JPH06174210A - Liquid fuel-burning device - Google Patents

Liquid fuel-burning device

Info

Publication number
JPH06174210A
JPH06174210A JP32648592A JP32648592A JPH06174210A JP H06174210 A JPH06174210 A JP H06174210A JP 32648592 A JP32648592 A JP 32648592A JP 32648592 A JP32648592 A JP 32648592A JP H06174210 A JPH06174210 A JP H06174210A
Authority
JP
Japan
Prior art keywords
fuel
air
combustion
nozzle
liquid fuel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP32648592A
Other languages
Japanese (ja)
Other versions
JP3136809B2 (en
Inventor
Katsuhiko Ishikawa
克彦 石川
Katsuhiko Uno
克彦 宇野
Tomomichi Asou
智倫 麻生
Norio Yotsuya
規夫 肆矢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP04326485A priority Critical patent/JP3136809B2/en
Publication of JPH06174210A publication Critical patent/JPH06174210A/en
Application granted granted Critical
Publication of JP3136809B2 publication Critical patent/JP3136809B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Spray-Type Burners (AREA)
  • Nozzles For Spraying Of Liquid Fuel (AREA)

Abstract

PURPOSE:To make instantaneous start-up possible and lower the noise level both relating to the combustion and make the device structurally compact. CONSTITUTION:The fuel is jetted in a thin circular film from a fuel jet 39 provided at the tip of a fuel nozzle 35 and against the tip of this jetted fuel a stream of air fed from an air jet 62 is made to impinge to divide the fuel into fine particles. As a result, the thickness of the film of the fuel jetted in a thin circular film from the fuel nozzle becomes thinner and the jetting velocity slows down; furthermore, since a stream of air is made to impinge directly upon the tip of fuel which is in an unstable state, the fuel is divided into fine particles uniformly.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、給湯・暖房機器等の熱
源に使用する液体燃料燃焼装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a liquid fuel combustion apparatus used as a heat source for hot water supply / heating equipment.

【0002】[0002]

【従来の技術】近年、石油燃焼機器においては、瞬間着
火や燃焼量調節幅の拡大や低騒音化、そして機器の小型
化への要求が強くなってきている。
2. Description of the Related Art In recent years, there have been strong demands for instantaneous ignition, expansion of combustion amount adjustment range, noise reduction, and size reduction of petroleum combustion equipment.

【0003】従来この種の液体燃料燃焼装置の燃焼方法
としては、大別して液体燃料を噴霧装置によって霧化し
た燃料粒子をそのまま燃焼させるものと、液体燃料を一
旦気化して燃焼させるものとがある。例えば、前者の噴
霧燃焼装置は図5に示すように燃料タンク1から供給さ
れた液体燃料は、電磁ポンプ2で加圧され供給管4を通
って圧力噴霧ノズル3から噴出して霧化され、燃焼室6
へ噴霧される。一方燃焼用空気は、送風ファン7により
送風路5を通り燃焼室6へ供給される。このとき圧力噴
霧ノズル3より噴霧された液体燃料と燃焼反応し、火炎
を形成するようになっていた。
Conventionally, the combustion methods of this type of liquid fuel combustion apparatus are roughly classified into those in which the fuel particles atomized by the atomizer are burned as they are, and those in which the liquid fuel is once vaporized and burned. . For example, in the former spray combustion device, as shown in FIG. 5, the liquid fuel supplied from the fuel tank 1 is pressurized by the electromagnetic pump 2 and is ejected from the pressure spray nozzle 3 through the supply pipe 4 to be atomized. Combustion chamber 6
Is sprayed on. On the other hand, the combustion air is supplied to the combustion chamber 6 by the blower fan 7 through the blower path 5. At this time, a combustion reaction with the liquid fuel sprayed from the pressure spray nozzle 3 was performed to form a flame.

【0004】また、後者の気化燃焼装置は図6に示すよ
うに燃料タンク8から供給された液体燃料は、送油ポン
プ9によって送油管10を通りノズル11から電気ヒー
タ13が埋め込まれた気化筒14で形成された高温状態
の気化室12へ液滴となって送出され加熱されて気化す
る。一方燃焼用空気は、送風ファン15により送風路1
6を通りノズル11の外周に設けたスロート部17から
気化室12へ供給される。このとき気化した燃料と混合
し、燃焼室19内に設けられた炎口18で火炎を形成す
るようになっていた。
In the latter vaporization and combustion apparatus, as shown in FIG. 6, the liquid fuel supplied from the fuel tank 8 passes through the oil feed pipe 10 by the oil feed pump 9 and the vaporization cylinder in which the electric heater 13 is embedded from the nozzle 11 to the nozzle. Droplets are sent out to the high temperature vaporization chamber 12 formed in 14 and are heated and vaporized. On the other hand, the combustion air is blown by the blower fan 15 into the air duct 1
It is supplied to the vaporization chamber 12 from the throat portion 17 provided on the outer periphery of the nozzle 11 through the nozzle 6. At this time, it was mixed with the vaporized fuel to form a flame at the flame port 18 provided in the combustion chamber 19.

【0005】[0005]

【発明が解決しようとする課題】しかしながら上記従来
の噴霧燃焼装置(図5)は、圧力噴霧ノズル3から噴出
して霧化した液体燃料の粒径が大きいために火炎長が大
きくなり、機器の小型化を図ることができず、さらに燃
焼騒音は燃料粒子が火炎によって急激に沸騰する際の破
裂音によって発生するため低騒音化を図ることができな
かった。また、燃焼量を調節するために噴出流速を下げ
ると、極端に霧化状態が悪化して燃料の粒径が大きくな
り燃焼不良となるため燃焼量調節幅は極めて小さいもの
であった。
However, in the above-mentioned conventional spray combustion apparatus (FIG. 5), the flame length becomes large because the particle size of the liquid fuel ejected from the pressure spray nozzle 3 and atomized is large, and It was not possible to reduce the size, and further, combustion noise was not generated because the combustion noise was generated by the burst noise generated when the fuel particles boil rapidly due to the flame. Further, when the jet flow velocity is lowered to adjust the combustion amount, the atomization state is extremely deteriorated, the particle size of the fuel is increased, and the combustion becomes poor, so that the combustion amount adjustment range is extremely small.

【0006】そして気化燃焼装置(図6)は、液体燃料
を気化させなければならないために構造が複雑になり、
また気化のための加熱源と電力の消費が必要であった。
さらに気化筒14及び気化室12を昇温するための予熱
時間が必要なため即点火燃焼ができず燃焼立ち上がりの
瞬間性の悪いものであった。以上述べたように上記従来
の液体燃料燃焼装置は、燃焼立ち上がりの瞬間性や低騒
音化が不十分であり、かつ燃焼量の調節幅が小さいとい
う課題があった。
The vaporizing and combusting device (FIG. 6) has a complicated structure because the liquid fuel has to be vaporized.
Moreover, a heating source for vaporization and power consumption were required.
Furthermore, since the preheating time for raising the temperature of the vaporization cylinder 14 and the vaporization chamber 12 is required, immediate ignition and combustion cannot be performed, and the instantaneousness of combustion rise is poor. As described above, the above-mentioned conventional liquid fuel combustion apparatus has a problem that the instantaneousness of combustion startup and noise reduction are insufficient and the adjustment range of the combustion amount is small.

【0007】本発明は上記課題を解決するもので、燃焼
立ち上がりの瞬間性があって低騒音で、そして小型で、
燃焼量の調節幅を拡大する液体燃料燃焼装置を提供する
ものである。
The present invention is intended to solve the above-mentioned problems. It has a momentary rise of combustion, low noise, and a small size.
A liquid fuel combustion apparatus that expands the adjustment range of the combustion amount.

【0008】[0008]

【課題を解決するための手段】本発明は上記目的を達成
するため、液体燃料が供給される液体燃料供給部を有す
る燃料ノズル、この燃料ノズルの先端に連結して前記燃
料ノズルの先端外周との間に燃料噴出孔を形成したノズ
ルヘッド、前記燃料ノズルの外周にあり前記燃料噴出孔
から薄膜状に噴出した燃料噴流の所定位置に微粒化用の
空気を衝突させるように前記燃料噴出孔の外方に配設し
た空気噴出孔とこの空気噴出孔に空気を供給する空気供
給部を有する空気ノズル、前記燃料ノズルと前記空気ノ
ズル間に形成される通気部からなる霧化部と、この霧化
部を内方に配設した霧化室と、この霧化室に一次空気を
供給する一次空気供給部と、前記霧化室の下流に連通し
て設けた燃焼部と、この燃焼部へ空気を供給する二次空
気供給部を備えたものである。
In order to achieve the above object, the present invention provides a fuel nozzle having a liquid fuel supply portion to which liquid fuel is supplied, and a fuel nozzle connected to a tip of the fuel nozzle and an outer periphery of the tip of the fuel nozzle. A nozzle head having a fuel injection hole formed between the fuel injection hole and an outer periphery of the fuel nozzle so that the atomizing air collides with a predetermined position of the fuel jet ejected in a thin film form from the fuel injection hole. An air nozzle having an air ejection hole disposed outside, an air supply section for supplying air to the air ejection hole, an atomization section including a ventilation section formed between the fuel nozzle and the air nozzle, and the fog. An atomization chamber having an atomization section disposed inward, a primary air supply section for supplying primary air to the atomization chamber, a combustion section provided in communication with the atomization chamber downstream, and to the combustion section. Equipped with a secondary air supply unit that supplies air Than it is.

【0009】[0009]

【作用】本発明は上記構成によって、燃料噴出孔から噴
出した薄膜状の燃料噴流の、その膜厚はより薄く、噴出
速度は減速して小さく、燃料膜形成の状態は不安定にあ
る所定位置に微粒化用の空気を直接衝突させることによ
って空気噴流の運動エネルギーを有効に活用することが
できて、そして空気と燃料の相対速度は大きい状態とな
り微粒化が促進され、微粒化が効果的におこなわれて均
一な微小粒子となり、広い調節範囲で霧化状態を得るこ
とができる。また、微粒化した燃料粒子を空気と混合し
た状態で可燃混合気として燃焼部に搬送するため、瞬時
着火燃焼が可能であるとともに、短炎化による装置の小
型化を図ることができる。また微小粒子を燃焼させるの
で、燃焼騒音を低減することができる。
According to the present invention, the thin-film fuel jet ejected from the fuel ejection hole has a thinner film thickness, the ejection speed is decelerated and small, and the fuel film formation state is unstable at a predetermined position. The kinetic energy of the air jet can be effectively utilized by directly colliding the atomization air with the air, and the relative velocity of the air and the fuel becomes large so that the atomization is promoted and the atomization is effective. When it is carried out, it becomes uniform fine particles, and the atomized state can be obtained in a wide control range. Further, since the atomized fuel particles are mixed with air and conveyed to the combustion section as a combustible mixture, instantaneous ignition combustion is possible and the size of the device can be reduced by shortening the flame. Further, since the fine particles are burned, combustion noise can be reduced.

【0010】[0010]

【実施例】以下本発明の実施例を添付図面に基づいて説
明する。
Embodiments of the present invention will be described below with reference to the accompanying drawings.

【0011】図1から図2に示すように、霧化室20の
内方中央には霧化部21を配設しており、液体燃料は燃
料タンク22から電磁ポンプ23で加圧して汲み上げら
れ、燃料供給管24を経て霧化部21に供給される。空
気供給手段25から送られた微粒化用の空気は空気供給
管26を通って霧化部21に供給される。霧化室20の
上部で霧化部21下流側に混合板27を設けて混合室2
8を形成しており、混合室28の下流側に燃焼部29を
設けている。送風機30から送られた空気の一部は一次
空気供給部31によって霧化室20に供給される。混合
室28内で空気と混合された燃料粒子は均圧板32で均
一に分散され、燃焼部29の炎口33に供給され燃焼さ
れる。また送風機30から送られた空気の一部は二次空
気供給部34で燃焼部29に供給され、この二次空気は
炎口33で細分割された二次空気孔(図示せず)に供給
される。
As shown in FIGS. 1 and 2, an atomizing section 21 is provided in the center of the inside of the atomizing chamber 20, and liquid fuel is pressurized from a fuel tank 22 by an electromagnetic pump 23 and pumped up. , And is supplied to the atomizing unit 21 via the fuel supply pipe 24. The atomizing air sent from the air supply means 25 is supplied to the atomizing unit 21 through the air supply pipe 26. A mixing plate 27 is provided in the upper part of the atomization chamber 20 on the downstream side of the atomization unit 21.
8 is formed, and the combustion section 29 is provided on the downstream side of the mixing chamber 28. Part of the air sent from the blower 30 is supplied to the atomization chamber 20 by the primary air supply unit 31. The fuel particles mixed with air in the mixing chamber 28 are uniformly dispersed by the pressure equalizing plate 32, supplied to the flame port 33 of the combustion unit 29, and burned. Further, a part of the air sent from the blower 30 is supplied to the combustion unit 29 by the secondary air supply unit 34, and this secondary air is supplied to the secondary air holes (not shown) subdivided by the flame port 33. To be done.

【0012】以下、霧化部21の詳細について説明す
る。すなわち、燃料ノズル35はその中央部に液体燃料
供給部36が設けられ、先端は液体燃料供給部36に連
通した燃料通路36aが外周に臨んで形成してあり、さ
らにノズルヘッド37の突出部37aと固定ねじ38に
よって連結され燃料ノズル35の先端外周との間に燃料
噴出孔39を形成している。そして液体燃料は燃料供給
管24から液体燃料供給部36に供給され燃料通路36
aを経て燃料ノズル35の先端とノズルヘッド37の突
出部37aとによって形成された間隙36bを通って燃
料噴出孔39から円形薄膜状の燃料噴流Lとなって噴出
する。燃料ノズル35と空気ノズル40との間には通気
部43が形成されている。空気ノズル40は燃料ノズル
35の同心外周に位置して空気供給部41が形成してあ
り、この下流側において燃料噴流Lの外周先端の真下に
は空気噴出孔42を設けている。この空気噴出孔42は
燃料噴出孔39の先端から距離Aを有する位置に配設し
ている。そして空気は空気供給管26を通って空気供給
部41に供給され、空気噴出孔42から燃料噴出孔39
より円形薄膜状に噴出した燃料噴流Lの所定位置に向か
って噴出する。
The details of the atomizing unit 21 will be described below. That is, the fuel nozzle 35 is provided with a liquid fuel supply portion 36 at the center thereof, a fuel passage 36a communicating with the liquid fuel supply portion 36 is formed at the tip end so as to face the outer periphery, and a protruding portion 37a of the nozzle head 37 is formed. Is connected with a fixing screw 38 to form a fuel injection hole 39 between the outer periphery of the tip of the fuel nozzle 35. The liquid fuel is supplied from the fuel supply pipe 24 to the liquid fuel supply unit 36, and the fuel passage 36
After passing through a, it passes through a gap 36b formed by the tip of the fuel nozzle 35 and the projecting portion 37a of the nozzle head 37 and is ejected from the fuel ejection hole 39 as a circular thin-film fuel jet L. A ventilation part 43 is formed between the fuel nozzle 35 and the air nozzle 40. The air nozzle 40 has an air supply portion 41 formed on the concentric outer circumference of the fuel nozzle 35, and an air ejection hole 42 is provided immediately below the tip of the outer circumference of the fuel jet L on the downstream side. The air ejection hole 42 is arranged at a position having a distance A from the tip of the fuel ejection hole 39. Then, the air is supplied to the air supply unit 41 through the air supply pipe 26, and the air ejection holes 42 to the fuel ejection holes 39.
The fuel jet L ejected in a more circular thin film shape is ejected toward a predetermined position.

【0013】上記構成における作用について説明する。
電源(図示せず)を投入すると、電磁ポンプが作動し、
液体燃料は燃料タンク22から汲み上げられて加圧状態
となり、燃料供給管24を通って燃料ノズル35内の液
体燃料供給部36に供給され燃料通路36aを経て間隙
36bに至り、燃料噴出孔39から円形薄膜状の燃料噴
流Lとなって噴出する。これと同時に空気供給手段25
が作動し、空気が加圧状態で空気供給管26を通って空
気供給部41に供給され空気噴出孔42から、円形薄膜
状に噴出した燃料噴流Lに向かって真下から噴出する。
この時、円形薄膜状の燃料噴流Lの所定位置に燃料の噴
出方向に対して、空気流が真下から直接衝突し、円形薄
膜状の燃料は剪断されて微小粒子となって霧化する。
The operation of the above configuration will be described.
When the power (not shown) is turned on, the electromagnetic pump operates,
The liquid fuel is pumped from the fuel tank 22 into a pressurized state, is supplied to the liquid fuel supply portion 36 in the fuel nozzle 35 through the fuel supply pipe 24, reaches the gap 36b through the fuel passage 36a, and is discharged from the fuel injection hole 39. A circular thin-film fuel jet L is ejected. At the same time, the air supply means 25
Is activated, and air is supplied to the air supply portion 41 through the air supply pipe 26 in a pressurized state and is jetted from directly below toward the fuel jet L which is jetted in a circular thin film shape from the air jet hole 42.
At this time, the air flow directly collides with a predetermined position of the circular thin-film fuel jet L in the jet direction of the fuel from directly below, and the circular thin-film fuel is sheared and atomized into fine particles.

【0014】この場合燃料噴出孔39から噴出した液体
燃料は、円形薄膜状の燃料噴流Lとなっているので外周
先端に向かって表面積が大きくなり、その膜厚はより薄
くなる。また燃料の噴出速度は燃料噴出孔39から噴出
した直後は大きく、燃料噴出孔39から離れるに従って
減速して小さくなる。そして円形薄膜状の燃料噴流Lの
形成は安定状態の領域Laから円形薄膜上の乱れが成長
して不安定の領域Lbを経て分裂に至り燃料液滴とな
る。この過程において、ここで、空気噴出孔42は燃料
噴出孔39の先端から距離Aを有する所定位置に配設
し、円形薄膜状に噴出した燃料噴流Lの所定位置に向か
って真下から噴出するように設けているので、空気噴流
の運動エネルギーを有効に活用することができると共に
燃料と空気の噴出の方向が同一である並行流に比べて、
また燃料の噴出速度が減速して小さくなところの円形薄
膜状に噴出した燃料噴流Lに空気噴流が直接衝突するの
で空気と燃料の相対速度は大きい状態となり微粒化がよ
り促進される。さらに、円形薄膜状の燃料噴流Lの膜厚
のより薄くなった、分裂に至る直前の不安定な状態(L
b)の燃料噴流に空気噴流が真下から直接衝突するので
微粒化が効果的におこなわれ、粒径の均一な微小粒子と
なって霧化する。そして、従来の圧力噴霧ノズル3から
燃料を噴出して霧化する噴霧燃焼装置(図5)に対し
て、空気噴流の付与による剪断力の作用で広い調節範囲
で霧化状態を得ることができる。次に、燃料ノズル35
と空気ノズル40間に形成した通気部43の作用につい
て説明する。図3は燃料ノズル35と空気ノズル40と
の間に通気部43の形成がない構成で、この場合は燃料
噴流Lと空気流(g)とで囲まれた空気噴出孔42の内
側が負圧域Pとなり、燃料噴流Lは下方に引き寄せられ
て空気噴出孔42の内周端面40aに一部接触し濡れを
生じる。この濡れ液の粗大粒子が霧化中に混在し微粒
化、均一化を阻害する。しかし、本発明では燃料ノズル
35と空気ノズル40との間には通気部43を形成して
いるので負圧域はなくなり濡れを回避して微粒化、均一
化の阻害要因を排除できる。この霧化部20の作用によ
って液体燃料は、粒径の均一な微小粒子群となって霧化
室28に噴霧される。そして一次空気供給部31から供
給される空気と混合しながら、混合室28に導入され十
分に混合される。この燃料と空気の混合気は、よりその
混合度合いを高めながら燃焼部29へ送られ均圧板32
によって燃焼部29全体に均一に分散され、可燃混合気
となって炎口33に供給されて予混合的燃焼となる。こ
のとき炎口33には二次空気供給部34から燃焼用空気
が供給されるので短炎を形成する。
In this case, since the liquid fuel ejected from the fuel ejection hole 39 is a circular thin film-shaped fuel jet L, its surface area increases toward the tip of the outer periphery, and its film thickness becomes thinner. Further, the fuel ejection speed is high immediately after the fuel is ejected from the fuel ejection hole 39, and is decelerated and becomes smaller as the distance from the fuel ejection hole 39 increases. In the formation of the circular thin film-shaped fuel jet L, the turbulence on the circular thin film grows from the stable state region La, then passes through the unstable region Lb to be split, and becomes a fuel droplet. In this process, the air ejection hole 42 is arranged at a predetermined position having a distance A from the tip of the fuel ejection hole 39, and is ejected from directly below toward a predetermined position of the fuel jet L ejected in a circular thin film shape. Since the kinetic energy of the air jet can be effectively utilized because it is provided in the above, compared with the parallel flow in which the jet directions of the fuel and the air are the same,
Further, since the air jet directly collides with the fuel jet L ejected in the shape of a circular thin film where the jet speed of the fuel is decelerated and becomes small, the relative velocity of the air and the fuel becomes large and atomization is further promoted. Further, the film thickness of the circular thin-film fuel jet L becomes thinner, and the unstable state (L
Since the air jet directly collides with the fuel jet of b) from directly below, atomization is effectively performed and atomized into fine particles having a uniform particle size. Then, the atomization state can be obtained in a wide adjustment range by the action of the shearing force due to the air jet flow, with respect to the atomization combustion device (FIG. 5) which ejects fuel from the conventional pressure atomization nozzle 3 and atomizes it. . Next, the fuel nozzle 35
The operation of the ventilation part 43 formed between the air nozzle 40 and the air nozzle 40 will be described. FIG. 3 shows a configuration in which the ventilation part 43 is not formed between the fuel nozzle 35 and the air nozzle 40. In this case, the inside of the air ejection hole 42 surrounded by the fuel jet L and the air flow (g) has a negative pressure. In the region P, the fuel jet L is drawn downward and partially contacts the inner peripheral end surface 40a of the air ejection hole 42 to cause wetting. Coarse particles of the wetting liquid are mixed during atomization, which hinders atomization and homogenization. However, in the present invention, since the ventilation portion 43 is formed between the fuel nozzle 35 and the air nozzle 40, the negative pressure region disappears, wetting can be avoided, and factors that hinder atomization and homogenization can be eliminated. The liquid fuel is sprayed into the atomization chamber 28 as a group of fine particles having a uniform particle diameter by the action of the atomization unit 20. Then, while being mixed with the air supplied from the primary air supply unit 31, it is introduced into the mixing chamber 28 and sufficiently mixed. This mixture of fuel and air is sent to the combustion unit 29 while further increasing the degree of mixing, and the pressure equalizing plate 32 is provided.
By this, it is uniformly dispersed in the entire combustion section 29, becomes a combustible air-fuel mixture, is supplied to the flame port 33, and becomes premixed combustion. At this time, the combustion air is supplied to the flame port 33 from the secondary air supply unit 34, so that a short flame is formed.

【0015】上記のように実施例の液体燃料燃焼装置に
よれば、燃料ノズル35から円形薄膜状に噴出した燃料
噴流Lのその膜厚はより薄く、噴出速度は減速して小さ
く、燃料膜形成の状態は不安定な状態にある所定位置に
微粒化用の空気を直接衝突させることによって均一な微
小粒子とし、一次空気供給部31から供給される空気と
混合しながら炎口33に供給すると共に二次空気供給部
34から燃焼用空気が供給されるようになっているの
で、良好な燃焼状態が得られる。そして、この霧化部2
1によれば霧化量を幅広く調節できるので小燃焼量の場
合にも液体燃料の微粒化が確保でき、燃焼量の調節幅を
拡大することができる。また微粒化用の空気が一次空気
の一部として作用し、一次空気供給部31から供給され
る空気は、微粒化した液体燃料を燃焼部29へ搬送する
とともに、予混合空気として作用するので炎口33で予
混合的燃焼をさせることができ、燃焼速度を拡散燃焼よ
りも大きくすることができる。さらに二次空気供給部3
4から燃焼用空気が供給され、従って炎口33に形成さ
れる火炎長は小さくなり装置の小型化を図ることができ
る。そして燃焼部29に搬送された液体燃料の微小粒子
と空気は可燃混合気となるので瞬時に点火燃焼ができ
る。さらに、従来のように液体燃料の粒子が大きい場合
の、粒子が火炎によって急激に沸騰する時の破裂音に起
因する燃焼騒音を、液体燃料の微粒化によって低減する
ことができて装置の低騒音化を図ることができる。
As described above, according to the liquid fuel combustion apparatus of the embodiment, the film thickness of the fuel jet L ejected from the fuel nozzle 35 in the shape of a circular thin film is thinner, the ejection speed is decelerated and small, and the fuel film is formed. In this state, air for atomization is directly collided with a predetermined position in an unstable state to form uniform fine particles, and the fine particles are supplied to the flame port 33 while being mixed with the air supplied from the primary air supply unit 31. Since the combustion air is supplied from the secondary air supply unit 34, a good combustion state can be obtained. And this atomizing unit 2
According to No. 1, since the atomization amount can be adjusted widely, atomization of the liquid fuel can be ensured even when the combustion amount is small, and the adjustment range of the combustion amount can be expanded. Further, the atomizing air acts as a part of the primary air, and the air supplied from the primary air supply unit 31 conveys the atomized liquid fuel to the combustion unit 29 and acts as premixed air, so that the flame is generated. Premixed combustion can be performed at the mouth 33, and the combustion speed can be made higher than that of diffusion combustion. Further, the secondary air supply unit 3
Combustion air is supplied from No. 4, so that the flame length formed at the flame port 33 is shortened and the apparatus can be downsized. Then, the fine particles of the liquid fuel and the air conveyed to the combustion unit 29 become a combustible air-fuel mixture, so that ignition combustion can be performed instantly. Furthermore, when the particles of the liquid fuel are large as in the conventional case, the combustion noise resulting from the burst noise when the particles are rapidly boiled by the flame can be reduced by atomizing the liquid fuel to reduce the noise of the device. Can be realized.

【0016】次に本発明の他の実施例を図4を用いて説
明する。図において前記実施例と相違する点は、空気噴
出孔42は燃料の噴流方向(矢印1)に対して90度以
上の角度(θ)で空気流(矢印g)が衝突する構成とし
たものである。この他の実施例の構成によれば空気と燃
料の相対速度はより大きい状態となり、空気噴流の運動
エネルギーを有効に活用することができるので一層微粒
化が促進され上記の効果を向上できる。
Next, another embodiment of the present invention will be described with reference to FIG. In the figure, the difference from the above-mentioned embodiment is that the air ejection holes 42 are configured so that the air flow (arrow g) collides with the fuel jet direction (arrow 1) at an angle (θ) of 90 degrees or more. is there. According to the configuration of the other embodiment, the relative velocity of the air and the fuel becomes larger, and the kinetic energy of the air jet can be effectively utilized, so atomization is further promoted and the above-mentioned effect can be improved.

【0017】[0017]

【発明の効果】上記実施例から明らかなように本発明の
液体燃料燃焼装置によれば次の効果が得られる。 (1)燃料ノズルから円形薄膜状に噴出した燃料噴流の
その膜厚はより薄く、噴出速度は減速して小さく、燃料
膜形成の状態は不安定な状態にある所定位置に微粒化用
の空気を直接衝突させることによって均一な微小粒子を
得ることができる。 (2)燃料ノズルと空気ノズルとの間には通気部を形成
しているので負圧域はなくなり濡れを回避して微粒化、
均一化の阻害要因を排除できる。 (3)空気噴出孔は燃料の噴流方向に対して90度以上
の角度で空気流が衝突する構成としているので空気と燃
料の相対速度はより大きい状態となり、空気噴流の運動
エネルギーを有効に活用することができて一層微粒化を
促進することができる。 (4)均一で微小な燃料粒子が一次空気供給部31から
供給される空気と混合しながら炎口33に供給すると共
に二次空気供給部34から燃焼用空気が供給されるよう
になっているので、良好な燃焼状態が得られる。 (5)空気噴流の付与による剪断力の作用で広い調節範
囲で霧化状態を得ることができるので小燃焼量の場合に
も液体燃料の微粒化が確保でき、燃焼量の調節幅を拡大
することができる。 (6)微粒化用の空気が一次空気の一部として作用し、
一次空気供給部から供給される空気は、微粒化した液体
燃料を燃焼部へ搬送するとともに、予混合空気として作
用するので炎口で予混合的燃焼をさせることができ、燃
焼速度を拡散燃焼よりも大きくすることができる。さら
に二次空気供給部から燃焼用空気が供給され、従って炎
口に形成される火炎長は小さくなり装置の小型化を図る
ことができる。 (7)燃焼部に搬送された液体燃料の微小粒子と空気は
可燃混合気となるので瞬時に点火燃焼ができる。 (8)均一で微小な燃料粒子の燃焼となるので、従来の
大きい燃料粒子が火炎によって急激に沸騰する時の破裂
音に起因する燃焼騒音を、液体燃料の微粒化によって低
減することができて装置の低騒音化を図ることができ
る。
As is apparent from the above embodiments, the liquid fuel combustion apparatus of the present invention has the following effects. (1) The film thickness of the fuel jet ejected from the fuel nozzle in the shape of a circular thin film is thinner, the ejection speed is decelerated and small, and the state of fuel film formation is unstable. By directly colliding with each other, uniform fine particles can be obtained. (2) Since the ventilation part is formed between the fuel nozzle and the air nozzle, the negative pressure region disappears and the wetting is avoided to atomize the particles.
It is possible to eliminate the factors that hinder homogenization. (3) Since the air jet holes are configured so that the air streams collide with each other at an angle of 90 degrees or more with respect to the fuel jet direction, the relative velocity of the air and the fuel becomes larger, and the kinetic energy of the air jet is effectively utilized. It is possible to further promote atomization. (4) Uniform and fine fuel particles are supplied to the flame port 33 while being mixed with the air supplied from the primary air supply unit 31, and the combustion air is supplied from the secondary air supply unit 34. Therefore, a good combustion state can be obtained. (5) Since the atomization state can be obtained in a wide adjustment range by the action of the shearing force due to the application of the air jet, the atomization of the liquid fuel can be secured even when the combustion amount is small, and the adjustment range of the combustion amount is expanded. be able to. (6) The atomizing air acts as a part of the primary air,
The air supplied from the primary air supply section conveys the atomized liquid fuel to the combustion section and also acts as premixed air, so that premixed combustion can be performed at the flame mouth, and the combustion speed is higher than that of diffusion combustion. Can also be larger. Further, the combustion air is supplied from the secondary air supply unit, so that the flame length formed at the flame port is reduced and the device can be downsized. (7) Since the fine particles of the liquid fuel and the air, which have been conveyed to the combustion section, become a combustible mixture, ignition combustion can be performed instantly. (8) Since the combustion of uniform and minute fuel particles is performed, it is possible to reduce the combustion noise caused by the explosion noise when the conventional large fuel particles are rapidly boiled by the flame by atomizing the liquid fuel. The noise of the device can be reduced.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例における液体燃料燃焼装置の
要部断面図
FIG. 1 is a sectional view of an essential part of a liquid fuel combustion device according to an embodiment of the present invention.

【図2】同装置内の霧化部の要部断面図FIG. 2 is a sectional view of a main part of an atomizing section in the same device.

【図3】同装置における霧化部の作用を説明する要部断
面図
FIG. 3 is a cross-sectional view of an essential part for explaining the action of an atomizing unit in the same device.

【図4】本発明の他の実施例における液体燃料燃焼装置
の要部断面図
FIG. 4 is a cross-sectional view of essential parts of a liquid fuel combustion apparatus according to another embodiment of the present invention.

【図5】従来の液体燃料燃焼装置の要部断面図FIG. 5 is a sectional view of a main part of a conventional liquid fuel combustion device.

【図6】従来の他の液体燃料燃焼装置の要部断面図FIG. 6 is a cross-sectional view of essential parts of another conventional liquid fuel combustion apparatus.

【符号の説明】[Explanation of symbols]

20 霧化室 21 霧化部 29 燃焼部 31 一次空気供給部 34 二次空気供給部 35 燃料ノズル 36 液体燃料供給部 37 ノズルヘッド 39 燃料噴出孔 40 空気ノズル 41 空気供給部 42 空気噴出孔 43 通気部 20 Atomization chamber 21 Atomization section 29 Combustion section 31 Primary air supply section 34 Secondary air supply section 35 Fuel nozzle 36 Liquid fuel supply section 37 Nozzle head 39 Fuel ejection hole 40 Air nozzle 41 Air supply section 42 Air ejection hole 43 Aeration Department

───────────────────────────────────────────────────── フロントページの続き (72)発明者 肆矢 規夫 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Norio Nobuya 1006 Kadoma, Kadoma City, Osaka Prefecture Matsushita Electric Industrial Co., Ltd.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】液体燃料が供給される液体燃料供給部を有
する燃料ノズルと、この燃料ノズルの先端に連結して前
記燃料ノズルの先端外周との間に燃料噴出孔を形成した
ノズルヘッドと、前記燃料ノズルの外周に設けられた前
記燃料噴出孔から薄膜状に噴出した燃料噴流の所定位置
に微粒化用の空気を衝突させるように供給し前記燃料噴
出孔の外方に配設した空気噴出孔及びこの空気噴出孔に
空気を供給する空気供給部を有する空気ノズルと、前記
燃料ノズルと前記空気ノズルとの間に形成される通気部
からなる霧化部と、この霧化部を内方に配設した霧化室
と、この霧化室に一次空気を供給する一次空気供給部
と、前記霧化室の下流に連通して設けた燃焼部と、この
燃焼部へ空気を供給する二次空気供給部とを備えた液体
燃料燃焼装置。
1. A fuel nozzle having a liquid fuel supply portion to which liquid fuel is supplied, and a nozzle head connected to a tip of the fuel nozzle to form a fuel injection hole between the outer periphery of the tip of the fuel nozzle. Atomizing air is supplied so as to collide with a predetermined position of the fuel jet ejected in a thin film form from the fuel ejecting hole provided on the outer periphery of the fuel nozzle, and an air ejected outside the fuel ejecting hole An air nozzle having a hole and an air supply part for supplying air to the air ejection hole, an atomizing part formed of a ventilation part formed between the fuel nozzle and the air nozzle, and the atomizing part The atomization chamber, a primary air supply unit that supplies primary air to the atomization chamber, a combustion unit that is provided in communication with the atomization chamber downstream, and an air supply unit that supplies air to the combustion unit. A liquid fuel combustion apparatus having a secondary air supply unit.
【請求項2】燃料の噴流方向と空気流の方向とのなす角
が90度以上の角度になるように空気噴出孔を設けた請
求項1記載の液体燃料燃焼装置。
2. The liquid fuel combustion apparatus according to claim 1, wherein the air ejection holes are provided so that an angle formed by the fuel jet direction and the air flow direction is 90 degrees or more.
JP04326485A 1992-12-07 1992-12-07 Liquid fuel combustion device Expired - Fee Related JP3136809B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP04326485A JP3136809B2 (en) 1992-12-07 1992-12-07 Liquid fuel combustion device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP04326485A JP3136809B2 (en) 1992-12-07 1992-12-07 Liquid fuel combustion device

Publications (2)

Publication Number Publication Date
JPH06174210A true JPH06174210A (en) 1994-06-24
JP3136809B2 JP3136809B2 (en) 2001-02-19

Family

ID=18188350

Family Applications (1)

Application Number Title Priority Date Filing Date
JP04326485A Expired - Fee Related JP3136809B2 (en) 1992-12-07 1992-12-07 Liquid fuel combustion device

Country Status (1)

Country Link
JP (1) JP3136809B2 (en)

Also Published As

Publication number Publication date
JP3136809B2 (en) 2001-02-19

Similar Documents

Publication Publication Date Title
JPH0550646B2 (en)
JPH06174210A (en) Liquid fuel-burning device
JP2827698B2 (en) Liquid fuel combustion device
JP3021870B2 (en) Liquid fuel combustion device
JP3144116B2 (en) Liquid fuel combustion device
JP2982437B2 (en) Liquid fuel combustion device
JPH06221517A (en) Liquid fuel burning device
JP3106693B2 (en) Liquid fuel combustion device
JP2561382B2 (en) Low NOx burner
JPS62242719A (en) Atomization method and apparatus for slurry-like fuel
EP0019022B1 (en) Liquid fuel burners
JPS59202309A (en) Combustion device
JPH05248612A (en) Liquid fuel combustion device
JP2822609B2 (en) Liquid fuel combustion device
JPS6350603B2 (en)
JPH06254444A (en) Atomizing device for liquid and liquid fuel combustion device
US20100233640A1 (en) Glycerin burning system
JPH03211305A (en) Liquid fuel burner
JP2005009409A (en) Liquid atomizing device and liquid atomizing device for gas turbine burner, and method for atomizing liquid
JP3019452B2 (en) Liquid fuel combustion device
JPS6152553A (en) Water heater
JPS5924111A (en) Burner
JPS6248124B2 (en)
CN1324996A (en) Energy-saving liquid fuel burner
JPS59142318A (en) Burner

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees