダンパ17aにより冷
凍室18へは流れ込まず側面の開口部21から冷蔵室ダ
クト19をへて冷蔵室20へと流れ込む。
The air blown by the cool air blowing means 10 does not flow into the freezer compartment 18 by the damper 17a of the cool air circulation control means 17 but flows into the refrigerating compartment 20 from the side opening 21 through the refrigerating compartment duct 19. .

【0064】そして冷蔵庫庫内を冷やした上で、5〜7
℃程度の温度となり吸い込み口23から蒸発器室2へと
戻り再び蒸発器3と熱交換した上で冷気送風手段10に
より開口部21へと送り込まれる。この動作を繰り返
す。
Then, after cooling the inside of the refrigerator, 5 to 7
The temperature reaches about 0 ° C., returns to the evaporator chamber 2 from the suction port 23, exchanges heat with the evaporator 3 again, and is then sent to the opening 21 by the cool air blowing means 10. This operation is repeated.

【0065】この結果、蒸発器3の温度は5〜7℃程度
の空気と熱交換することになり、急激に温度上昇する。
そして蒸発器3に付着した霜を融ける温度0℃を超える
温度まで到達しする。
As a result, the temperature of the evaporator 3 exchanges heat with the air of about 5 to 7 ° C., and the temperature rises rapidly.
Then, the temperature reaches a temperature exceeding 0 ° C. at which the frost attached to the evaporator 3 is melted.

【0066】そして、庫内温度検出手段14の温度が上
昇した時点T10で圧縮機12が通電されONし、冷気
循環制御手段17が開路する。この結果蒸発器3の温度
は低下し、冷凍室18、冷蔵室20へ冷気を送り出し、
充分に温度が低下すれば圧縮機12は停止する。このよ
うな動作を繰り返し行うことにより、ほぼ一定の温度を
維持しつつ、冷却システムの停止時には霜の着いた蒸発
器3を冷蔵室の比較的高温の空気と熱交換させ融かし
て、ドレンガイド24をへて蒸発皿25に排出し、圧縮
機12の熱で蒸発させられる。
Then, at time T10 when the temperature of the internal temperature detecting means 14 rises, the compressor 12 is energized and turned on, and the cold air circulation control means 17 is opened. As a result, the temperature of the evaporator 3 drops, and cold air is sent to the freezer compartment 18 and the refrigerator compartment 20,
When the temperature is lowered sufficiently, the compressor 12 is stopped. By repeating such operations, while maintaining a substantially constant temperature, when the cooling system is stopped, the frosted evaporator 3 is heat-exchanged with the relatively high temperature air in the refrigerating chamber to be melted and the drainage is drained. It is discharged to the evaporation tray 25 through the guide 24 and evaporated by the heat of the compressor 12.

【0067】また、庫内温度検出手段14が充分に冷や
された時点T11で圧縮機12が停止し、かつ冷気循環
制御手段17のダンパ17aが閉路する時点で冷却シス
テムON時間検知手段32により検知されたOFF直前
1サイクルの冷却システムON時間TR2が予め定めら
れた時間Taより長い場合、従来例の冷凍冷蔵庫の除霜
方法と同様に、除霜ヒータ6に通電し、蒸発器3の下方
に設置している除霜ヒータ6により加熱された空気の一
部が、上方、すなわち蒸発器3下部へ自然対流し、加熱
された空気の一部は熱対流用ガイド5に案内されて蒸発
器3の両側部に自然対流する。又一部は蒸発器3の中央
部に対流する。
The cooling system ON time detecting means 32 detects when the compressor 12 is stopped and the damper 17a of the cold air circulation control means 17 is closed at the time T11 when the inside temperature detecting means 14 is sufficiently cooled. When the cooling system ON time TR2 of one cycle immediately before OFF is longer than the predetermined time Ta, the defrost heater 6 is energized and the temperature is lowered below the evaporator 3 as in the defrosting method of the conventional refrigerator-freezer. Part of the air heated by the installed defrost heater 6 naturally convects upward, that is, to the lower part of the evaporator 3, and part of the heated air is guided by the heat convection guide 5 to cause evaporation of the evaporator 3. Natural convection on both sides of. Further, a part of it convects to the central part of the evaporator 3.

【0068】従って、蒸発器3及び、液だめタンク9の
表面に付着した霜は、上方に自然対流する空気と熱交換
して除霜される。
Therefore, the frost adhering to the surfaces of the evaporator 3 and the liquid storage tank 9 is defrosted by exchanging heat with the air that naturally convects upward.

【0069】以上の結果、従来のように一定時間毎に圧
縮機を停止し除霜ヒータの加熱により蒸発器の霜を融か
すのではなく、上記の構成によって、除霜負荷により除
霜方法を切り換え、冷却システムON時間が短いときに
は、冷却サイクルのON、OFFのOFF中に、冷凍室
への吹き出しを閉路したうえで、除霜に必要な蒸発器吸
込温度が得られるときだけ冷気送風手段を駆動させ冷蔵
庫庫内の空気熱源により除霜を行い、冷却システムON
時間が長いときは、従来と同様に除霜ヒータ6により除
霜を行う。
As a result, instead of stopping the compressor at regular intervals and melting the frost in the evaporator by heating the defrosting heater as in the conventional case, the defrosting method by the defrosting load can be performed by the above-described configuration. When the switching and cooling system ON time is short, the blowoff to the freezer is closed during the ON / OFF of the cooling cycle, and the cool air blowing means is used only when the evaporator suction temperature necessary for defrosting is obtained. It is driven and defrosts by the air heat source inside the refrigerator, and the cooling system is turned on.
When the time is long, defrosting is performed by the defrosting heater 6 as in the conventional case.

【0070】これにより、除霜ヒータ6の通電をできる
限り無くすことにより除霜に要するヒータ電力及び除霜
時の温度上昇にともなう冷却システムの運転に必要な電
力が削減でき大幅な省エネになる。
As a result, the power supply to the defrosting heater 6 is eliminated as much as possible, so that the heater power required for defrosting and the power required for operating the cooling system accompanying the temperature rise during defrosting can be reduced, resulting in significant energy savings.

【0071】しかも蒸発器3には常に着霜がほとんどな
い状態を維持できるため非常に効率の良い蒸発器3を維
持できるので一層省エネルギーな冷凍冷蔵庫を提供でき
る。しかもその上に、除霜ヒータの加熱が従来より少な
くなるため冷凍室や冷蔵室の食品の温度上昇が少なくで
き、より高品質の食品保鮮が可能となるものである。
Moreover, since the evaporator 3 can be maintained in a state where there is almost no frost, it is possible to maintain the evaporator 3 with a very high efficiency, and thus it is possible to provide a more energy-saving refrigerator / freezer. Moreover, since the defrosting heater is less heated than in the conventional case, the temperature rise of the food in the freezing room or the refrigerating room can be suppressed, and higher quality food can be preserved.

【0072】次に本発明による冷凍冷蔵庫の第4の実施
例について、図8、9を参照しながら第1の実施例と異
なる点を中心に説明する。
Next, a fourth embodiment of the refrigerator-freezer according to the present invention will be described with reference to FIGS. 8 and 9 focusing on the points different from the first embodiment.

【0073】33は冷蔵庫の外気周囲温度を検出する外
気温検出手段である。以上のように構成したこの冷凍冷
蔵庫の運転動作について図9のタイミングチャートを用
いて説明する。
Reference numeral 33 is an outside air temperature detecting means for detecting the outside air ambient temperature of the refrigerator. The operation of the refrigerator / refrigerator configured as described above will be described with reference to the timing chart of FIG.

【0074】圧縮機12がONしている間は冷気循環制
御手段17はダンパ17aにより開路され、冷気送風手
段10は冷気を庫内に送るためONしている。
While the compressor 12 is on, the cool air circulation control means 17 is opened by the damper 17a, and the cool air blowing means 10 is on to send the cool air into the refrigerator.

【0075】この結果、冷凍室18、冷蔵室20が適温
に冷やされ、蒸発器3の温度も時間と共に低下する。
As a result, the freezing compartment 18 and the refrigerating compartment 20 are cooled to an appropriate temperature, and the temperature of the evaporator 3 also decreases with time.

【0076】そして庫内温度検出手段14が充分に冷や
された時点T13で圧縮機12が停止し、かつ冷気循環
制御手段17のダンパ17aが閉路する。この時点で外
気温検出手段33により外気温を検出し外気温が予め設
定された温度範囲に含まれる時のみ冷気送風手段10を
駆動させる。
At time T13 when the inside temperature detecting means 14 is sufficiently cooled, the compressor 12 is stopped and the damper 17a of the cool air circulation control means 17 is closed. At this time, the outside air temperature detecting means 33 detects the outside air temperature, and the cold air blowing means 10 is driven only when the outside air temperature falls within a preset temperature range.

【0077】そして冷気送風手段10により送風された
空気は、冷気循環制御手段17のダンパ17aにより冷
凍室18へは流れ込まず側面の開口部21から冷蔵室ダ
クト19をへて冷蔵室20へと流れ込む。そして冷蔵庫
庫内を冷やした上で、5〜7℃程度の温度となり吸い込
み口23から蒸発器室2へと戻り再び蒸発器3と熱交換
した上で冷気送風手段10により開口部21へと送り込
まれる。この動作を繰り返す。
The air blown by the cool air blowing means 10 does not flow into the freezer compartment 18 by the damper 17a of the cool air circulation control means 17 but flows into the refrigerating compartment 20 from the side opening 21 through the refrigerating compartment duct 19. . Then, after cooling the inside of the refrigerator, the temperature reaches about 5 to 7 ° C., the air returns from the suction port 23 to the evaporator chamber 2, exchanges heat with the evaporator 3 again, and is then sent to the opening 21 by the cool air blowing means 10. Be done. This operation is repeated.

【0078】この結果、蒸発器3の温度は5〜7℃程度
の空気と熱交換することになり、急激に温度上昇する。
そして蒸発器3に付着した霜を融ける温度0℃を超える
温度まで到達しする。
As a result, the temperature of the evaporator 3 exchanges heat with the air of about 5 to 7 ° C., and the temperature rises rapidly.
Then, the temperature reaches a temperature exceeding 0 ° C. at which the frost attached to the evaporator 3 is melted.

【0079】そして、庫内温度検出手段14の温度が上
昇した時点T14で圧縮機12が通電されONし、冷気
循環制御手段17が開路する。この結果蒸発器3の温度
は低下し、冷凍室18、冷蔵室20へ冷気を送り出し、
充分に温度が低下すれば圧縮機12は停止する。このよ
うな動作を繰り返し行うことにより、ほぼ一定の温度を
維持しつつ、冷却システムの停止時には霜の着いた蒸発
器3を冷蔵室の比較的高温の空気と熱交換させ融かし
て、ドレンガイド24をへて蒸発皿25に排出し、圧縮
機12の熱で蒸発させられる。
Then, at time T14 when the temperature of the internal temperature detecting means 14 rises, the compressor 12 is energized and turned on, and the cold air circulation control means 17 is opened. As a result, the temperature of the evaporator 3 drops, and cold air is sent to the freezer compartment 18 and the refrigerator compartment 20,
When the temperature is lowered sufficiently, the compressor 12 is stopped. By repeating such operations, while maintaining a substantially constant temperature, when the cooling system is stopped, the frosted evaporator 3 is heat-exchanged with the relatively high temperature air in the refrigerating chamber to be melted and the drainage is drained. It is discharged to the evaporation tray 25 through the guide 24 and evaporated by the heat of the compressor 12.

【0080】また、庫内温度検出手段14が充分に冷や
された時点T13’で圧縮機12が停止し、かつ冷気循
環制御手段17のダンパ17aが閉路する時点で外気温
検出手段33により検出された外気温度が予め定められ
た温度範囲に含まれていない場合は従来例の冷凍冷蔵庫
の除霜方法のモードに切り替わり、予め定められた時間
の間、従来の冷蔵庫と同様に、圧縮機12がOFFして
いるの間は冷気送風手段10はOFFし、圧縮機12が
ONしている間は冷気送風手段10はONする、そして
予め定められた時間になると蒸発器3の下方に設置して
いる除霜ヒータ6により加熱された空気の一部が、上
方、すなわち蒸発器3下部へ自然対流し、加熱された空
気の一部は熱対流用ガイド5に案内されて蒸発器3の両
側部に自然対流する。又一部は蒸発器3の中央部に対流
する。
Further, the compressor 12 is stopped at the time T13 'when the inside temperature detecting means 14 is sufficiently cooled, and the outside air temperature detecting means 33 detects it at the time when the damper 17a of the cold air circulation controlling means 17 is closed. When the outside air temperature is not included in the predetermined temperature range, the mode is switched to the defrosting method of the conventional refrigerator / freezer, and the compressor 12 is operated for a predetermined time in the same manner as the conventional refrigerator. The cool air blowing means 10 is turned off while the compressor 12 is turned on, the cool air blowing means 10 is turned on while the compressor 12 is turned on, and the cool air blowing means 10 is installed below the evaporator 3 at a predetermined time. A part of the air heated by the defrosting heater 6 is naturally convected to the upper side, that is, the lower part of the evaporator 3, and a part of the heated air is guided by the heat convection guides 5 to both side parts of the evaporator 3. Natural convection to. Further, a part of it convects to the central part of the evaporator 3.

【0081】従って、蒸発器3及び、液だめタンク9の
表面に付着した霜は、上方に自然対流する空気と熱交換
して除霜される。このあと圧縮機12はONされ上記に
記した動作を繰り返す。
Therefore, the frost attached to the surfaces of the evaporator 3 and the liquid storage tank 9 is defrosted by exchanging heat with the air that naturally convects upward. After that, the compressor 12 is turned on and the above-described operation is repeated.

【0082】以上の結果、従来のように一定時間毎に圧
縮機を停止し除霜ヒータの加熱により蒸発器の霜を融か
すのではなく、上記の構成によって、冷却サイクルのO
N、OFFのOFF中に、冷凍室への吹き出しを閉路し
たうえで、冷蔵庫庫内の空気温度で除霜が可能な外気温
度の時のみ冷気送風手段を駆動させ冷蔵庫庫内の空気熱
源により除霜を行う。
As a result, instead of stopping the compressor at regular intervals and melting the frost of the evaporator by heating the defrosting heater as in the conventional case, the cooling cycle O
While N and OFF are turned off, the blowout to the freezer is closed, and the cold air blower is driven only when the outside air temperature allows defrosting at the air temperature inside the refrigerator and the air heat source inside the refrigerator removes it. Do frost.

【0083】これにより、除霜ヒータ6の通電をできる
限り無くすことにより除霜に要するヒータ電力及び除霜
時の温度上昇にともなう冷却システムの運転に必要な電
力が削減でき大幅な省エネになる。
As a result, the power to the defrosting heater 6 is removed as much as possible, so that the heater power required for defrosting and the power required to operate the cooling system associated with the temperature rise during defrosting can be reduced, resulting in significant energy savings.

【0084】しかも蒸発器3には着霜がほとんどない状
態を維持できるため非常に効率の良い蒸発器3を維持で
きるので一層省エネルギーな冷凍冷蔵庫を提供できる。
しかもその上に、除霜ヒータの加熱が従来より少なくな
るため冷凍室や冷蔵室の食品の温度上昇が少なくでき、
より高品質の食品保鮮が可能となるものである。
Moreover, since the evaporator 3 can be maintained in a state where there is almost no frost, the evaporator 3 can be maintained very efficiently, and thus a more energy-saving refrigerator / freezer can be provided.
Moreover, since the defrosting heater heats less than before, it is possible to reduce the temperature rise of the food in the freezer or the refrigerator,
Higher quality food can be preserved.

【0085】[0085]

【発明の効果】以上のように本発明の冷凍冷蔵庫は、従
来のように一定時間毎に圧縮機を停止し除霜ヒータの加
熱のみにより蒸発器の霜を融かすのではなく、上記の構
成によって、除霜負荷の少ないときには、冷却サイクル
のON、OFFのOFF中に、冷凍室への吹き出しを閉
路したうえで冷気送風手段を駆動させ冷蔵庫庫内の空気
熱源により除霜を行うことにより、除霜ヒータの使用頻
度を減らすので、除霜ヒータの電力分が省エネになり、
しかも蒸発器は常に着霜がほとんどない状態に維持でき
るため非常に効率の良い省エネルギーな冷凍冷蔵庫を提
供する。しかも、除霜ヒータの加熱頻度が少なくなるこ
とにより冷凍室や冷蔵室の食品の温度上昇が減り、より
高品質の食品保鮮が可能である。
As described above, the refrigerating refrigerator of the present invention does not melt the frost of the evaporator only by heating the defrosting heater and stopping the compressor at regular intervals as in the prior art, but has the above-mentioned configuration. Thus, when the defrosting load is small, the cooling air is blown to the freezing room while the cooling cycle is on and off, and the cold air blowing means is driven to defrost the air from the air source in the refrigerator. Since the frequency of use of the defrost heater is reduced, the power for the defrost heater can be saved.
Moreover, since the evaporator can be maintained in a state where there is almost no frost, it provides a very efficient and energy-saving refrigerator / freezer. Moreover, the frequency of heating of the defrosting heater is reduced, so that the temperature rise of the food in the freezer compartment or the refrigerator compartment is reduced, and higher quality food can be preserved.

【0086】また、蒸発器着霜量の少ないときには、冷
却サイクルのON、OFFのOFF中に、冷凍室への吹
き出しを閉路したうえで冷気送風手段を駆動させ冷蔵庫
庫内の空気熱源により除霜を行うことにより、除霜ヒー
タの使用頻度を減らすので、除霜ヒータの電力分が省エ
ネになり、しかも蒸発器は常に着霜がほとんどない状態
に維持できるため非常に効率の良い省エネルギーな冷凍
冷蔵庫を提供する。
Further, when the amount of frost formation on the evaporator is small, while the cooling cycle is on and off, the blowout to the freezer is closed and the cold air blowing means is driven to defrost by the air heat source in the refrigerator. By doing so, the frequency of use of the defrost heater is reduced, so the electric power of the defrost heater can be saved, and the evaporator can be maintained in a state where almost no frost is formed at all. I will provide a.

【0087】しかも、除霜ヒータの加熱頻度が少なくな
ることにより冷凍室や冷蔵室の食品の温度上昇が減り、
より高品質の食品保鮮が可能である。
Moreover, since the frequency of heating of the defrosting heater is reduced, the temperature rise of the food in the freezer compartment or the refrigerator compartment is reduced,
Higher quality food preservation is possible.

【0088】また、冷却システムON時間が予め設定し
た時間より短い場合には、冷却サイクルのON、OFF
のOFF中に、冷凍室への吹き出しを閉路したうえで冷
気送風手段を駆動させ冷蔵庫庫内の空気熱源により除霜
を行うことにより、除霜ヒータの使用頻度を減らすの
で、除霜ヒータの電力分が省エネになり、しかも蒸発器
は常に着霜がほとんどない状態に維持できるため非常に
効率の良い省エネルギーな冷凍冷蔵庫を提供する。
When the cooling system ON time is shorter than the preset time, the cooling cycle is turned ON / OFF.
The power of the defrost heater is reduced because the frequency of use of the defrost heater is reduced by closing the blow-off to the freezer and driving the cool air blower to defrost the air heat source inside the refrigerator while the power is off. It saves energy and keeps the evaporator almost free from frost, providing a very efficient and energy-saving refrigerator / freezer.

【0089】しかも、除霜ヒータの加熱頻度が少なくな
ることにより冷凍室や冷蔵室の食品の温度上昇が減り、
より高品質の食品保鮮が可能である。
Moreover, since the frequency of heating of the defrosting heater is reduced, the temperature rise of the food in the freezer compartment or the refrigerator compartment is reduced,
Higher quality food preservation is possible.

【0090】また、外気温度が予め設定した温度範囲内
にある場合には、冷却サイクルのON、OFFのOFF
中に、冷凍室への吹き出しを閉路したうえで冷気送風手
段を駆動させ冷蔵庫庫内の空気熱源により除霜を行うこ
とにより、除霜ヒータの使用頻度を減らすので、除霜ヒ
ータの電力分が省エネになり、しかも蒸発器は常に着霜
がほとんどない状態に維持できるため非常に効率の良い
省エネルギーな冷凍冷蔵庫を提供する。しかも、除霜ヒ
ータの加熱頻度が少なくなることにより冷凍室や冷蔵室
の食品の温度上昇が減り、より高品質の食品保鮮が可能
である。
When the outside air temperature is within the preset temperature range, the cooling cycle is turned ON and OFF is turned OFF.
Inside, the frequency of use of the defrost heater is reduced by closing the blowout to the freezer and driving the cool air blower to defrost the air heat source in the refrigerator. It provides energy-saving refrigerators and refrigerators that are extremely efficient and energy-saving because the evaporator can be maintained in a state where there is almost no frost. Moreover, the frequency of heating of the defrosting heater is reduced, so that the temperature rise of the food in the freezer compartment or the refrigerating compartment is reduced, and higher quality food can be preserved.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例における冷凍冷蔵庫の縦断面
FIG. 1 is a vertical sectional view of a refrigerator-freezer according to an embodiment of the present invention.

【図2】同実施例における冷凍冷蔵庫の要部の正面図FIG. 2 is a front view of the main part of the refrigerator-freezer according to the embodiment.

【図3】同実施例における冷凍冷蔵庫のタイミングチャ
ート
FIG. 3 is a timing chart of the refrigerator-freezer in the same embodiment.

【図4】第二の実施例における冷凍冷蔵庫の要部の正面
FIG. 4 is a front view of the essential parts of the refrigerator-freezer according to the second embodiment.

【図5】第二の実施例における冷凍冷蔵庫のタイミング
チャート
FIG. 5 is a timing chart of the refrigerator-freezer according to the second embodiment.

【図6】第三の実施例における冷却システム構成図FIG. 6 is a configuration diagram of a cooling system according to a third embodiment.

【図7】第三の実施例における冷凍冷蔵庫のタイミング
チャート
FIG. 7 is a timing chart of the refrigerator-freezer according to the third embodiment.

【図8】第四の実施例における冷凍冷蔵庫の縦断面図FIG. 8 is a vertical sectional view of a refrigerator-freezer according to a fourth embodiment.

【図9】第四の実施例における冷凍冷蔵庫のタイミング
チャート
FIG. 9 is a timing chart of the refrigerator / freezer according to the fourth embodiment.

【図10】従来の冷凍冷蔵庫の冷却システム構成図FIG. 10 is a configuration diagram of a cooling system for a conventional refrigerator-freezer.

【図11】従来の冷凍冷蔵庫の要部の正面図FIG. 11 is a front view of a main part of a conventional refrigerator-freezer.

【符号の説明】[Explanation of symbols]

1 冷蔵庫箱体 2 蒸発器室 3 蒸発器 4 エンドプレート 5 熱対流用ガイド 6 除霜ヒータ 7 カサ 8 トイ 9 液だめタンク 10 冷気送風手段 11 除霜タイマー 12 圧縮機 14 庫内温度検出手段 17 冷気循環制御手段 17aダンパ 18 冷凍室 19 冷蔵室ダクト 20 冷蔵室 21 冷気循環制御手段 22 冷気吸い込み口 23 冷気上面吸い込み口 24 ドレンガイド 25 蒸発皿 30 除霜負荷検出手段 31 蒸発器着霜量検出手段 32 冷却システムON時間検知手段 33 外気温検出手段 1 Refrigerator Box 2 Evaporator Chamber 3 Evaporator 4 End Plate 5 Heat Convection Guide 6 Defrost Heater 7 Casa 8 Toy 9 Liquid Storage Tank 10 Cold Air Blower 11 Defrost Timer 12 Compressor 14 Internal Temperature Detecting Means 17 Cold Air Circulation control means 17a Damper 18 Freezing room 19 Refrigerating room duct 20 Refrigerating room 21 Cold air circulation control means 22 Cold air suction port 23 Cold air upper surface suction port 24 Drain guide 25 Evaporation tray 30 Defrost load detection means 31 Evaporator frost amount detection means 32 Cooling system ON time detection means 33 Outside air temperature detection means

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 庫内温度検出手段の出力結果を基にO
N、OFFする冷却システムと、冷凍室への冷気循環を
制御する冷気循環制御手段と、蒸発器により冷却された
冷気を送るための冷気送風手段及び、除霜負荷を検出す
る除霜負荷検出手段とから成り、冷却システムがOFF
し、かつ除霜負荷があらかじめ設定した値より少ないと
きのみ、冷凍室の冷気循環制御手段により冷凍室への冷
気流入を防止すると共に冷気送風手段を駆動させてなる
冷凍冷蔵庫。
1. O based on the output result of the internal temperature detection means
N, OFF cooling system, cold air circulation control means for controlling cold air circulation to the freezer, cold air blowing means for sending cold air cooled by the evaporator, and defrost load detection means for detecting defrost load. And the cooling system is off
And, only when the defrosting load is smaller than a preset value, the cold air circulation control means of the freezing room prevents the cold air from flowing into the freezing room and drives the cold air blowing means.
【請求項2】 庫内温度検出手段の出力結果を基にO
N、OFFする冷却システムと、冷凍室への冷気循環を
制御する冷気循環制御手段と、蒸発器により冷却された
冷気を送るための冷気送風手段及び、蒸発器着霜量を検
出する蒸発器着霜量検出手段とから成り、冷却システム
がOFFし、かつ蒸発器着霜量があらかじめ設定した着
霜量より少ないときのみ、冷凍室の冷気循環制御手段に
より冷凍室への冷気流入を防止すると共に冷気送風手段
を駆動させてなる冷凍冷蔵庫。
2. O based on the output result of the internal temperature detection means
N, OFF cooling system, cold air circulation control means for controlling cold air circulation to the freezer, cold air blowing means for sending cold air cooled by the evaporator, and evaporator attachment for detecting evaporator frost amount The cold air circulation control means for the freezing compartment prevents the inflow of cold air into the freezing compartment only when the cooling system is turned off and the evaporator frost formation amount is less than the preset frost formation amount. A freezer-refrigerator that drives cold air blowing means.
【請求項3】 庫内温度検出手段の出力結果を基にO
N、OFFする冷却システムと、冷凍室への冷気循環を
制御する冷気循環制御手段と、蒸発器により冷却された
冷気を送るための冷気送風手段及び、冷却システムのO
N時間を算出する冷却システムON時間算出手段から成
り、冷却システムがOFFし、かつ冷却システムON時
間があらかじめ設定した時間より短いときのみ、冷凍室
の冷気循環制御手段により冷凍室への冷気流入を防止す
ると共に冷気送風手段を駆動させてなる冷凍冷蔵庫。
3. O based on the output result of the internal temperature detection means
O of cooling system, cooling system for turning off and on, cooling air circulation control means for controlling cooling air circulation to the freezing compartment, cooling air blowing means for feeding the cooling air cooled by the evaporator, and cooling system
The cooling system ON time calculating means for calculating the N time is provided, and the cooling air inflow to the freezing room is controlled by the cooling air circulation control means of the freezing room only when the cooling system is OFF and the cooling system ON time is shorter than a preset time. A freezer-refrigerator that prevents the air and blows cold air.
【請求項4】 庫内温度検出手段の出力結果を基にO
N、OFFする冷却システムと、冷凍室への冷気循環を
制御する冷気循環制御手段と、蒸発器により冷却された
冷気を送るための冷気送風手段及び、冷蔵庫の外気温度
を検出する外気温検出手段から成り、冷却システムがO
FFし、かつ外気温度があらかじめ設定した温度範囲内
のときのみ、冷凍室の冷気循環制御手段により冷凍室へ
の冷気流入を防止すると共に冷気送風手段を駆動させて
なる冷凍冷蔵庫。
4. O based on the output result of the in-compartment temperature detecting means
N, OFF cooling system, cold air circulation control means for controlling cold air circulation to the freezing compartment, cold air blowing means for sending cold air cooled by the evaporator, and outside air temperature detecting means for detecting the outside air temperature of the refrigerator And the cooling system is O
A freezer-refrigerator in which cold air circulation control means of the freezing compartment prevents cold air from flowing into the freezing compartment and drives the cold air blowing means only when FF is performed and the outside air temperature is within a preset temperature range.
JP9332195A 1995-04-19 1995-04-19 Refrigerator Pending JPH08285440A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9332195A JPH08285440A (en) 1995-04-19 1995-04-19 Refrigerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9332195A JPH08285440A (en) 1995-04-19 1995-04-19 Refrigerator

Publications (1)

Publication Number Publication Date
JPH08285440A true JPH08285440A (en) 1996-11-01

Family

ID=14079037

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9332195A Pending JPH08285440A (en) 1995-04-19 1995-04-19 Refrigerator

Country Status (1)

Country Link
JP (1) JPH08285440A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001272147A (en) * 2000-01-17 2001-10-05 Hoshizaki Electric Co Ltd Refrigerator
KR100866874B1 (en) * 2002-12-27 2008-11-04 엘지전자 주식회사 Method for defrosting in refrigerator
JP2009036483A (en) * 2007-08-03 2009-02-19 Daiwa Industries Ltd Refrigerator and its defrosting method
JP2012225527A (en) * 2011-04-15 2012-11-15 Hoshizaki Electric Co Ltd Defrosting control device of cooling storage
CN112066623A (en) * 2020-08-27 2020-12-11 西安交通大学 Heating power variable defrosting device of air-cooled refrigerator and control method

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001272147A (en) * 2000-01-17 2001-10-05 Hoshizaki Electric Co Ltd Refrigerator
KR100866874B1 (en) * 2002-12-27 2008-11-04 엘지전자 주식회사 Method for defrosting in refrigerator
JP2009036483A (en) * 2007-08-03 2009-02-19 Daiwa Industries Ltd Refrigerator and its defrosting method
JP2012225527A (en) * 2011-04-15 2012-11-15 Hoshizaki Electric Co Ltd Defrosting control device of cooling storage
CN112066623A (en) * 2020-08-27 2020-12-11 西安交通大学 Heating power variable defrosting device of air-cooled refrigerator and control method
CN112066623B (en) * 2020-08-27 2021-07-27 西安交通大学 Heating power variable defrosting device of air-cooled refrigerator and control method

Similar Documents

Publication Publication Date Title
CN101619916B (en) Ice refrigerator
KR870001533B1 (en) Refrigerator
KR100568060B1 (en) Refrigerator
JP4059474B2 (en) refrigerator
US6952930B1 (en) Methods and apparatus for controlling refrigerators
CN103547872A (en) Refrigerator
JP2004101005A (en) Refrigerator and operation method for refrigerator
WO2018076584A1 (en) Refrigerator
CN112665286A (en) Refrigerator dehumidification and defrosting device, control method and refrigerator
WO2018076583A1 (en) Refrigerator
JP3350188B2 (en) Freezer refrigerator
JP2000199676A (en) Method for controlling optimum defrosting period of inverter refrigerator
JP2008075939A (en) Refrigerator
JPH10111064A (en) Control method for cooling fan of refrigerator
KR100593632B1 (en) Method of controlling defrost cycle of refrigerator and its device
JPH08285440A (en) Refrigerator
CN110671884A (en) Air supply control method for defrosting of air-cooled refrigerator and air-cooled refrigerator
JP2022043157A (en) refrigerator
CN214371222U (en) Refrigerator dehumidification defrosting device and refrigerator
KR100913144B1 (en) Time divided multi-cycle type cooling apparatus
JPH11148759A (en) Refrigerator equipped with two sets of evaporators
JP2023125463A (en) refrigerator
JP4103384B2 (en) refrigerator
JP2013040691A (en) Refrigeration storage
JP2000283626A (en) Refrigerator